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Abstract

In this paper we consider two challenging problems
that arise in the context of computing a consensus of
a collection of multilabeled trees, namely (1) selecting a
compatible collection of clusters on a multiset from an
ordered list of such clusters and (2) optimally refining
high degree vertices in a multilabeled tree. Forming
such a consensus is part of an approach to reconstruct
the evolutionary history of a set of species for which
events such as genome duplication and hybridization
have occurred in the past. We present exact algorithms
for solving (1) and (2) that have an exponential run-
time in the worst case. To give some impression of their
performance in practice, we apply them to simulated
input and to a real biological data set highlighting the
impact of several structural properties of the input on
the performance.

1 Introduction

In this paper we develop exact algorithms for two NP-
hard problems involving so-called multilabeled trees or
MUL-trees, for short. These are rooted trees T whose
leaves are labeled with the elements of a finite set X
where an element x ∈ X may label more than one
leaf of T . Since these problems admit polynomial time
algorithms in case every label is allowed to occur at
most once, we identify parameters that seem to capture
quite well how hard it is to deal with a particular input.
We focus here on two particular problems that arise in
biology in the context of an approach to reconstruct
the evolutionary history of a set X of species in which
events such as genome duplication and hybridization
have occurred (see e.g. [9, 10]). These parameters and
the structural properties of MUL-trees employed in our
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new algorithms also appear to have some promise for
tackling other problems involving such trees.

To reconstruct the evolutionary history for a set
X of species, one can first reconstruct a collection T
of MUL-trees, each describing the evolutionary history
of a single gene sequenced for each species in X and
then form a consensus of the trees in T [12]. The
consensus will again be a MUL-tree that can then
be turned into a network describing the evolutionary
history more explicitly. Note that the trees in T
are multilabeled since, due to genome duplication or
hybridization events in the past, several copies of the
same gene might be present in the genome of a species
in X and some of these copies might have evolved along
different evolutionary paths.

The method for computing a consensus of T pre-
sented in [8] works by first breaking the trees in T into
subsets of a multiset, so-called clusters. These clusters
are ranked in an ordered list L according to how often
a particular cluster occurs in the trees in T. Then, to
form a consensus MUL-tree, the following two problems
need to be solved:

(1) Given the ordered list L of clusters on a multiset,
select a suitable subcollection C of clusters that is
compatible, that is, can be represented by a single
MUL-tree.

(2) Compute a MUL-tree which induces a super-
collection of the clusters in C that minimizes the
number of genome duplication and hybridization
events needed to explain that tree.

Note that, in view of the fact that it is an NP-hard
problem to decide whether a given unordered collection
of clusters on a multiset is compatible [4], it follows
that (1) is NP-hard and, using a similar reduction
as employed in [4], one can show that (2) also leads
to an NP-hard subproblem. As mentioned above, we
present exact algorithms for solving (1) and (2) and
demonstrate, using simulated inputs and a biological
data set that, with the help of these algorithms, the
approach presented in [8] is feasible for computing
the consensus of collections of MUL-trees each having
several hundred leaves.



Related work includes algorithms for comparing
MUL-trees [1], for computing MUL-trees that optimally
represent collections of so-called triplets [2], and for op-
timally pruning MUL-trees to obtain a usual phyloge-
netic tree [11], that is, a rooted tree in which the leaves
are in one-to-one correspondence with the underlying
set X.

2 Preliminaries

2.1 Basic definitions We view a multiset M as a
map M : X → N>0 for some finite set X and call
M(x) the multiplicity of x ∈ X. The set X is called the
underlying set of M and denoted by M . We will also
write x ∈ M if x ∈ X holds and, to describe specific
multisets, we will just list the elements with their
multiplicities, e.g. {a, a, a, b, b, b, c}. In addition, for any
multiset M , we define the size |M | =

∑
x∈XM(x), the

thin part M∗ = {x ∈ X : M(x) = 1}, and the deviation
∆(M) =

∑
x∈X(M(x) − 1) of M from its underlying

set X. A multiset M ′ with M ′ ⊆M and M ′(x) ≤M(x)
for all x ∈ M ′ is called a submultiset of M and we use
M ′ ⊆ M to denote this fact. Non-empty submultisets
of M are also referred to as clusters on M . A cluster
is trivial if it has size 1. The union M ∪ M ′ of two
multisets M and M ′ with the same underlying set X
contains every x ∈ X with multiplicity M(x) + M ′(x).
Similarly, the difference M −M ′ contains every x ∈ X
with multiplicity max{0,M(x)−M ′(x)}.

A MUL-tree T = (T, ϕ) on a multiset M consists
of (i) a rooted tree T = (V,E, ρ) with root ρ in which
every vertex has either none or at least two children,
and (ii) a labeling map ϕ : L(T ) → M from the set
L(T ) of leaves of T onto M such that, for every x ∈M ,
|{v ∈ L(T ) : ϕ(v) = x}| = M(x) holds (cf. Figure 1(a)).
We say that T is binary if every non-leaf vertex of T
has precisely 2 children. Two MUL-trees T1 = (T1, ϕ1)
and T2 = (T2, ϕ2) are isomorphic if there exists a graph
isomorphism ι from T1 to T2 such that ϕ1(v) = ϕ2(ι(v))
holds for all v ∈ L(T1) and, in addition, the root of T1

is mapped to the root of T2.
For every vertex v of a MUL-tree T onM , we denote

by Tv the rooted subtree of T consisting of those vertices
u of T for which the path from u to ρ contains v. The
cluster Cv induced by v is the submultiset of M formed
by the labels of the leaves of Tv (cf. Figure 1(b)).
In addition, let C(T ) denote the collection of clusters
induced by the vertices of T with multiplicities taken
into account, that is, C(T ) is also considered as a
multiset. Note that, for every x ∈ M , C(T ) contains
the trivial cluster {x} with multiplicity M(x). In the
following we will mostly consider collections of clusters
that have this property and we will say that a collection
C of clusters on a multiset M is compatible if there exists

(a) ρ

a b a b c a b

v

(b)

a b a b

v

ρ

a b c d e

(c)

u

ρ

a b c d ec

(d)

(e)

ρ

a b a b c a b

Figure 1: (a) A MUL-tree T on {a, a, a, b, b, b, c}. (b)
The subtree Tv. The cluster induced by v is Cv =
{a, a, b, b} and the multiplicity of cluster {a, b} in C(Tv)
(as well as in C(T )) is 2. (c) A phylogenetic network N
on {a, b, c, d, e} with ret(N ) = 2. (d) The network Ni
resulting from processing vertex vi := u in the network
Ni−1 = N in (c). (e) A refinement of the MUL-tree
in (a).

a MUL-tree T on M with C ⊆ C(T ). Otherwise we say
that C is incompatible.

A phylogenetic network N = (D,ϕ) on a set X
consists of a directed acyclic graph D = (V,E) (parallel
edges allowed) and a labeling map ϕ : L(D)→ X from
the set L(D) of leaves of D, that is, those vertices with
no outgoing edge, onto X (cf. Figure 1(c)). We require
that D has precisely one vertex ρ with no incoming
edges, called the root of N . Moreover, every vertex
in D has either (i) no outgoing edge and precisely one
incoming edge, or (ii) at least two outgoing edges, or
(iii) at least two incoming edges. Note that there are
several other definitions of phylogenetic networks in the
literature, see e.g. [6]. The reticulation number of N
is defined as ret(N ) =

∑
v∈V−{ρ}(degin(v) − 1) where

degin(v) denotes the number of incoming edges at vertex
v. Note that this number can be viewed as an estimate
of how many genome duplication or hybridization events
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Figure 2: An Example illustrating one step in the
algorithm for constructing the networkN (T ) for a given
MUL-tree T . (a) The network Ni−1 with the vertices
in a suitable set U marked by empty circles. (b) The
resulting network Ni.

have occurred in the evolutionary history of the set of
species X represented by N . Therefore, as described
next, we use the reticulation number to score a given
MUL-tree.

In the remainder of the paper we will use the fol-
lowing constructions to go from a phylogenetic net-
work to a MUL-tree and vice versa. First note that
with every phylogenetic network N on X one can as-
sociate a canonical MUL-tree T (N ) on a multiset M
with M = X as follows. Let v1, v2, . . . , v` be a topo-
logical ordering of the vertices of N . We construct a
sequence of phylogenetic networks N0,N1, . . . ,N` with
N0 = N . Assume we have already constructed Ni−1 for
some i ∈ {1, 2, . . . , `}. If vi has at most one incoming
edge we put Ni = Ni−1. Otherwise we make degin(vi)
copies of the subgraph induced by the set of vertices in
Ni−1 that can be reached on a directed path from vi
and attach one separate copy with each incoming edge
at vi, suppressing any resulting vertices with only one
incoming and one outgoing edge (cf. Figure 1(d)). It
is not hard to see that, discarding the directions of the
edges, N` is indeed a MUL-tree on some multiset M
with M = X and it does not depend on the chosen
topological ordering. In this case we will say that the
phylogenetic network N displays the MUL-tree T (N ).

In [5] a polynomial time algorithm is presented that
can be viewed as reversing the construction of T (N )
yielding, for any MUL-tree T on some multiset M , a

phylogenetic network N (T ) on M with T = T (N (T )).
It should be noted, however, that there exist phyloge-
netic networks N with N 6= N (T (N )). The algorithm
in [5] again constructs a sequenceN0,N1, . . . ,N` of phy-
logenetic networks, where N0 is the given MUL-tree T
with all edges directed away from the root and N` is the
resulting network N (T ). In [5] it is shown that, under
relatively mild assumptions, N (T ) has the minimum
reticulation number among all phylogenetic networks
that display T . As mentioned above, this suggests using
this number to score T .

We close this section by recalling some facts about
the construction of Ni from Ni−1, i ∈ {1, 2, . . . , `},
that will be used in the description of our algorithm
for Problem (2) later on. First a set U of at least
two vertices in Ni−1 is selected such that (i) for every
vertex u ∈ U , the subnetwork of Ni−1 formed by those
vertices that can be reached from u along directed
paths does not contain any vertices with more than
one incoming edge, implying that this subnetwork is
actually a MUL-tree Tu, (ii) the MUL-trees Tu, u ∈ U ,
are pairwise isomorphic, (iii) every vertex w of Ni−1

with Tw isomorphic to Tu for some u ∈ U is contained
in U , and (iv) the size of the cluster Cu induced by
the vertices u ∈ U is maximum among all U satisfying
(i)-(iii). The algorithm then replaces the collection of
trees Tu, u ∈ U , by a single copy of such a tree that
is attached to a vertex v with |U | incoming edges, each
representing one of the original trees (cf. Figure 2).

2.2 Random MUL-tree generator and used
hardware/software To generate simulated input for
evaluating our algorithms, we used the following ap-
proach. For given values m, m∗ and δ, random MUL-
trees are generated as follows: First a random binary
rooted tree T with m leaves is generated according to
the Yule-Harding model [3, 13]. Then a random mul-
tiset M with |M | = m, |M∗| = m∗ and ∆(M) = δ is
generated and, from all bijections between M and L(T ),
one is selected uniformly at random to obtain a labeling
map ϕ. The multiset M is generated by first creating
m∗ elements, each with multiplicity one, that consti-
tute M∗. Then, putting m′ := m −m∗ − δ, additional
elements x1, x2, . . . , xm′ are generated in that order, as-
signing xi, i = 1, 2, . . . ,m′ − 1, a random multiplicity
M(xi) that is selected uniformly at random in the range

from 2 to 2+m−m∗−2m′−
∑i−1
j=1(M(xj)−2). Finally,

element xm′ is assigned multiplicity 2+m−m∗−2m′−∑m′−1
j=1 (M(xj)−2). Note that the values |M |, |M∗| and

∆(M) are not completely independent. For example,
as |M∗| tends to |M |, ∆(M) tends to 0. Therefore, in
our experiments we will usually mention |M | and ∆(M)
only. All computational experiments presented in this



paper were performed on an Intel Harpertown dual quad
core system with Scientific Linux 5 operating system us-
ing 2GB of main memory.

2.3 Brief description of the overall approach
We briefly recall the key facts about the method de-
scribed in [8]: We are given a collection T of MUL-
trees, all on the same multiset M . These MUL-trees are
turned into a list L of clusters on M sorted according to
how often a particular cluster is induced by the trees in
the input collection. We only take clusters into account
that are induced by at least a certain percentage of the
MUL-trees in T. This percentage can be chosen by the
user. In our computational experiments we used 50%.

From L we want to select a compatible collection
of clusters by running through L. This is Problem (1)
mentioned in the introduction. At step i we have a
collection Ci of compatible clusters already selected from
L. Then, for the next cluster C in L, we check whether
Ci ∪ C is compatible. If this is the case we add C to
Ci to obtain Ci+1. Otherwise we put Ci+1 = Ci. The
resulting compatible collection of clusters is denoted by
C.

Next we search for a suitable MUL-tree T such that
C ⊆ C(T ) holds. This is Problem (2) mentioned in the
introduction. Note that there can be a superpolynomial
number of such trees. To select a biologically meaningful
candidate from these trees, a score σ(T ) is associated
with each MUL-tree T . This score is defined as the
minimum of the reticulation number over all networks
N (T ′) where T ′ is a binary MUL-tree that refines T
(cf. Figure 1(e)), that is, there exists a sequence
T1, T2, . . . , Tk of MUL-trees such that:

(i) T1 = T and Tk = T ′,

(ii) For all i ∈ {1, 2, . . . , k − 1}, the MUL-tree Ti+1

is obtained from Ti by adding a new vertex v,
connecting v by a new edge to some vertex u of
Ti with at least three children, deleting the edges
between u and at least two (but not all!) of its
children, and then connecting these children, each
by a new edge, with vertex v so that they become
children of v in Ti+1.

In the following we will refer to the process described in
(ii) also as a single refinement step, or, in case we need
to be more precise, the refinement of vertex u by vertex
v.

3 Problem (1) — Selecting a compatible
collection of clusters

Our approach is based on the fixed-parameter algorithm
described in [4] to decide whether a given collection

of clusters on a multiset is compatible. We use this
algorithm to check, at each step i, whether for the next
cluster C in the list L the collection Ci∪C is compatible.
In this process, two dynamic programming tables are
used. In the first one, denoted by DP1, the rows are
indexed by the submultisets M ′ ⊆ M and the columns
are indexed by the subcollections C′ ⊆ C. The entry
in DP1 for some M ′ and C′ is either 0 or 1, where a
1 means that there exists a MUL-tree T ′ on M ′ with
C′ ⊆ C(T ′) and 0 means that there is no such MUL-
tree T ′. The computation of an entry in DP1 involves
the look-up of other entries in DP1 but does not use
the second table we describe next.

The second table, denoted by DP2, has a row for
certain collections M = {M1,M2, . . . ,Ms} of submulti-
sets of M , and a column for each subcollection C′ ⊆ C.
Again, the entry in DP2 for given M and C′ is either 0
or 1, where 1 means that C′ can be partitioned into s,
possibly empty, subcollections C1, C2, . . . , Cs such that,
for every j ∈ {1, 2, . . . , s}, there exists a MUL-tree Tj
on Mj such that Cj ⊆ C(Tj) holds, and the entry is 0 if
C′ cannot be partitioned in such a way. The collections
M considered in DP2 result from a preprocessing step
described in [4] that partitions the given multiset M
into independent submultisets. Checking compatibility
of C then essentially amounts to checking whether there
exists an assignment of the clusters in C to the submulti-
sets M ′ ⊆M resulting from the partitioning such that,
for each such M ′, the collection of clusters assigned to
M ′ is compatible when viewed as clusters on M ′. The
computation of an entry of DP2 involves the look-up of
other entries in DP2 as well as the look-up of entries in
DP1.

It follows from a key observation in [4] that it
suffices to consider only such submultisets of M in
the dynamic programming tables that have an empty
intersection with the thin part M∗ of M . As a
consequence the size of the tables can be bounded by
c∆(M) for some constant c > 1. Still, for practically
relevant values of ∆(M), the size of the tables is too
large to be used in a straight forward way. However,
through computational experiments (cf. Figure 3)
we found that in both tables usually only a small
fraction of the entries is actually accessed during a run
of our algorithm. Therefore, using a sparse matrix
implementation of the tables that only stores those
entries that are accessed at least once, we were able
to overcome this problem.

To further speed-up the computation of C, we
developed the following simple, yet remarkably effective
rule that helps to reduce the number of accessed entries
in DP2 which, in turn, also reduces the number of
accessed entries in DP1. To describe this rule, consider



Figure 3: Percentage of accessed entries in DP1 and
DP2 plotted against the size |M | of the multiset M .
Each data point shown is the average over 1000 experi-
ments with varying values of ∆(M).

the entry in DP2 for M = {M1,M2, . . . ,Ms} and C′.

(*) If there exists some j ∈ {1, 2, . . . , s} such that⋃
C∈C̃ C ⊆ Mj holds for the collection C̃ of those

clusters C ∈ C′ with C ⊆ Mj then we need not
consider this entry of DP2. Put differently, it
is sufficient to consider the entry for M′ and C′′,
where M′ is obtained by removing Mj from M and

C′′ is obtained by removing the clusters in C̃ from
C′.

The impact of (*) is illustrated in Figure 4. In this ex-
periment, simulated input lists L were obtained by first
generating a random MUL-tree T as described in Sec-
tion 2.2 and then using T to generate a collection T of
100 MUL-trees by restricting T to random submultisets
of M that are obtained by randomly removing a fixed
percentage of the elements in M .

4 Problem (2) — Assembling and scoring
MUL-trees

Recall that the input is a compatible collection C of
clusters on the multiset M . Essentially, we aim to
systematically generate all binary MUL-trees T with
C ⊆ C(T ) and keep track of those for which the
reticulation number of the phylogenetic network N (T )
is minimum. In the following, we outline first how this
can be done and then present some ideas that help
to speed-up the whole process. As mentioned above,
this approach involves as a subproblem the problem of
computing the score σ(T ) of a MUL-tree T and this

Figure 4: Illustration of the impact of the rule (*)
described in the text for reducing the number of entries
accessed in DP2 expressed as the speed-up achieved
using the rule in comparison to not using it. Each data
point is averaged over 100 datasets with |M | as depicted
and ∆(M) = 20%|M |.

problem can be shown to be NP-hard using similar ideas
as those employed in [4].

4.1 The basic setup — depth first search To
systematically generate all relevant binary MUL-trees
on M , we perform a depth first search which consists of
two phases. In the first phase we process the non-trivial
clusters in C according to a suitably chosen ordering
described below. In the second phase the possibly non-
binary MUL-trees found that induce C are refined to
binary trees.

To start with, we sort the non-trivial clusters in C
into some ordering C1, C2, . . . , Ct such that cluster Ci is
maximal in {Ci, Ci+1, . . . , Ct} with respect to multiset
inclusion. Then, during the first phase of the depth first
search, assume that, at stage i of the search process,
we have some MUL-tree T on M such that the non-
trivial clusters induced by T are precisely the clusters
C1, C2, . . . , Ci−1. We need to check whether there exists
a MUL-tree T ′ that results from refining an interior
vertex u of T by a new vertex v in such a way that
Cv = Ci holds. Note that, in view of the chosen ordering
in which we process the non-trivial clusters in C, we
only need to check interior vertices u of T for which
all children are leaves. Therefore, this check can be
performed very efficiently. There can be, however, more
than one such tree T ′ and for each of them the next
cluster Ci+1 is processed in a separate branch in the



depth first search. If there is no such tree T ′ we back
track immediately.

When in our search we reach the point where the
current MUL-tree T is such that the non-trivial clusters
induced by T are precisely the clusters in C, we continue
refining T further, but now it does not matter any longer
which clusters are induced by the new vertices added
during the refining. A single step in this phase of the
depth first search consists in selecting an interior vertex
u in T with at least three children and then considering
all possible ways to turn it into a vertex with precisely
two children. This is done by first refining u by a new
vertex v1 and then, in case u has still more than two
children, by refining u further by another vertex v2 so
that in the resulting MUL-tree T ′ vertex u has precisely
two children, namely v1 and either one of its original
children or v2.

During the entire search process we maintain an
initially empty list B of pairwise non-isomorphic binary
MUL-trees T with C ⊆ C(T ) and for which the score
σ(T ) is minimum among the binary MUL-trees encoun-
tered so far. We denote this score by σB. So, whenever
the current MUL-tree T considered in the depth first
search is binary, we compute σ(T ). If σ(T ) < σB we
remove all MUL-trees from B and then add T to it. If
σ(T ) = σB we check if T is isomorphic to some MUL-
tree in B and, in case it is not, add it to B. And if
σ(T ) > σB we keep B as is and discard T .

In computational experiments we found that the
second phase of the depth first search is by far the more
time consuming one accounting for up to 95% of the
time. Therefore, in the next section, we focus on ideas
for how to speed-up the computation during this phase.

4.2 Speeding-up the second phase The key ob-
servation we rely on in the following is that it only makes
sense to refine a vertex u by a new vertex v if there is
a chance that in the resulting binary MUL-tree there is
at least one other vertex v′ with Cv = Cv′ . Note that
this is an immediate consequence of the way the phylo-
genetic network N (T ) is defined. Also note that a nec-
essary condition for the existence of such a vertex v′ is
that Cv∩M∗ = ∅ must hold. Before we explain how this
observation can be employed, we introduce some more
notation. In a MUL-tree T on a multiset M we denote
the set of children of a vertex v by ch(v) and, in addi-
tion, define the set ch+(v) = {u ∈ ch(v) : Cu∩M∗ = ∅}.

4.2.1 Preprocessing Before starting to systemati-
cally refine vertices of degree larger than three, it is use-
ful to first apply some preprocessing that further sim-
plifies the task of refining the given MUL-tree in the
second phase.

First note that for any vertex u with 2 ≤ |ch+(u)| <
|ch(u)| we can safely refine u by a new vertex v with
Cv =

⋃
w∈ch+(u) Cw. Thus, we can assume from now

on that in the MUL-tree T we want to refine we have
either ch+(v) = ch(v) or |ch+(v)| ≤ 1 for every vertex
v. In particular, to compute the score σ(T ) it suffices
to refine only those vertices u with ch+(u) = ch(u),
that is, we need not refine T until it is binary but can
derive σ(T ) already from some intermediate non-binary
MUL-tree that refines T just enough.

Next note that sometimes we can partition the given
MUL-tree T into subtrees and then score these subtrees
independently of one another. To outline how this can
be done, define V1 as the set of those interior vertices v
of T other than the root for which Cv ∩ (M − Cv) = ∅.
Let ≤T denote the partial order on the vertex set of T
with a ≤T b if vertex b lies on the path from a to the
root of T . Consider the set V ∗1 of maximal elements in
V1 with respect to the restriction of ≤T to V1. Then
the MUL-trees Tv, v ∈ V ∗1 , together with the tree T ∗
that is obtained from T by replacing each Tv by a
distinguished leaf `v, v ∈ V ∗1 , form subtrees that can
be refined independently. Note that, while T ∗ cannot
be further partitioned, it is possible that the subtrees
Tv, v ∈ V ∗1 , can be further partitioned. If the latter is
the case then we partition them recursively.

4.2.2 The dependency graph In this section, we
describe how to speed-up the actual refining of a MUL-
tree T on a multisetM . Let V denote the vertex set of T
and define the collection of potential clusters associated
with a vertex v ∈ V with ch+(v) = ch(v) as

Pv = {
⋃
u∈U

Cu : U ⊆ ch+(v), 2 ≤ |U | < |ch+(v)|},

that is, the collection of those clusters that can be
formed by refining vertex v and which are relevant for
the score of the tree.

Now, let N be a subset of V . The dependency
graph D(T ,N) = (V,A) is a directed graph with vertex
set V that has a directed edge (u, v) from u to v
if u ∈ N and Cu ∈ (Pv ∪ {Cv}). Intuitively, N
consists of those vertices that have already been added
to refine certain vertices and an edge (u, v) ∈ A indicates
that considering the refinement by vertex u might be
relevant for computing the score σ(T ) because there is
at least one other vertex in T that gives, or at least will
potentially give, rise to a copy of cluster Cu.

Before we describe how the graph D(T ,N) = (V,A)
might be used to prune the depth first search we outline
briefly how D(T ,N) is updated when refining a vertex
w ∈ V with |ch(w)| = |ch+(w)| ≥ 3. Recall that a
single step consists of selecting a subset W ⊆ ch+(w)



with 2 ≤ |W | < |ch+(w)|, adding a new vertex u as a
child of w to T and then changing each w′ ∈ W from
being a child of w to being a child of u. In addition,
putting W ′ = ch+(w)−W , we add another new vertex
u′ as a child of w to T if |W ′| > 1 holds and then
change each w′ ∈ W ′ from being a child of w to being
a child of u′. In the following we only consider the
case that two new vertices, u and u′, have been added.
The case that only u is added is completely analogous.
Let T ′ denote the resulting MUL-tree with vertex set
V ′ = V ∪{u, u′} and edge set E′. Put N ′ = N ∪{u, u′}.
Then D′ = D(T ′,N ′) = (V ′, A′) is obtained from D(T ,N)

by:

(i) Adding vertices u and u′.

(ii) Adding edges (u, v) from u to all vertices v ∈ V
with Cu ∈ (Pv ∪ {Cv}) and adding edges (u′, v)
from u′ to all vertices v ∈ V with Cu′ ∈ (Pv∪{Cv})

(iii) Adding edges (v, u) for all v ∈ N with Cv ∈
(Pu ∪ {Cu}) and adding edges (v, u′) for all v ∈ N
with Cv ∈ (Pu′ ∪ {Cu′})

(iv) Removing all edges (v, w) for which we no longer
have Cv ∈ (Pw ∪ {Cw}).

To speed-up the scoring using the dependency
graph D(T ,N) = (V,A), we apply the following rule:
If there exists some u ∈ N that has no outgoing edge
(u, v) ∈ A then the vertex u is not relevant for com-
puting the score. So, if we get into this situation we
can track-back immediately. We refer to this as the no
outgoing edge rule or NOE-rule, for short.

4.2.3 Computational experiments In Figure 5 we
illustrate the impact of the preprocessing and the appli-
cation of the NOE-rule on the run-time for simulated
input MUL-trees. In the plot, each data point is an av-
erage over 100 input MUL-trees on a multiset M with
the specified size and deviation from its underlying set.
As is clearly visible, as soon as the size of M increases
above 60, our new algorithm for Problem (2) quickly
becomes several magnitudes faster than the basic setup
described in Section 4.1. This observation is indepen-
dent of the value for ∆(M) but is most pronounced for
∆(M) = 10%.

To shed some light on the individual impact of the
preprocessing and the NOE-rule, we also measured the
speed-up achieved by applying them together in com-
parison to using the preprocessing alone (cf. Figure 6).
The different curves in the plot highlight the impact of
the deviation of the input MUL-tree T from being a bi-
nary tree, that is, the number κ(T ) of single refinement
steps needed to turn T into a binary tree. This number

Figure 5: Results of an experiment (with κ(T ) = 10%
and ∆(M) values as specified) in terms of the achieved
speed-up in comparison to the basic setup described
in Section 4.1 when executing the preprocessing step
described in the text in conjunction with the NOE-rule.

Figure 6: Speed-up due to applying the NOE-rule in
addition to the preprocessing for different values of κ(T )
(∆(M) was fixed to 20%|M |).



Figure 7: Run-times for the algorithm for Problem (2)
when both the preprocessing and the NOE-rule are
applied (∆(M) = 10%|M |).

is given as percentage of the maximum possible number
of refinement steps for the specified size of the multiset
M . Overall, the picture is not so clear cut. It appears
that there are specific combinations of |M |, ∆(M) and
κ(T ) for which a significant additional speed-up can be
achieved by using the NOE-rule.

Next, in Figure 7 the actual run-times for experi-
ments illustrating the combined impact of the prepro-
cessing and the NOE-rule are depicted. As is clearly
visible, the run-time grows in the size |M | of M and
this growth is dependent on the value for κ(T ).

Finally, in Figure 8, we depict the run-time for
the overall method outlined in Section 2.3 when using
our new algorithms for Problems (1) and (2). The
input collections T of MUL-trees were generated in
the same way as in the experiments described at the
end of Section 3 with both ∆(M) and the number of
randomly removed elements fixed to 10%|M |. Note
that, when using the basic version of the method
(rule (*) for Problem (1) switched off, no preprocessing
and no application of the NOE-rule for Problem (2)),
even for |M | = 40 most of the simulated inputs could
not be processed within 24 hours, the limit set for all
experiments.

5 Discussion and conclusions

Our new algorithms for Problems (1) and (2) make it
possible to apply the consensus method described in [8]
to collections of MUL-trees with more than 200 leaves,
as illustrated in Figure 8. We also applied the method

Figure 8: Run-times of the consensus method presented
in [8] when using our new algorithms for Problems (1)
and (2).

with the new algorithms to a biological data set pre-
sented in [7]. From an alignment of 71 DNA sequences
from flowering plants for which there is evidence of hy-
bridization, we constructed 1000 phylogenetic trees us-
ing PAUP∗ (version 4.0b10) with leaves labeled by the
sequences in the alignment. To obtain MUL-trees, the
sequences were replaced by the plant species they were
sequenced from. By construction, these MUL-trees were
all on the same multiset M of size 71 with ∆(M) = 28
and |M∗| = 25. It took 30 seconds to process this col-
lection of MUL-trees to form a consensus. In contrast,
the basic version of the method was again not able to
process this data set within 24 hours.

The computational experiments also suggest that
the parameter ∆(M) that was used in [4] to develop
a fixed-parameter algorithm is indeed of practical rel-
evance. Another parameter that seems to have a sig-
nificant impact in the context of computing the score
σ(T ) for a MUL-tree T is the number κ(T ) of single
refinement steps needed to turn T into a binary MUL-
tree. When applying the preprocessing and the NOE-
rule, however, the picture seems to get a little blurred.
We think that this is due to the fact that when applying
these we actually aim to not completely refine T to a
binary tree.

In future work it could be interesting to explore
ways to also speed-up the first phase of the depth first
search described in Section 4.1, which currently follows
a straightforward approach. Also, the computational
complexity of the problem where the input is just a
compatible collection C of clusters on some multiset



M and we want to find a binary MUL-tree T on
M with minimum score σ(T ) such that C ⊆ C(T )
holds, is, to the best of our knowledge, open. In
relation to this, the reduction establishing NP-hardness
for the related problem of computing the score σ(T )
for a given MUL-tree T mentioned at the beginning of
Section 4 employs MUL-trees whose maximum vertex
degree is not bounded by a constant. So, is this
problem fixed-parameter tractable with respect to the
maximum degree? Similarly, is this problem fixed-
parameter tractable with respect to the score of the
tree?
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