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Abstract. We have developed TakaTuka, a Java Virtual Machine opti-
mized for tiny embedded devices such as wireless sensor motes. TakaTuka1

requires very little memory and processing power from the host device.
This has been verified by successfully running TakaTuka on four different
mote platforms. The focus of this paper is TakaTuka’s optimization of pro-
gram memory usage. In addition, it also gives an overview of TakaTuka’s
linkage with TinyOS and power management. TakaTuka optimizes stor-
age requirements for the Java classfiles as well as for the JVM interpreter,
both of which are expected to be stored on the embedded devices. These
optimizations are performed on the desktop computer during the linking
phase, before transferring the Java binary and the corresponding JVM in-
terpreter onto a mote and thus without burdening its memory or computa-
tion resources. We have compared TakaTuka with the Sentilla, Darjeeling
and Squawk JVMs.

1 Introduction

A common way of programming an application for wireless sensor motes is by
using a low level programming language such as Assembly, C and NesC [3].
These languages tend to have a steep learning curve and the resulting programs
are difficult to debug and maintain. In contrast, it is attractive to program these
motes in Java, a widely used high level programming language with a large devel-
oper community. Java is highly portable and provides many high level concepts
including object oriented design, type safety, exception handling and runtime
garbage collection. However, Java portability requires a virtual machine, which
comes with significant memory and computation overhead [7]. Therefore, it is
difficult to run such a virtual machine on a wireless sensor mote which typically
has a 16 or an 8 bit microcontroller with around 10KB of RAM and 100KB of
flash [18]. Furthermore, these motes cannot perform computation intensive tasks
due their limited battery lifetime. Therefore, a Java Virtual Machine (JVM) de-
signed for such tiny embedded devices must have low computation requirements,
1 The complete source of TakaTuka is available athttp://takatuka.sourceforge.net
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a small RAM footprint, and small storage requirements. To satisfy these strin-
gent requirements, we have designed TakaTuka, a JVM for wireless sensor motes.

The focus of this paper is TakaTuka’s optimization for reduction in flash
storage requirements of the Java classfiles and virtual machine. The main con-
tributions described in this paper are: 1) Extensive Java bytecode and constant
pool optimizations. As part of these, we present a novel optimal bytecode replace-
ment algorithm (Section 3.3.2). 2) A condensed Java binary format (called Tuk).
Beside providing size reduction, the Tuk file format reduces RAM and compu-
tation requirements by enabling constant time access to preloaded information
stored in flash. 3) A novel design for dynamically sizing the JVM interpreter.
4) TakaTuka Java interfaces for typical mote hardware and an implementation
based on TinyOS. The current version of TakaTuka can supports all mote plat-
forms using TinyOS that either have MSP430 or AVR family processors. We have
acquired four of those platforms and successfully tested TakaTuka on them. This
includes Crossbow’s Mica2, Micaz, TelosB and Sentilla’s JCreate [18] [17].

Outline: We present related work and background information in Section 2. Java
bytecode optimization is described in Section 3 and constant pool optimization
in Section 4. The Tuk file format, is discussed in, Section 5 and our JVM design is
presented in Section 6. We discuss TakaTuka’s linkage with TinyOS in Section 7.
We present results in Section 8 and finally, in Section 9, we draw the conclusions.

2 Related Work and Background

This section summarizes the existing JVMs for tiny embedded devices and byte-
code size reduction techniques.

JVM for Motes: Recently, Sun Microsystems has developed Squawk, a JVM for
embedded systems [7], which overcomes some of the shortcomings of traditional
JVMs by employing a Split VMArchitecture (SVA). In SVA, resource-hungry tasks
of the JVM, including class file loading and bytecode verification are performed on
the desktop [14] [7]. This process reduces the memory and CPUusage requirements
for the execution of the program on the mote, because no runtime loading and veri-
fication is required. When compared to standard JVMs, Squawk has less stringent
requirements for resources; it is, however, still not feasible to run Squawk on a typ-
ical mote equipped with an 8-bit microcontroller, a few hundred KB of flash and
around 10KB of RAM [7]. For these typical motes, Sentilla Corp. has developed a
JVM, but it is not open-source and currently does not support any devices other
than Sentilla motes [17]. Darjeeling, is an open source JVM designed for motes [11].
It does support a good part of the JVM specification but sacrifices some features
like floating point support, 8-byte data types and synchronized static-method calls
for efficiency [11]. There are a few other JVMs available for embedded devices, such
as NanoVM [1], and VM* [10], but these are either limited in functionality by not
fully supporting JVM specifications or are closed source with a limited scope of
operation only on specific devices. TakaTuka aims to remain small, open source
and suitable for a wide variety of embedded devices while providing all features of
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a fully CLDC-compliant JVM 2. The current version of TakaTuka supports all but
two of the Java bytecode instructions and most of the CLDC library. We also sup-
port threading, synchronized method calls, 8-byte data types and 4-byte floating
point arithmetic on motes.
Bytecode Optimization: The two primary methods for bytecode size reduc-
tion are compression and compaction [6][5]. A typical compression technique
requires partial or full decompression at runtime [6]. Any decompression always
results in computation and memory overhead. Therefore, performing decom-
pression at runtime is not desirable for embedded devices. In contrast to com-
pression, compaction involves identifying and factoring out recurring instruction
sequences and creating new customized bytecode instructions to replace those
sequences [2]. These customized instructions do not require decompression and
are interpretable because they share the characteristics of normal bytecode in-
structions. The process of compaction produces a smaller code that is executable
or interpretable with no or little overhead. The compaction scheme given in [2] is
shown to produce bytecode that is about 15% smaller and runs 2 to 30% slower
than the original bytecode. Rayside et al. [5] compaction scheme produces byte-
code that is about 20% smaller. In contrast to above mentioned compaction
approaches, TakaTuka comprehensive compaction scheme produces a bytecode
reduction of about 57% on average and the resultant bytecode runs faster with-
out using any extra RAM.

3 TakaTuka Bytecode Compaction

We employ three bytecode compaction techniques, each of which replaces a sin-
gle bytecode instruction or a sequence of bytecode instructions with a new cus-
tomized bytecode instruction such that the total size of the bytecode is reduced.
A customized bytecode instruction, like any other bytecode instruction, is com-
posed of an opcode and an optional set of operands. In the following, we first
explain the process of choosing an opcode for a customized instruction. Then,
we provide the details of the compaction processes and relevant algorithms used
in TakaTuka.

3.1 Available Opcodes

Each customized instruction uses an opcode that is not used by any other byte-
code instruction. Hence the cardinality of the set of available opcodes impacts
the extent of compaction. The Java specification has reserved one byte to rep-
resent 256 possible Java opcodes but uses only 204 of those for corresponding
bytecode instructions [14]. Thus, there are 52 unused opcodes that are avail-
able for defining customized instructions. Furthermore, the Java specification
includes many bytecode instructions with similar functionalities but different
data-type information. The type information of such instructions is only used
2 We might never actually obtain formal CLDC-compliance due to the high price tag

associated with the license of the CLDC Technology Compatibility Kit (CLDC TCK).



18 F. Aslam et al.

in Java bytecode verification and is not required by the JVM interpreter. Since
the Split VM architecture (SVA) does not require run-time verification (see
Section 2) additional 29 opcodes for a compaction algorithm are available af-
ter completing bytecode verification during linking phase. Finally, many Java
programs may not use all the 204 standard Java instructions, depending upon
the functionality of the program. Hence a custom-made JVM interpreter such
as the one offered by TakaTuka can make use of additional opcodes, not used
by the Java program, for the purpose of defining customized instructions during
the bytecode compaction process.

3.2 Single Instruction Compaction

In this technique of compaction, size of a single bytecode instruction is reduced
by replacing it with a smaller customized instruction. That is, in single instruc-
tion compaction, each customized instruction replaces only a single bytecode
instruction. The single instruction compaction in TakaTuka can either be a re-
duction in the memory footprint needed to represent an operand (called Operand
reduction) or a complete removal of the Operand from the bytecode instruction
(called Operand removal).
Operand reduction: Many instructions in standard Java use either a 2-byte
constant pool (CP) index or a 2-byte operand as a branch offset [14]. In TakaTuka,
we introduce a new custom instruction with a reduced operand size of one byte, if
the operand value is smaller than 256. In order to maximize the savings resulting
from the use of this technique, we sort the information in our set of global CPs3

such that most referred entries of a CP from the bytecode are stored at a numer-
ically small CP index. This leads to a large number of reduced size constant pool
instructions in the bytecode.
Operand removal: In TakaTuka, we also combine the opcode and operand
to form a customized instruction with implicit operand(s). For example, the
instruction ILOAD 0x0010 could be converted to ILOAD 0x0010 and the two bytes
originally used by the operand may be saved. Note, however, that we do not apply
operand removal on offset-instructions as their offset usually changes after any
kind of bytecode compaction.

3.3 Multiple Instruction Compaction (MIC)

In multiple instruction compaction (MIC), a recurring sequence of instructions,
called a pattern, is replaced by a single customized instruction. For example,
a pattern {GOTO 0x0030, LDC 0x01, POP} in bytecode could be replaced by
a single customized instruction GOTO LDC POP 0x003001, providing a reduction
of two bytes per occurrence. Note that, the MIC technique perform compaction
in the opcodes only, without affecting the storage needed for operands. The MIC

3 Global constant pool is explained in detail in Section 4.
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technique involves finding a set of valid patterns and then replacing a subset
of those patterns with customized instructions. First, we define the criteria that
must be met for a pattern to be replaceable and then we discuss the valid pattern
search and replacement algorithms used in TakaTuka.
Valid Pattern Criterion: A sequence of bytecode instructions or a pattern is
said to be valid if it can be replaced by a single customized instruction. A valid
pattern fulfils the following two criterion: 1) A branch-target instruction can
only be the first instruction of a pattern, and 2) Any Java bytecode instruction
designed to invoke a method can only be a last instruction of a pattern. Note that
above restrictions are imposed to avoid extra computation or RAM required for
decoding a customized instruction during runtime for finding a return or branch
offset target inside it.

3.3.1 Pattern Identification
The pattern identification algorithm finds and selects a number of patterns of
instruction sequences from the original bytecode of the Java program, up to a
maximum number of available opcodes. These patterns are stored in a hash-map
which is used as an input to the pattern replacement algorithm. The pattern re-
placement algorithm then constructs customized instructions and replaces the
input patterns with those customized instructions in the bytecode. We use the
following terminology to explain the pattern identification and replacement al-
gorithms.

m : Total number of opcodes that may be used by a customized instruction.
k : Maximum number of single instructions in any pattern.
li : Number of single instructions in a pattern i that can potentially be

replaced by a customized instruction. We also refer to this parameter as
the length of the pattern i.

εi : Reduction in bytecode achieved when one occurrence of a pattern i in
the bytecode is replaced by a customized instruction. εi equals li − 1
when a pattern i is replaced by a MIC customized instruction.

ζi : Frequency of a pattern i, that is to be replaced by a customized instruc-
tion, in the entire bytecode of the Java program.

ηi : Total reduction (i.e. εi · ζi) in bytecode achieved when a pattern i is
replaced by a customized instruction, in the entire bytecode of the Java
program.

ξ(y) :
∑

i∈y

ηi where y is a set of patterns.

In TakaTuka, pattern generation for multiple instruction compaction uses a
Multi-pass greedy algorithm, which is based on a simple Single-pass greedy al-
gorithm.
Single-pass greedy algorithm: The Single-pass greedy algorithm creates a
list of patterns of length ≤ k by traversing the bytecode exactly once. When
a valid pattern i of any length is encountered the first time, it is added to the
hash map with ζi = 1. Then, ζi is incremented whenever the same pattern i
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is found again while traversing the remaining bytecode. Consequently, after a
single traversal of the Java bytecode, the hash map contains all possible pat-
terns of length ≤ k with their corresponding frequencies. The algorithm returns
a subset σ of patterns from within the hash map such that |σ| ≤ m and ξ(σ) is
maximized. This algorithm has one major flaw: it returns many patterns that
are not new pattern but subset of other longer patterns, undermining the extent
of bytecode reduction.
Multi-pass greedy algorithm: The multi-pass greedy algorithm mitigates
the limitation described above by traversing the bytecode multiple times, mak-
ing temporary changes in each iteration, and using that changed bytecode in
subsequent iterations. In the first iteration, the single-pass greedy algorithm is
used on a copy of the bytecode and the resulting patterns are stored in a set
y. A pattern i is then selected, such that ηi ≥ ηj ∀j ∈ y, and replaced as a
customized instruction in the copy of the bytecode. Subsequent iterations are
similar except that the single-pass greedy algorithm is called on the modified
copy of bytecode from the previous iteration. This continues until either m pat-
terns of length ≤ k are selected or additional patterns cannot be found. The
customized instructions introduced in a given iteration may become a part of a
new pattern in subsequent iterations, as long as the constraint of maximum k
original single instructions per customized instruction is not violated.

3.3.2 Pattern Replacement
The pattern replacement algorithm takes the bytecode and a set of patterns
and replaces those patterns, as they appear in the byteode, by new customized
instructions. The primary goal in this replacement process is to maximize the
bytecode reduction, leading to the maximum savings in storage. While our pat-
tern generation algorithm is greedy and may not generate an optimal set of
patterns, our pattern replacement algorithm is not only optimal but also runs in
polynomial time. First, we describe our algorithm, then we show its polynomial
complexity in Theorem 1, finally proving its optimality in Theorem 2.

Algorithm: The pattern replacement algorithm keeps track of many temporary
solutions in order to produce the replacement with the maximum savings. The
algorithm is applied on each class method within the bytecode one by one and
produces the maximum reduction possible for that method with the given set
of pattern. The inputs to the pattern replacement algorithm are: 1) the num-
ber k indicating the maximum number of single instructions in any pattern, 2)
a set of patterns σ generated by a pattern identification algorithm and 3) the
bytecode of a method. The pattern replacement algorithm creates a tree with
different replacement possibilities. One branch of this tree contains the bytecode
sequence corresponding to the maximum reduction in bytecode, and the algo-
rithm uses this branch to update the bytecode of the method. To demonstrate
the replacement algorithm, assume that the instruction at index i in the byte-
code of a method μ is represented by τi. That is, {τ1, τ2, ..., τλ} represents the
method bytecode, where λ is the total number of instructions in μ. Each level
in the tree corresponds to the index in the bytecode, hence the tree has depth
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λ. Within the tree, each node located at level j corresponds to either τj , or to a
customized instruction that ends at τj . Each node x in the tree has exactly one
incoming edge whose weight w(x) is given by:

w(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 x is the root node
0 x corresponds to a

customized instruction,
min (k − 1, w(xp) + 1) x corresponds to τj itself

(1)

where xp is the immediate parent of node x. Note that each node x, other than
root node, has exactly one immediate parent node. Each node x in the tree has
at most w(x) + 1 child nodes each corresponding to instructions with unique
lengths ranging from 1 to w(x) + 1. If node x exists at a level j in the tree,
then one of its child nodes corresponds to the instruction τj+1 which has length
1; each of the other w(x) child nodes corresponds to a customized instruction
c that represents a pattern obtained by traversing node x and parents further
above in the tree, such that 2 ≤ lc ≤ w(x) + 1. Each node of the tree maintains
the total bytecode reduction achieved by the tree branch ending at it.

The tree is built level by level, where addition of each level is done in two
phases: the creation phase and the pruning phase. The creation phase of a level j
is carried out simply by finding the children of all the nodes at level j − 1. In
the pruning phase of level j, first we prune all those nodes from level j which
represent an invalid customized instruction i.e. its corresponding pattern is not
a member of σ. Subsequently, additional nodes are pruned such that no two
nodes have the same weight on their incoming edge: if multiple nodes have w
as the weight on their incoming edge, the one corresponding to the leaf of the
branch with highest total bytecode reduction is kept and the remaining nodes
are pruned. In this additional pruning, random selection is made if there is a tie.

Each level of the final tree has at most k nodes because the weight allowed
on any incoming edge is between 0 and k-1 (see Equation 1) and after prun-
ing nodes on each level have edges with distinct weights. Thus, the resulting
tree is a linear sized structure with depth λ and a constant span k. After
the tree with level λ is completely constructed, the leaf node with the highest
saving is identified and the corresponding tree branch is used to replace the
bytecode.

Theorem 1. The time complexity of the replacement algorithm is O(k2·
λ).

Proof. The complexity of the algorithm depends on the size of the tree and
the number of operations performed on each node. From the description of the
algorithm, we note that the depth of the tree is exactly λ and each level of
the tree has at most k nodes. The final tree has at most k · λ nodes. However,
in the worst case, before a pruning phase, a level j may have a total of up to
1 + 2 + 3 + ... + k nodes. Pruning nodes at level j means finding the node with
the maximum reduction for each weight 0 ≤ w ≤ k − 1. This can be done with
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an effort proportional to the number of nodes at this level, i.e. 1
2k(k + 1) nodes

in the worst case, which is bounded by O(k2). Since there are exactly λ levels
in the tree, the worst case complexity of the algorithm is O(k2 · λ).

Lemma 1. All nodes with same weight w on their edge at level j will
have same sub-tree originating from them.

Proof. We prove our claim by contradiction: assume that all nodes with the
same weight w on their incoming edges at level j do not have the same sub-tree
originating from them. This is possible if and only if their immediate children
are different. We now consider two situations: (i) when w is zero, each node has
only one child node corresponding to the instruction τj+1. Thus, all sub-trees
are the same, contradicting the original assumption, and proving the lemma. (ii)
when w is non-zero, a child node either has a customized instruction composed
of at most w parent nodes or a simple instruction τj+1. Based on Equation (1),
all of those w parents of each node will always be simple instructions instead
of customized instructions. The algorithm says that a simple instruction τi can
only occur at level i in tree. Hence all of those w parents nodes must be equal. In
summary, the immediate children of each node with same w at level j will have
the same w parents and, therefore, will have the same child nodes. Hence the
sub-tree emanating from each node with same weight w at level j will always be
the same.

Theorem 2. Given a set of patterns, the pattern replacement algo-
rithm finds the replacement with maximum overall reduction in the
size of bytecode.

Proof. First, we note that the complete tree without pruning contains all com-
binations of solutions including the optimal one identified by the leaf node with
the highest total reduction. Next, we argue that the branch corresponding to
the optimal solution is not affected by pruning. Using Lemma 1, all nodes with
the same weight w on their incoming edge at level j have the same sub-tree em-
anating from them. Therefore, pruning all nodes with the same weight w except
the one with maximum saving achieved so far, implies that the optimal solution
is still part of the tree.

4 TakaTuka Constant Pool Optimization

Each class file has a collection of distinct constant values of variable size called
the Constant Pool (CP). These constant values either define the characteristics
of the class or are used by the class itself. A two byte index is used to access
a given CP value which is usually larger than two bytes and is used multiple
times from the class file. The aggregated CP size of a project is usually much
larger compared to its total bytecode size. Hence, reducing CP size is critical in
the overall size reduction of a Java program. Our constant pool design is based
on some of the ideas given in [5] and [13] with improvements drawn using the
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characteristics of a Split-VM architecture, which is not considered in above ref-
erences. In the following sub-sections we present the optimizations we used in
TakaTuka for reducing the CP size.

Global Constant Pool: Each value of a CP entry could be of one of the
eleven different types as specified in the Java specification [14]. In traditional
designs, the CP values of a single class appear in an arbitrary order within the
CP, where a leading one byte tag is used for type identification. This design,
however, has the following shortcomings: 1) One byte is consumed to specify the
type with each CP entry. 2) Since a CP is unordered, an index has to be built
in RAM in order to index its entities in a constant-time. 3) Although CP values
are distinct for one class, there can be many redundant occurrences in the scope
of a given project.

The above mentioned shortcomings lead to excessive flash and RAM require-
ment, both of which are scarce resources in sensor motes. To address this in
TakaTuka, we use the preloading characteristic of SVA and create one global
pool per type, during the linking phase. As compared to traditional CPs, our set
of Global Constant Pools (GCPs) have no redundant information per project.
We keep a common header for these GCPs specifying the start address of a pool
and corresponding type. As all entries of a GCP have the same type, no tag is
required per constant pool entry. Keeping a separate CP per type enables a con-
stant time lookup for any CP’s entry in the flash and does not require loading the
complete CP in RAM. This is because each CP type has only fixed size values4

hence given a constant pool type one can directly jump to a specify CP index by
computing the offset from the first entry of the same type. This constant time
lookup is possible because each Java CP-instruction always accesses the same
type of CP (e.g., INVOKEVIRTUAL always access CP of type 10). However, there
are three exceptions to this namely the instructions LDC, LDC W and LDC2 W. We
have introduced five additional bytecode instructions so that in TakaTuka each
CP instruction, including the ones mentioned above, implicitly contain the CP
type information.

Reference Resolution: Traditional JVMs apply dynamic loading, also called
on-demand loading. Whenever a class method or a field needs to be accessed,
the corresponding class file has to be loaded into RAM after performing veri-
fication, preparation and resolution [14]. To resolve references during runtime,
fully qualified names are required to identify components (i.e. methods, fields
and, classes). In TakaTuka, we have used the preloading characteristic of SVA to
resolve names during linking. Hence a preloaded, preverified and resolved Java
program is transferred to a mote. This allows us to remove all the UTF-8 strings
traditionally required for name resolution but not used by the application. Fur-
thermore, we can also remove all the other constant pool entries (e.g., all entries
of type 12) typically used for resolving names during runtime[14].

4 UTF-8 constant pool type has variable length values but they are never directly used
from within the bytecode [14].
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5 Tuk File Format

The classfile has three important parts: the bytecode, the CP and the structure
information. We observed that the structure information usually makes up for
half the size of classfiles of a program. We use a special format called Tuk for
storing the set of classfiles used by a user-program and corresponding Java library
components. The Tuk format has two main characteristics. First, it only contains
information required during program execution in a reduced format, forgoing any
information required during linking phases. Second, the Tuk format contains
preloaded information stored in an easy to access manner, obviating the need to
load the Tuk file in a mote’s RAM. This implies that different portions of a Tuk
file can be accessed in constant time using pre-calculated addresses, relieving the
computation resources of the host device. It may be noted that the addresses and
indexes that make up part of the preloaded information are created by processing
on a desktop computer, before transferring a small preloaded and preverified Tuk
file to the host device. For example, in a Tuk file a CP entry for a class or a
method reference contains the address of the location inside the Tuk file where
actual data (i.e., the classfile or the method) resides. All the addresses in a Tuk
file are relative to its starting address and are therefore platform independent.
We use either 2-byte or 4-byte addresses depending upon the total size of the
Tuk file.

6 TakaTuka JVM Design

In this section, we present the design of TakaTuka’s dynamically customizable
JVM interpreter, and its bytecode compaction support.

Customized JVM: The flash memory in some tiny embedded devices may
be too small to contain a complete JVM. To address this limitation, the default
behavior of TakaTuka is to reduce the size of the interpreter depending upon
the set of bytecode instructions used by a given Java program. To this end,
TakaTuka removes all unused components from the JVM, stripping the JVM
bytecode support down to the bytecode set used by the given program. For a
given Java program, the initial step of compilation is to generate a header file
enlisting the set of bytecode instructions used by that program. This step is com-
pleted on the desktop computer. Subsequently, the JVM recompiles to shrink
itself based on the information contained in the header file. This default behavior
leads to a very small JVM interpreter, albeit the one that is capable of running
only a subset of Java programs. If a more generic interpreter, capable of support-
ing additional bytecode instructions, is needed, TakaTuka allows this through a
configuration file. For example, it is possible to have a JVM interpreter version
that supports the complete set of bytecode instructions except the ones which
involve floating point operations. Similarly, a user can also completely turn off
the JVM customization, resulting in the generation of a general purpose JVM
that supports any CLDC-compliant Java program.
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Bytecode Compaction Support: The TakaTuka interpreter is implemented
by using the labels-as-values approach [4] to provide direct threading. Each byte-
code instruction translates into a source code snippet following a correspond-
ing label. To this end, TakaTuka treats the customized instructions, resulting
from single instruction compaction and multiple instruction compaction, like
any other bytecode instruction that could not be compacted. However, because
some instructions are only generated during the compaction process a ’static’ set
of labels is not applicable. TakaTuka addresses this problem by dynamically gen-
erating the labels supporting the required set of bytecode instructions. In case
a user wishes to generate a general purpose JVM interpreter that can run any
CLDC-compliant program then a set of fixed customized instructions is used,
instead of generating new customized instruction per application.

7 TakaTuka Linkage with TinyOS

TakaTuka can run on all devices currently supported by TinyOS. Furthermore,
TakaTuka provides a Java interface for each driver and a user can access the
class implementing such an interface using only a factory-method [8], making the
actual implementation hidden from the users of the driver. Therefore, TakaTuka
can run on any platform that provides an implementation of those Java interfaces
using any operating system, including but not limited to TinyOS 5.

To work with TinyOS, the TakaTuka interpreter is allowed to execute n byte-
code instructions in a scheduling cycle before returning the control back to the
TinyOS scheduler. This is accomplished by posting a TinyOS Task [12] that calls
the TakaTuka interpreter which is written in C. We keep n small so that TinyOS
remains responsive in between TakaTuka scheduling cycles. TinyOS is an event
driven operating system. In contrast Java language functions are generally block-
ing and it is up to Java user to create threads when multitasking is required.
Hence when a TakaTuka user calls a method that is written as event in TinyOS
then that method blocks until the corresponding event is generated in TinyOS.
When TinyOS receives an event, then the Java thread waiting for that event is
notified. A TakaTuka user can access any of the TinyOS Commands [12] using
TakaTuka native method support. For a Split-phase TinyOS Command [12], the
current thread is put into a waiting state after calling the Command and is no-
tified when latter is completed. TakaTuka also supports thread synchronization,
that is used for sharing resources (e.g. radio) between multiple user threads.
Power Management: The current version of the TakaTuka JVM uses the same
power management strategies as implemented in TinyOS but in future versions,
we intend to provide a more comprehensive power management. In the current
version, when all Java threads are sleeping or waiting for events then TinyOS
could go to the low power state and TakaTuka follows through. In case an event
arrives, then any thread waiting for that event is notified and and TakaTuka
resumes. Furthermore, TakaTuka uses TinyOS radio drivers, thereby supporting
the low-power listening implemented by TinyOS.
5 The current version of TakaTuka has also limited support for Contiki OS.
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Fig. 1. Left-Fig: RAM available (in bytes) for a user program. Unlike the Sentilla
and Darjeeling JVMs, the RAM available for a user program in TakaTuka and TinyOS
depends on drivers used by it. We have presented two kinds of results for TinyOS and
TakaTuka. a) When only serial drivers are used and b) When serial, radio and LED
drivers are used. Right-Fig: Time (in ms) required to sort an array of 1500 bytes using
the Quicksort algorithm. TakaTuka results are shown when no Bytecode Compaction
(no BC), Full Compaction (FC) and Limited Compaction (LC) is used.

8 Discussion and Results

This section presents TakaTuka storage results as compared to the Darjeeling,
Sentilla and Squawk JVMs.

8.1 Execution Speed and RAM

We show that our storage optimization does not have an adverse effect on RAM
usage and performance. In contrast the bytecode optimization results in en-
hanced performance.
RAM available for a user program: The TakaTuka interpreter and the low
level drivers require a few hundred bytes of statically allocated data memory.
The exact amount depends on the used functionality. Furthermore we assume
a worst case upper bound of 500 bytes for the stack memory required by the
interpreter’s routines. The remaining RAM is available as Java heap and stack
memory for the user program and the runtime library. It is shown in Fig. 1, that
TakaTuka has 81.44%, TinyOS has 94.18% and Sentilla JVM has 20% of the
total RAM available for a program that uses serial, radio and LED drivers on a
JCreate mote. For the Mica2 mote Takatuka has 62.30%, TinyOS has 87.13%,
and Darjeeling has 50% of the total RAM available for the user program when
LED, radio and serial drivers are used. The Darjeeling JVM does not adjust
the amount of RAM available automatically. It can be set at compile time and
defaults to 2048 bytes for Mica2.
Execution speed: The increase of execution speed when using bytecode com-
paction is shown in Fig. 1. On JCreate, the TakaTuka JVM runs 47.59% faster
with Full Compaction and 11.6% faster with Limited Compaction as compared
to when no compaction is used. Bytecode compaction results in a similar speed
increase on Mica2.
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Fig. 2. Left-Fig. Percentage reduction in GCP and Tuk-GCP sizes as compared to
original CP sizes of classfiles. Right-Fig. Percentage reduction in bytecode using full
compaction (FC) and limited compaction (LC).

8.2 Storage

In this section we present TakaTuka storage optimization results.
Input applications: In addition to simpler well known algorithms (Quick-
sort, Bubblesort, MD5) we have used DYMO and collection tree (CTP) rout-
ing protocols as input to our optimization algorithms[9][16]. Both Dymo and
CTP are completely written in Java using multiple threads. Our input files to
the TakaTuka optimization framework for above mentioned applications include
user defined classfiles as well as all other linked library files used by the user
program. We have also used CLDC library packages and Sun-Spot Demos to
produce storage results. However, in this case, the input files do not include
external packages and no dead-code removal is applied.
CP optimizations: We first create a set of 11 Global Constant Pools (GCPs)
with no redundant information for each application, subsequently the reference
resolution information is removed (Tuk-GCPs). On average the aggregated size
of GCPs are 48.96% and the Tuk-GCPs are 94.24% smaller then the original
corresponding classfiles aggregated CPs (Fig. 2).
BC optimizations: Our bytecode optimization not only reduces the overall
Java binary size but also increases execution speed, as shown in the previous Sec-
tion 8.1. In case a customized TakaTuka JVM is used, the bytecode compaction
results in regenerating the interpreter’s labels for new customized instructions
(Section 6). Hence we define the net reduction in the Java binary size due to
bytecode compaction for a given pattern x by:

R(x) = ηx − γx (2)

where η is defined in Section 3.3.1 and used here in the context of all three
compaction techniques. γx is the total change (increase or decrease) in the size
of the label’s block for supporting a customized instruction that is replacing
a given pattern x of original Java instructions. Through configuration, we al-
low two compaction strategies in TakaTuka: Limited Compaction (LC) and Full
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Fig. 3. Left-Fig. Overall reduction in Java binary for TakaTuka applications, Sun-
Spot demos and CLDC libraries when LC is used. The applications include user and
corresponding library code. In contrast, the Sun-Spot demos as well as the CLDC
libraries do not include classfiles from external packages. Right-Fig. Overall reduction
in Java binary for TakaTuka compared to the Sentilla (Senti) and Darjeeling (Darj)
JVMs. The different configurations for TakaTuka are: without bytecode compaction
(No BC), with Limited Compaction (LC), with Full Compaction (FC), and without
dead-code removal (NDR).

Fig. 4. Left-Fig. Overall size (in bytes) of the customized TakaTuka JVM for different
applications. Right-Fig. The percentage increase in customized TakaTuka JVM size
when Full Compaction (FC) is used.

Compaction (FC). In LC the change in size of the label’s block is taken into
account and compaction is only performed when the compaction reduction func-
tion of Equation 2 returns a positive value. In contrast, in FC any change in the
size of the label’s block is ignored and compaction is always performed if unused
opcodes are available. As shown in Fig. 2, on average FC reduces the size of
the Java bytecode by 62.39% and LC by 30.14%. By default we use LC instead
of FC on JCreate as the net size of the Java binary and the JVM interpreter
is increased when FC is used as shown in Fig 4. On Mica2 we can use FC to
profit from the performance increase as its bigger flash memory can tolerate the
storage increase more easily.
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Overall Java binary reduction: It is shown in Fig. 3, that for the given pro-
grams, TakaTuka’s Java binary file, called Tuk, is on average 24.12% smaller
compared to corresponding Suite files. Furthermore the Tuk file size is reduced
by 95.22% for applications and 83.57% for libraries compared to corresponding
uncompressed Jar files. The right part of Fig. 3 compares the size of Tuk files
resulting from different compaction configurations with the Java binaries pro-
duced by Sentilla and Darjeeling. In the comparisons with Sentilla only the user
application is considered, as the library is already present on the Sentilla motes
and generally not recompiled. In the comparisons with Darjeeling we also com-
pare the size of the Tuk file without dead-code removal, as the Darjeeling JVM
do not perform dead-code removal. TakaTuka always shows significant reduction
in the size of the Java binary when using bytecode compaction.
Customized JVM reduction: As discussed in Section 6, TakaTuka supports
both customized JVM per user program as well as general purpose JVM that can
run any CLDC program. The overall size of the general purpose JVM for Mica2 is
56914 bytes and 34538 bytes for JCreate mote. Hence a customized JVM for the
Null Program is 58.70% and 37.80% smaller compared to the general purpose
JVM on a Mica2 and JCreate respectively, as shown in Fig. 4. The figure also
shows customized JVM sizes for other programs. Darjeeling produces a general
purpose JVM of 60800 bytes.

9 Conclusion

We have developed TakaTuka, a JVM that runs on platforms with RAM as small
as 4KB and flash as small as 48KB. Using TakaTuka, we also developed a num-
ber of Java WSN applications and verified that their storage requirements are
kept small on tiny platforms without increasing CPU and RAM usage. TakaTuka
takes several measures to curtail the storage requirements, that include: 1) A
condensed format for classfiles called Tuk. 2) Comprehensive CP reduction tech-
niques. 3) Various bytecode reduction strategies including single and multiple
bytecode compaction and a novel optimal bytecode replacement algorithm. 4) A
JVM that may be customized for a user application.

These measures have resulted in an average size reduction of 95.22% for the
resulting Tuk files, given a set of user Java applications, as compared to the
original classfiles. Furthermore, the customized TakaTuka JVM size is shown to
reduce up to 58.70%.

TakaTuka bytecode compaction results in a performance gain of 47.59% on
average. This is because the customized instructions reduce the overall time
needed for instruction dispatch and fetching instruction operands, which are the
primary time-consuming tasks of typical JVM interpreters [15]. Furthermore,
each entry in a global CP or any other part of Tuk file is accessable in a constant
time, leading to reduced computation and RAM requirements at run-time.
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In summary, our results for a variety of applications on a multitude of hard-
ware platforms indicate that TakaTuka is a very promising platform for WSN
applications.
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