
Frequency-Based Search for Public Transit

Hannah Bast
University of Freiburg

79110 Freiburg, Germany
bast@informatik.uni-freiburg.de

Sabine Storandt
University of Freiburg

79110 Freiburg, Germany
storandt@informatik.uni-freiburg.de

ABSTRACT
We consider the application of route planning in large public-
transportation networks (buses, trains, subways, etc). Many
connections in such networks are operated at periodic time
intervals. When a set of connections has sufficient period-
icity, it becomes more efficient to store the time range and
frequency (e.g., every 15 minutes from 8:00am - 6:00pm)
instead of storing each of the time events separately. Iden-
tifying an optimal frequency-compression is NP-hard, so we
present a time- and space-efficient heuristic.

We show how we can use this compression to not only save
space but also query time. We particularly consider pro-
file queries, which ask for all optimal routes with departure
times in a given interval (e.g., a whole day). In particular, we
design a new version of Dijkstra’s algorithm that works with
frequency-based labels and is suitable for profile queries.
We evaluate the savings of our approach on two metropoli-
tan and three country-wide public-transportation networks.
On our largest network, we simultaneously achieve a bet-
ter space consumption than all previous methods as well as
profile query times that are about 5 times faster than the
best previous method. We also improve Transfer Patterns,
a state-of-the-art technique for fully realistic route planning
in large public-transportation networks. In particular, we
accelerate the expensive preprocessing by a factor of 60 com-
pared to the original publication.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; E.4 [Coding
and Information Theory]: Data compaction and com-
pression

General Terms
Algorithms

Keywords
Route Planning, Public Transit Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL ’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11...$15.00
http://dx.doi.org/10.1145/2666310.2666405

Figure 1: The public transit network of Sweden.
Stations are indicated by black squares (visible when
zoomed in). Lines are colored according to their
service frequency. Yellow indicates a low frequency,
green indicates a medium frequency (at least ev-
ery two hours during day time), and red indicates
a high frequency (at least every 30 minutes during
day time).

1. INTRODUCTION
Finding optimal routes in large public transportation net-

works is challenging already due to the sheer amount of
timetable data that has to be handled in the process. In
a metropolis like New York, over 3 million times per day a
vehicle departs from a station. In the public transit network
of Germany, the number of departure events is about 14 mil-
lion. In this paper, we try to compress timetable data by
making use of the periodicity hidden in the schedules. For
example, consider a bus which leaves at a particular station
at 8:00, 8:15, 8:30, ..., 18:00. If we store each of these times
explicitly, we need 41 entries. But we can provide the ex-
act same information with the tuple (8:00, 15min, 41). The
last item is the “frequency”, which, throughout this paper,
always means “periodic frequency”, that is, the number of
repetitions at some fixed time interval.

High-frequency connections are prevalent especially within
large cities and metropolitan areas. But also the connections
between such areas tend to be (periodically) frequent. Fig-
ure 1 gives an impression of the frequency distribution in
the transit network of Sweden.

1.1 Contribution and Overview
In this paper, we contribute the following new algorithms

and results. Figure 2 illustrates the main ideas in a nutshell.

• We present a heuristic to decompose sets of departure
events into a small number of frequency-based tuples, in
order to achieve high compression. See Section 2.

• We show how to efficiently process (profile) queries on a
thus represented network. In particular, we show how to
efficiently merge two sets of frequency tuples into a new
such set, maintaing good compression. See Section 3.

• We compare the space consumption and profile-query time
of our approach against two state-of-the-art methods (CSA
and RAPTOR, see below) and two baseline methods (TD
and TD+, see below). In our most realistic setting, we si-
multaneously achieve the smallest space consumption as
well as query times that are about 5 times faster than the
best of these methods. See Section 4.

• We improve Transfer Patterns (see below). In particular,
we accelerate the expensive preprocessing by a factor of
60 compared to the original publication. We also present
query times (single-departure and profile) for a new large
dataset (Germany, 13.9M connections). See Section 5.

1.2 Existing Route-Planning Approaches
Public-transportation route planning is a well-researched

topic. We now briefly discuss two baseline approaches (TE
and TD) and three state-of-the art approaches (CSA , RAP-
TOR, and Transfer Patterns). All of them can process multi-
criteria profile queries (as a minimum: travel time and num-
ber of transfers) in large networks efficiently.

The two baseline approaches are variants of Dijkstra’s al-
gorithm. They differ in how the network is represented.
In the basic time-expanded (TE) model, a node is intro-
duced for each departure, arrival and transfer event. Ele-
mentary connections (all vehicle movements without inter-
mediate stops) are modeled as arcs between these nodes.
In the basic time-dependent (TD) model, there is a node
for each station and an arc represents a set of elementary

connections between two stations. Depending on the imple-
mentation, there can be a single node for the whole station,
or separate nodes for different lines.

There are many variations of both TE and TD, and their
efficiency strongly depends on the model details and their
implementation. For an experimental evaluations and com-
parisons, see [12] [7] [13], as well as Sections 4 and 5. In
a nutshell, TD is much faster (factor 5) than TE in simple
settings (e.g., when optimizing only travel time and with
few footpaths), but only slightly faster (factor 1.5) in re-
alistic settings (e.g., when optimizing both travel time and
number of transfers and with many footpaths). A particu-
larly efficient variant of TD is TD+ [4], which precomputes
paths between selected stations. In Section 4, we compare
our approach with both TD and TD+.

CSA [6] stores all connections in a single large array, sorted
by departure time. For a given query, the connections are
scanned starting from the given source station and depar-
ture time until the algorithm can be sure that all optimal
journeys to the given target station are found. The number
of scanned connections is usually very large, yet this algo-
rithm is fast because of its ideal data locality. CSA can be
viewed as an efficient realization of the TE baseline.

RAPTOR [5] takes advantage of the fact, that optimal
journeys typically involve only a few transfers. It operates
in rounds, sweeping over all relevant direct connections in
each iteration and therefore identifying in round i all optimal
journeys with i − 1 transfers. RAPTOR can be viewed as
an efficient realization of the TD baseline.

Transfer Patterns (TP) [1] is a precomputation-heavy ap-
proach that yields very fast query times also on very large
networks. It is the algorithm behind public-transportation
route planning on Google Maps. The main idea behind TP
is to precompute and store in a compact way the so-called
transfer patterns of all optimal paths at all times in the net-
work. A transfer pattern of a path is simply the sequence
of stations, where a transfer to another vehicle happens (in-
cluding the very first and the very last station of the path).
All temporal information as well as all information about
intermediate stops (where no change of vehicle occurs) are
thus factored out. The missing information can then be eas-
ily and efficiently re-inserted at query time; see Section 5.

1.3 Previous Compression Schemes
Periodicity-aware compression of timetable data has al-

ready been considered in previous work.
In [3], an algorithm for encoding periodic time sets was

introduced. Their goal is to minimize the period, whereas
our goal is minimize overall space consumption. For exam-
ple, consider the time sequence: 6:05, 6:06, 6:07, 7:05, 7:06,
7:07, 8:05, 8:06, 8:07, 9:05, 9:06, 9:07. Minimizing the pe-
riod results in four labels: 6:05-6:07 every 1 min, 7:05-7:07
every 1 min, 8:05-8:07 every 1 min, 9:05-9:07 every 1min.
Our heuristic computes only three labels: 6:05-9:05 every 60
min, 6:06-9:06 every 60 min, 6:07-9:07 every 60 min.

In [10], repeating trips are represented as a set of labeled
trees (so called multislices) which describe regularities and
exceptions. In that work, the main contribution is to encode
single trips as efficiently as possible (regarding operation
days, holidays etc.) rather than extracting periodicities in
the first place.

In [11], the encoding of complex temporal information like
“every first Sunday of each month in autumn” is studied. A

INPUT timetable data

B90 to Market Street
8:00 8:15 8:30

B101 from Castle

ARRIVAL DEPARTURE

B51 from Airport
9:35 10:05 10:35 11:05

B82 from Hospital
9:43 9:51 9:59 10:07 10:15

B17 to Harbour
9:45 10:00 10:15 10:30 10:45
travel time 8min

B82 to China Town
9:47 9:55 10:03 10:11 10:19
travel time 25min

Central Station

COMPRESSION COMPACT GRAPH MODEL

7:00, 7:05, 7:11, 7:19, 7:25, 7:27, 7:30,
7:35, 7:45, 8:00, 8:05, 8:25, 8:30

• 7:00 - 8:30, every 30 min

• 7:05 - 8:25, every 20 min

• 7:11 - 7:35, every 8 min

group departure times into arithmetic
progressions

COMPACT DIRECT CONNEC-
TION DATA STRUCTURE

MORE EFFICIENT ROUTING

9:00, 9:15, 9:30, 9:45, 10:00, 10:15, ..., 21:45, 22:00

9:00 - 22:00, every 15 min

A

A

B

B

9:10-12:10 every 20min, travel time 8min

9:20-12:20 every 20min, travel time 10min

PROFILE QUERY

@ 9:00-13:00

@ 9:18-12:18, every 20min, takes 8min

@ 9:30-12:30, every 20min, takes 20min

A B 9:00, 9:15, 9:30, 9:45, ...

A B 9:00-22:00, every 15min

Figure 2: Overview of the main steps behind our frequency-based graph model and routing. Most of the
technical challenge lies behind the box in the lower right (more efficient routing). In the simple example in
that box, one arithmetic progression is enough to represent the intermediate result at each station. Usually,
multiple arithmetic progressions with incompatible periodicities and ranges have to be merged. This poses a
number of theoretical and implementation challenges.

symbolized representation is used to respect the natural data
hierarchy (. . ., hours,day, week, month, year, . . .). Again,
the idea is rather to encode given bits of information instead
of searching for a clever partitioning of the data such that
the encoding yields a concise overall representation.

2. FREQUENCY-BASED MODELING
In this section, we present our heuristic to decompose sets

of departure events into a small number of frequency-based
tuples, in order to achieve high compression.

2.1 Compression of Frequency-Data
Some timetable data storage formats support an explicit

frequency-based specification. For example, in the widely
used GTFS, for a periodic bus line, instead of explicitly
specifying each trip at each time of the day, one can also
specify only the schedule of the first trip together with a
period and a time range. However, only few feeds make use
of this, and even for those that do, it remains unclear if this
is the best way to compress the data. Therefore, we first de-
vise algorithms which take arbitrary timetables as an input
and convert the data into a frequency-based representation.

Formally, we are confronted with the following problem:
We are given a set of connections between two stations spec-
ified by departure times T = {t1, t2, · · · , tl}, with all the
connections bearing the same travel costs. We aim for the
minimum set of tuples (t, p, f) with t being the start time,
p the period and f the frequency such that for all ti ∈ T it
exists a tuple with t + np = ti ≤ t + fp for some n ∈ N.
So we want to cover the set of departure times by tuples,
explicitly allowing overlaps, i.e. there can exists more than
one encoding tuple per departure. This problem is better
known as cover by arithmetic progressions (CAP) and was
proven to be NP-complete [9]. In our application the set of
departure times can contain hundreds or even thousands of
elements. As we have to solve this problem multiple times
for each network, we seek for an efficient way to retrieve

small cover sets.

2.1.1 Reduction and Heuristic Solution
The CAP problem can easily be reduced to SetCover in

polynomial time, hence approximation algorithms and heuris-
tics for SetCover carry over to CAP. The reduction works
as follows. The universe of elements to cover is T . From
now on we consider the elements in T sorted increasingly.
The collection of subsets of T is S = {Sij |1 ≤ i < j ≤ l}
with Sij containing ti, tj and ti + n(tj − ti) for n = 2, 3, . . .
as long as they are present in T without any gaps. So the
set Sij is simply an expansion of the arithmetic progression
induced by start time ti and period p = tj − ti. Obviously
choosing a minimum subset of S to cover T solves the CAP
problem. So now we can e.g. apply the standard greedy
SetCover algorithm to guarantee an ln(|T |) approximation
in polynomial time [8] for CAP. Unfortunately, this bound
is not tight enough for practical purposes. Moreover con-
structing the set system explicitly requires cubic time and
quadratic space. Therefore we propose a different algorithm
which also works in a greedily manner but is more aware
of the structure of the sets: We start with the smallest de-
parture t1 and search for the longest arithmetic progression
(AP) in T starting with t1. We add this AP to our solution
and mark all elements covered by the AP. Then we repeat
this approach with the next unmarked element ti≥2 as start
time. We do not exclude already marked elements from the
set but do not allow them as suffix of a new AP and give
preference to the AP which covers most unmarked elements.
For example, consider

T = {3 , 5 , 7 , 10 , 15 , 17 , 19 , 20 , 23 , 24 , 30 , 31 , 40 , 50 , 60},

our algorithm would produce five APs

{3 , 10 , 17 , 24 , 31},

{5 , 10 , 15 , 20},

{7 , 19},

{23 , 30},

{40 , 50 , 60}
with 10 appearing in two APs. The runtime of this greedy
approach is in O(|T |3) which in theory is the same as for the
reduction of CAP to SetCover plus the standard greedy ex-
ecution time. But in practice our approach considers only a
small subset of all possible APs and moreover only requires
linear space.

Further improvements can be made by running our greedy
approach in multiple rounds adding a minimum AP length
constraint K which gets reduced iteratively. So e.g. starting
with K = 6 we would find in the first round the AP

{10 , 20 , 30 , 40 , 50 , 60}

for our example instance. Proceeding with K = 5 in the
next round we would discover

{3 , 10 , 17 , 24 , 31},

nothing for K = 4 but

{15 , 19 , 23}

for K = 3 and finally

{5 , 7}
for K = 2. So we end up with four cover APs instead of
five. For reasonable initial values of K the runtime increase
is insignificant, as the reduction of possible start elements
due to long APs at the beginning saves time in later rounds.

2.2 Stable Covers and Trip Covers
Typically, we are not only interested in connections be-

longing to a single operation day but in those of a whole
week or in the complete period of validity of the timetable
(e.g., about a year for German rail network data). Several
operation days are important when e.g. an optimal jour-
neys goes overnight, one is interested in outward and return
journeys on different days or one wants to compare opti-
mal journeys between fixed start and destination on several
dates (e.g. on work days and on the weekend). Considering
all departures between two stations over e.g. a week as one
set of increasing departures is not beneficial, as there is typ-
ically a service gap at night which prohibits tuples covering
connections of several operation days. So instead we assign
operation days to tuples and compress the timetable data
such that we have stable tuples, i.e. tuples valid for many
operation days. To incorporate this in our greedy algorithm,
we search then for the longest AP with longest denoting the
number of covered departures of the whole considered pe-
riod. So for example if the AP {8:00, 8:15, 8:30, 8:45} is
only valid on Monday but {8:00, 8:15, 8:30} on Monday and
Tuesday we favour the latter (as it covers six instead of four
departures).
Another abstraction is to consider connections not on their
own but in the context of the trips they are embedded in.
So we compress trips by providing the sequence of stops, an
initial set of departures and arrivals for each stop and then
a period and a frequency indicating the repetitions. A trip-
based compression is advantageous e.g. for RAPTOR where
whole trips are evaluated in each round. So the compression
can help to store this data more compactly and might be
beneficial for profile runs as well.

3. FREQUENCY-BASED PROFILE SEARCH
In a profile query, we are given a set of departure times

T in a certain time interval (e.g. all departures over a day)
at a station S. The goal is to compute the optimal journeys
from S to another station S′ (or all other stations) depart-
ing in T . Profile queries are the key procedure for Transfer
Patterns construction but are also important on their own
e.g. if a user is interested in a set of options for departing
in a certain time interval. Of course, profile queries can be
answered by running |T | conventional queries (one for each
t ∈ T) and subsequently filtering the results (e.g. if one
starts at 9:45 and arrives at 10:15 or starts at 9:47 and ar-
rives at 10:15 as well, only the latter is kept). If the single
departures in T are processed in reverse chronological order
and the results of the last run are always remembered, one
can already stop computations for earlier departures at the
moment they do not improve the results for later ones. This
is the approach e.g. used for profile queries with RAPTOR.
For profile queries in the time-expanded graph (as used in
the original Transfer Pattern paper [1]) it suffices to initial-
ize the set of nodes corresponding to the departure events
in T and then perform a single Dijkstra run. For all other
approaches a single run also produces the desired result set
if departure time is used as an additional Pareto-criterion.

We will now introduce a new type of profile search which
incorporates the frequency-based compression directly. For
this purpose, we consider the time-dependent graph model.
Conventionally, the arcs in this model are augmented with
sets of departure times each paired with a travel cost. We
now replace these sets by our frequency-based representa-
tion. For every tuple constructed to cover departure times
with the same associated travel costs, we insert a frequency-
label ([a, b], p, c) consisting of the start time a, the end time
b, the period p and the travel cost c. Note that this differs
slightly from explicitly stating the frequency f which is now
encoded by (b− a)/p + 1. But this alternative notation will
be beneficial for the algorithm description later on. To eval-
uate such a frequency-label for a certain point in time t the
following formula applies:

cost(t) =


a− t + c if t < a

a + d(t−a)/pe · p− t + c if t ∈ [a, b]

∞ if t > b

So obviously a frequency-based label can be evaluated in
constant time, while a set of departure events with travel
costs in the standard time-dependent model has to be parsed
cleverly to come close to that, e.g. via binary search or spe-
cific look-ups [12], [13]. So if we start a single Dijkstra for
each t ∈ T in our frequency-based model the runtime should
be improved compared to the standard time-dependent ap-
proach (if the compression step produced a small numbers
of frequency-labels). Still, if the basic data exhibits synchro-
nized departure times, we repeat the same set of operations
again and again in a profile run (only with a time shift).
Hence we would like a single Dijkstra computation to handle
all these departures at once. We realize that by introduc-
ing frequency-labels not only for the edges but also as node
labels (instead of scalar values) in the Dijkstra run.

3.1 Frequency-Dijkstra
In a frequency-Dijkstra run, we assign quadruples ([a, b], p, c)

to the nodes, with [a, b] marking the interval of arrival times
with period p, and c being the summed-up costs since the
departure from S. So the initialization for a profile query
over a day is simply the label ([0:00,24:00], 1 min, 0 min)
assigned to the start station. Of course any other time span
can be plugged in easily. The priority queue in the Dijk-
stra run then sorts such elements increasingly by first arrival
time, using the cost value as tie breaker.

3.1.1 Edge Relaxation
The crucial task is now to adapt the edge relaxation step

to this new setting. So given a label l = ([la, lb], lp, lc) at
node u ∈ V and an edge e = (u, v) ∈ E with ([ea, eb], ep, ec),
the goal is to compute the respective label(s) at node v. We
proceed in five steps (see Figure 3 for an example):

1. Compute lcm = lcm(lp, ep) to get the lowest common
period.

2. Compute the first relevant start time start at u. If
la ≥ ea, it yields start = la (if la > eb the edge must
no be considered at all). Otherwise if la < ea then
start = la + b(ea − la)/lpc · lp. If this would result in
the start value exceeding lb we reset it to lb.

3. Compute for the first steps = lcm/lp departure times
{start, start+lp, · · · , start+(steps−1)·lp} (restricted
to values ≤ lb) the explicit edge costs cost and arrival
times arr at v. Store these values in a vector V .

4. Scan through V and remove multiple occurring arrival
times (of course keeping the one with lowest cost); but
be careful, that the last connection is not among the
pruned ones (if so, add this single connection manu-
ally).

5. For every remaining item in V , create a new label l′

at node v, with l′a = arr, l′b = l′a + b(min(lb, eb)− l′a +
cost)/lcmc · lcm, l′p = lcm and l′c = lc + cost.

So the runtime of an edge relaxation is in O(max(lp, ep)),
and at most lcm/lp new labels are created at v.

Of course, not all labels created at the target node this
way necessarily represent (temporary) optimal connections.
Hence the goal is to prune the labels efficiently and join la-
bels if possible to reduce space consumption and the number
of subsequent operations.

3.1.2 Full Domination
A single connection departing at time t from station S

and arriving at time a at station S′ dominates another con-
nection with parameters t′, a′, if t ≥ t′ and a ≤ a′ (with
inequality holding at least once). We say that a label l fully
dominates another label l′, if for every connection implied
by l′ a dominating one implied by l exists. Of course, we do
not want to break l′ down into single connections and check
each connection individually as this would take too much
time. Instead, we present two criteria for full domination
which can be used on the level of complete labels.

The first criterion is based on the idea, that all departures
encoded in l′ are also contained in l and the costs are not
higher for the latter:

[la, lb] ⊇ [l′a, l
′
b] and l′a = la+k·lp, k ∈ Nand lp ⊥ l′p and lc ≤ l′c

[6:45,10:45], p=15min, c=2h30min

[8:05,20:05], p=20min, c=8min

[8:13,10:13], p=60min, c=2h43min
[8:33,10:33], p=60min, c=2h48min
[8:53,10:53], p=60min, c=2h38min

lcm(15, 20) = 60
start = 8 : 00
steps = 60/15 = 4

dep arr cost
8:00 → 8:13, c=13min
8:15 → 8:33, c=18min
8:30 → 8:53, c=23min
8:45 → 8:53, c= 8min

Figure 3: Frequency-based edge relaxation example.
The blue label is the frequency-based node label,
which encodes that arrivals happen between 6 : 45
and 10 : 45 every 15 minutes, and that for each of
these arrival events the travel time from the source
to this node is 2 hours and 30 minutes. The red label
tells that a vehicle departs from this node between
8 : 05 and 20 : 05 every 20 minutes, and that it takes 8
minutes to reach the next station. On the right side
the steps according to the edge relaxation procedure
are illustrated. These steps lead to the three violet
labels that encode the complete set of arrivals at the
next node.

Our second criterion implies that for every connection in l′,
it is worth to wait for the next departure enclosed in l as
the summed costs of waiting and travel time are still below
the travel time via l′:

l′a ≥ la and l′b − l′c ≤ lb and l′c > lp + lc − 1

In both cases, we can check in constant time whether l′ is
dominated and hence can be pruned at the respective node.

3.1.3 Partial Domination
Considering two or more labels, some of the implicitly

contained connections might be non-optimal among all of
the connections represented by the labels, while there does
not need to be a label fully dominating another one. To
check this, we can proceed similarly to the edge relaxation
approach: we first compute the lcm of the two periods and
then expand each label from a common start point as of-
ten as the lcm divided by the period implies. To identify
dominated connections efficiently, we first merge the con-
nections derived by the two labels according to their depar-
ture times. In this joined list, a dominating connection must
follow the dominated one immediately. Therefore this prun-
ing step can be performed in time linear in the list length,
that is O(lp + l′p) = O(max(lp, l

′
p)). If a connection gets

pruned, also all repetitions with a time shift of a multiple
of the lcm will be non-optimal (except when it is the last
connection). Therefore, all of these connections get pruned,
which might require to split the label in several sub-labels.
Unfortunately, this means that, for example, a label with
every seventh connection being non-optimal, has to be split
into six new labels. Therefore, in terms of storage and run
time it might be beneficial to keep some non-optimal connec-
tions. To avoid this problem of label increase (and possibly
expanding lcm divided by the period labels every time) in
practice without giving up the idea of using partial domi-
nation completely, we restrict ourselves to check if prefixes
or suffixes of the implicitly contained list of connections can
be pruned. If that is the case, we can shift the start/ end

time of the label, receiving a smaller feasible interval (which
finally might result in label deletion), but we will never end
up with the creation of additional labels with this approach.

3.1.4 Label Joining
To reduce space consumption and save query time, we

would like to join several labels into a single one whenever its
possible. Two labels l = ([a, b], p, c) and l′ = ([a′, b′], p′, c′)
can be joined under the following circumstances to form a
new label lj :

• c = c′ and p = p′ and b + p = a′ + k · p ≤ b′, k ∈ N
⇒ lj = ([a, b′], p, c)

• c = c′ and p = p′ and a′ = a + p/2 and b′ = b + p/2
⇒ lj = ([a, b′], p/2, c)

• c = c′ and a = b and b + p′ = a′

⇒ lj = ([a, b′], p′, c)

• c = c′ and a′ = b′ and b + p = a′

⇒ lj = ([a, b′], p, c)

• c = c′ and a = b and a′ = b′

⇒ lj = ([a, b′], a′ − b, c)

The first criterion implies that the labels are consecutive
(with possible overlap), i.e. the second one takes over then
the first one ends, with equal periods and costs. The second
criterion describes the case, where the periods are equal,
but also shifted by p/2; allowing the shift to become the
new frequency. This criterion can be generalized to i labels
shifted by p/i. The last three criteria describe how single
connection can be included into existing labels or how two
single connection can be combined respectively.

Determining the optimal set of join operations is hard, as
the correct clustering of single connections again is an in-
stance of CAP. Hence we proceed as follows: We keep the
labels at a node representing not only a single connection
sorted by costs, periods and a-value. If a new label of this
type is inserted, we try to apply the first two criteria con-
sidering neighbouring labels in this list. Then we try to add
single connections (which are stored separately) to this new
label as implied by the criteria in lines 3 and 4 above. If
the new label is a single connection, we start by using these
same two criteria. If both of them do not apply, we aug-
ment the set of single connections with the new label and
then invoke our heuristic greedy strategy to find a small
frequency-based representation for them. Note, that here
we only join connections into APs with size at least three
and leave the remaining ones on their own.

3.2 Multi-Criteria Search
So far, we were only concerned with finding connections

that minimize the travel time. But in a more realistic set-
ting, we also want to consider other criteria (like the number
of transfers). Note, that we can easily extend our frequency-
labels by additional values for this purpose. The edge relax-
ation process then stays almost unmodified. For domination
(partial and full) we now have the additional requirement
that the additional cost value of the dominator is not higher
than the respective value of the other label, and we join only
labels with the same additional cost value(s).

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

c
o

m
p

re
s
s
e

d
 l
a

b
e

ls

frequency

Figure 4: Frequency-compression for Sweden. Each
data point is related to a set of departure times,
with the set size given by the x-axis. The y-axis
shows how many frequency labels were created for
this input. The coloured lines indicate compression
factors: green - no compression, blue - compression
factor of 2, pink - factor 4, light blue - factor 8,
yellow - factor 16, black - factor 32.

4. EXPERIMENTAL EVALUATION
To evaluate the impact of our algorithms on real-world

data, we implemented our compression technique and our
profile-search algorithm, along with five previous approaches,
in C++. Run times were measured on a single core of an
Intel i5-3360M CPU with 2.80GHz and 16GB RAM.

4.1 Data Sets and Baseline Algorithms
We conducted our experiments on several public trans-

portation networks, with the underlying data being either
extracted from public GTFS feeds or provided by Deutsche
Bahn (DB). The characteristics of our test instances can
be found in Table 1. We selected a Monday for our 1-day
experiments and a complete week from Monday to Sunday
for our 7-day experiments. For footpath integration we ei-
ther used the transfer data contained in the DB data set
(few in the table) or combined our feeds with the footpath
network extracted from OpenStreetMap data1 and inserted
footpaths for a small walking radius of 5 minutes (few) or
15 minutes (many). The optimality criteria for journeys
considered in the evaluation are arrival time and number of
transfers. A transfer buffer of three minutes for changing
vehicles is used. We compare to five of the six algorithms
from previous work that we described in Section 1.2: CSA,
RAPTOR, Transfer Patterns (TP), the conventional time-
dependent approach (TD) and the improved version with
transfer stations (TD+, for earliest arrival time only). We
refer to our frequency-based approach as FREQ. We omitted
the time-expanded approach (TE), since CSA can be inter-
preted as an improved variant thereof; see Section 1.2. We
also omitted ACSA [14], an accelerated version of CSA, be-
cause it requires that footpaths have to form cliques (which
is not fulfilled in most of our networks), and because it does
not compute Pareto-optimal solutions.

1http://www.openstreetmap.org

data (abb.) source modi #stops # connections # footpaths
one day one week few many

New York City (NY) GTFS ALL 16,450 3.44M 23.70M 238K 1,219K
Sweden (SW) GTFS ALL 50,855 4.23M 27.31M 59K 306K

Weser-Ems-Bus (WEB) DB BUS 32,683 1.25M 8.44M 76K 191K
Germany, trains (GR-TRAIN) DB TRAIN 6,646 0.62M 4.26M 1K 2K

Germany, all (GR-ALL) DB ALL 248,410 13.94M 90.42M 394K 1,262K

Table 1: Basic measurements of the five public-transportation networks from our experiments.

range 1 day 7 days
tuples space consumption # tuples space

(%) orig. compr. factor (%) factor

NY 911K (26) 78.5MB 27.8MB 2.8 1350K (6) 13.2
SW 1053K (25) 96.8MB 32.2MB 3.0 1281K (5) 16.0
WEB 560K (44) 28.7MB 17.1MB 1.7 748K (9) 8.5
GR-TRAIN 150K (24) 14.2MB 4.6MB 3.1 424K (10) 7.5
GR-ALL 5070K (36) 318.9MB 154.7MB 2.1 9821K (11) 7.0

Table 2: Compressing timetable data with frequency-based labels. Single connections are represented with
six integer values (source, target, departure, arrival, tripID, serviceDays), frequency-labels with eight (source,
target, a, b, p, c, tripID, serviceDays).

4.2 Preprocessing/Compression
We applied frequency-based compression to all our inputs,

computing heuristic CAP solutions for the connections of a
single day and also stable covers for a whole week. The re-
spective results can be found in Table 2. We used K = 10
as initial minimum AP size for the results reported here,
but found only little differences for all values between 5 and
15. For smaller initial values the solution quality got worse,
for larger values the runtime increased. For K = 10, the
computation time stayed well below 20 minutes for all in-
puts and settings. We observe that train networks compress
much better than bus networks, reflecting the better syn-
chronization of departures and arrivals for trains. In Figure
4, we analyze the compression of the Sweden network (con-
sidering a single Monday) more thoroughly. The plot shows
that practically for all sets of departure times we fed in our
frequency-label construction algorithm, the number of re-
sulting labels is significantly smaller than the input size.
Especially for high-frequency connections we achieve com-
pression factors of 8 or better. The reason why the total
compression factor is only 3 for Sweden is the large number
of inputs that consist only of a single departure time. For
these inputs obviously no compression can be achieved, and
even worse, a frequency-label requires more space than the
original representation. Therefore a mixed model that al-
lows original and frequency-labels might be beneficial for an
even higher overall compression.

Nevertheless, for all considered inputs, the compression
factor validates our basic approach. For longer intervals, as
e.g. the full week considered here, the number of elements
is an order of magnitude smaller than originally.

The effect of the compression becomes even clearer when
comparing the space of the auxiliary data necessary for dif-
ferent route planning schemes. In Table 3 we observe that
especially for long time periods most of the baseline ap-
proaches get really space-consuming, while FREQ – based
on the compressed representation – keeps a small memory
footprint and seems to be applicable to represent even longer
intervals without difficulty.

memory consumption
1+few 1+many 7+few 7+many

CSA 753MB 1.7GB 4.8GB 10.9GB
RAPTOR 430MB 442MB 1.4GB 1.4GB
TP 2.3GB 2.4GB 3.2GB 3.3GB
TD 365MB 377MB 602MB 614MB
TD+ 784MB 796MB 2.2GB 2.2GB
FREQ 336MB 348MB 409MB 421MB

Table 3: Necessary space for computations on the
German transit network (GR-ALL). Single con-
nections are represented as before with six inte-
gers, footpaths with three (source, target, duration).
1/7+few/many denotes measurements for a single
day/week and few/many footpaths.

4.3 Profile Queries
To show that compressing connections into frequency-based

labels does not come at the cost of longer access and query
times in the time-dependent model, we performed profile
searches over the range of a whole week and summarized
the results in Table 4. We observe that CSA is faster than
RAPTOR for few footpaths, but RAPTOR performs better
on more footpaths and criteria in our implementation. Note,
though, that RAPTOR proceeds in the same way for EAT
as for EAT+TR because it was designed to find the set of
Pareto-optimal solutions considering travel time and number
of transfers (from this set the single criterion solutions are
then deduced). TD is always the slowest algorithm. TD+

performs better but is still slower than CSA and RAPTOR.
This might change in a multi-core setting, for which TD+

was optimized [4]. In all considered scenarios, FREQ is the
fastest algorithm, by a factor of 3-10. Note that a speed-up
not larger than 7 for a week implies that for shorter inter-
vals the other approaches can outperform FREQ. This is
due to a single edge relaxation being costly in our model
and so compression pays off only if the reduction of oper-
ations is huge; which is indeed the case when considering

GR-TRAIN GR-ALL
EAT + TR + few EAT + few EAT + many EAT + TR + few EAT + TR + many
time (s) #ops time (s) #ops time (s) #ops time (s) #ops time (s) #ops

CSA 0.805 6.6M 25.97 363M 66.75 952M 42.71 363M 84.25 952M
RAPTOR 1.047 6.2M 38.50 314M 62.31 746M 38.50 314M 62.31 746M
TD 3.133 9.8M 69.19 204M 77.98 398M 125.44 512M 138.53 855M
TD+ – – 44.78 182M 68.70 352M – – – –
FREQ 0.482 1.4M 7.84 21M 9.86 34M 8.20 28M 14.22 64M

Table 4: One-to-all profile queries over a week for earliest arrival time (EAT) and where indicated #transfers
(TR) plus few or many footpaths. #ops denotes the number of basic operations (scan or poll). Values are
averaged over 1000 random queries.

a week, because lots of stable tuples (valid for many oper-
ation days) could be identified. So the speed-up achieved
with FREQ is significant and likely to grow with the size
of the considered interval – and that with a lower memory
footprint than all the other approaches. One could argue,
that the other approaches are inherently parallelizable and
with the workload being distributed to several cores the run
times would be better than for FREQ. But on one hand, a
multi-core implementation again would cost more memory
and moreover in a client/server-architecture it is often not
favourable to let one user fully load several cores. Therefore
the implicit parallelization of FREQ by compressing many
connections into a single label is beneficial in this context.
On the other hand, we could turn FREQ in an explicitly
parallelizable algorithm by splitting the input interval into
several time frames, e.g. 0:00-8:00, 8:00-18:00, 18:00-0:00
each valid for all considered operation days (in contrast to
the other algorithms using e.g. a core per day).

Note, that we omitted timings for TP in Table 4. In fact,
TP allows for much faster profile queries, on the order of
milliseconds; see Table 5 in the next section. But TP is
based on a precomputation that itself relies on fast profile
queries. The whole next section is about improving TP using
the fast profile searches from Table 4.

5. EFFECT ON TRANSFER PATTERNS
Profile queries are interesting by themselves, but they are

also an important building block for advanced routing tech-
niques. In particular, profile queries are the main ingredi-
ent in the preprocessing of Transfer Patterns (TP) [1]. We
briefly described TP in Section 1.2 and will provide more
details in this section.

Recall from Section 1.2 that the bulk of the preprocessing
of TP consists of a profile query for each station of the net-
work. From these profile queries, all transfer patterns can
be easily computed by tracing back the shortest path trees.
The preprocessing time is hence the number of stations in
the network (see Table 1) multiplied with the average time
for a profile search for a single station in the network (see
Table 4). The additional time needed for the backtracking
is negligible.

In [1], so-called hub stations are introduced as a means
to reduce preprocessing time (in a nutshell, by comput-
ing transfer patterns only until hubs as well as between
hubs). This blows up query times and adds a number of
other challenges though. In particular, when using TP with
hub stations, a very small fraction of queries may yield sub-
optimal results; see [2]. However, with sufficiently fast pro-
file queries, as we have them available through the work from

this paper, hub stations are no longer necessary, not even for
a network as large as GR-ALL. In particular, this improves
query times, and all queries are guaranteed to yield optimal
results.

5.1 Improved TP preprocessing times
In Table 5, we provide preprocessing times for TP for

the GR-ALL instance for a variety of settings. Namely, we
consider all eight combinations of: single-criteria (EAT) or
multi-criteria (EAT+TR), few or many footpaths, and a 1-
day or 7-day slice of the GR-ALL network. We compare the
preprocessing using our FREQ approach with the best of
the other approaches (CSA for EAT+few, RAPTOR for the
other combinations).

The most realistic of the eight settings is EAT+TR+many
(multi-criteria search with many footpaths) and 7 days. For
that setting, our FREQ achieves a TP preprocessing time of
981 hours. The next-best method for this setting, RAPTOR,
requires 4300 hours, which is more than 4 times longer. The
baseline TD approach would take another factor of more
than 2 longer and is thus almost 10 times slower than our
FREQ; see the last column of Table 4.

Let us also compare these numbers to the numbers re-
ported in [1], the original TP paper. They report 635 hours
for the preprocessing of the public-transportation network
of Switzerland without hub stations; see Table 3 in their pa-
per. This is a relatively small network with 20.6K stations
and 1.75M connections2; see Table 1 in their paper. This
translates to 63.4 seconds per station per 1 million connec-
tions. In comparison, the 981 hours of FREQ from above,
on 7 days of the GR-ALL network, translate to 1.0 seconds
per station per 1 million connections. This is a dramatic
improvement of more than a factor of 60.

The main reason for this improvement is that in [1], pro-
file queries were run using a plain multi-criteria Dijkstra
on a time-expanded graph (TE). This approach is simple
and flexible, yet performance-wise comparable to, and even
slightly worse than, our TD baseline3. And as discussed
above, this TD baseline is almost 10 times slower than our
FREQ in a realistic setting. Another factor is that the set-
ting in [1] was slightly more complex, with a 14-day schedule
and a continuous penalty as second criterion (for EAT+TR,
we only consider the discrete number of transfers as second

2In [1], only the number of nodes is reported. However, in
their time-expanded network, the connections correspond 1-
1 to pairs of an arrival and a departure node. Thus, the
number of connections is simply half their number of nodes.
3Recall from Section 1.2, that in realistic settings, TD is
only slightly faster than TE.

1 day 7 days

EAT+few CSA FREQ CSA FREQ
preprocessing time 249h 451h 1792h 541h
query graph size (#nodes + #edges) 42+74 46+85
query time / number of solutions 0.2ms / 0.91 0.4ms / 0.97
profile query time / number of solutions 3.3ms / 16.44 22.0ms / 121.19

EAT+many RAPTOR FREQ RAPTOR FREQ
preprocessing time 601h 612h 4300h 680h
query graph size (#nodes + #edges) 68+91 79+121
query time / number of solutions 0.4ms / 1.00 0.9ms / 1.00
profile query time / number of solutions 7.2ms / 22.51 51.7ms / 166.51

EAT+TR+few RAPTOR FREQ RAPTOR FREQ
preprocessing time 372h 517h 2657h 566h
query graph size (#nodes + #edges) 57+81 66+98
query time / number of solutions 0.3ms / 1.92 0.8ms / 1.95
profile query time / number of solutions 5.0ms / 31.90 39.6ms / 225.97

EAT+TR+many RAPTOR FREQ RAPTOR FREQ
preprocessing time 601h 817h 4300h 981h
query graph size (#nodes + #edges) 82+110 95+153
query time / number of solutions 0.6ms / 1.68 1.5ms / 1.74
profile query time / number of solutions 12.2ms / 34.14 95.3ms / 245.81

Table 5: Experiments for Transfer Pattern construction and evaluation on the GR-ALL dataset with
few/many footpaths. Computed paths are (Pareto-)optimal with respect to earliest arrival time (EAT)
and where indicated also number of transfers (TR). The preprocessing time using FREQ is compared to the
strongest competitor for the specific setting according to Table 4. Query graph sizes and query times are
averaged over 1000 random queries.

criterion). Also, the numbers from [1] are about four years
old, and processor speeds have likely about doubled since
then.

Let us also briefly discuss the simplest setting, which is
EAT+few (single-criteria with few footpaths) on a 1-day
slice of the GR-ALL network. Here our TF-freq needs 451
hours for the TP preprocessing, which is about twice faster
than for EAT+TR+many on the 7-day network. However,
for this simple setting, CSA takes only 249 hours, which
is yet another factor of 2 faster. This makes sense, because
our FREQ pays an implementation overhead in order to take
advantage of repetitiveness in the network. In comparison,
CSA is an extremely simple algorithm with little implemen-
tation overhead. For a 1-day network, the repetitiveness in
the data is not sufficient to outweigh the overhead. For a
7-day network, we saw above that there is already a signif-
icant performance gain. For even longer periods the gain
becomes even larger: as the number of days increases, the
cost of our FREQ grows only very slightly, whereas the cost
of CSA and RAPTOR essentially grows linearly.

5.2 Improved TP query times
In Table 5, we also provide query times for one-to-one

queries using the preprocessed transfer patterns. We con-
sider two kinds of queries: (1) single-time one-to-one queries,
with the aim to compute all optimal paths for a single given
departure time from a given source to a given target station;
(2) profile one-to-one4 queries, with the aim to compute all
optimal paths for all departure times in a given time range
from a given source to a given target station. Each figure

4In principle, TP can also be used to solve profile one-to-
many queries. But we here focus on one-to-one queries,
which are those of interest in a route-planning system.

in Table 5 was computed as the average of 1000 queries,
where for each query the source and target station was cho-
sen independently and uniformly at random from the set of
all stations. For the 7-day results, a single day5 was chosen
at random for each query. For the single-time queries, the
departure time was chosen at random from that day. For
the profile queries, the whole day was taken as a (24-hour)
time range.

The single-time one-to-one queries work just as explained
in [1]. All transfer patterns from the given source to the
given target station are overlaid to form the so-called query
graph. A time-dependent Dijkstra computation is executed
on that query graph. Each arc evaluation on that query
graph asks for a direct connection between two stations.
A direct connection is one which possibly has intermedi-
ate stops, but where no change of vehicle occurs. We use
the simple data structure from [1] for the efficient process-
ing of direct-connection queries. In a nutshell, this is simply
a list of all direct connections (think: bus/train lines) for
each station. A lookup in that data structure takes a few
microseconds per station on average.

Table 5 shows that the query graphs are small on aver-
age: about 100-200 nodes and arcs, depending on the set-
ting and the number of days. Correspondingly, query times
are very fast, ranging from 0.2ms for our simplest setting
(EAT+few, 1 day) to 1.5ms for our most realistic setting
(EAT+TR+many, 7 days). The table also provides the av-
erage number of optimal paths per query. Note that in our
simplest setting (EAT+few, 1 day), the number is slightly
below one, because with few footpaths some queries don’t
have a solution. In the same setting with many footpaths

5We considered as one day the 24-hour time period from
4:00am of one calendar day until 3:59am of the next day.

(EAT+many, 1 day), this does not happen. This gives a
hint at the practical significance of a sufficient number of
footpaths.

The profile one-to-one queries are also implemented as a
time-dependent Dijkstra computation on the same kind of
query graph. The difference is that now each arc evaluation
asks for all direct connections between two stations. This
can be done with the same direct-connection data structure
as above. However, we now have to manipulate with a larger
number of labels at each node of the query graph. Table 5
shows that query times are still fast, ranging from 3.3ms in
our simplest setting (EAT+few, 1 day) to 95.3ms for our
most realistic setting (EAT+TR+many, 7 days). Note that
for profile queries, the number of solutions grows about lin-
early with the number of days. Hence, also the query time
grows about linearly with the number of days.

5.3 Improved TP space consumption
The direct-connection data structure (used to evaluate the

query graph) can also benefit from the frequency-based com-
pression. Here (like for RAPTOR), connections are grouped
by trips and trips are grouped by lines. Then for every sta-
tion a list is maintained which contains the incident lines as
well the position of the station in this line. This allows to
access all departures from a station belonging to a certain
line efficiently by parsing through the list of trip departures
at the specified position. If we now compress those trips
as described in Section 2.2, synchronized trips are combined
and the access times as well as the space consumption for the
direct connection data structure decrease. For the GR-ALL
instance, we observed an improvement in terms of space by
an order of magnitude.

6. CONCLUSIONS AND FUTURE WORK
We presented a compression scheme for timetable data of

public transportation networks where synchronized depar-
tures were joined into single frequency-based labels. We ob-
served good compression factors when considering timetable
information for a whole week. We designed a new kind of
profile search based on frequency-labels which outperforms
previous approaches in both space and time consumption.
We would expect even better results for transit networks
with a high degree of synchronized trips, as e.g. Tokyo
or Shanghai, for which unfortunately we had no data ac-
cess. For future work it would be interesting to incorporate
delays in the model. One way to do this would be to al-
low negations in the frequency-labels, so e.g. from 8:00 to
16:00 every 15 minutes but not at 9:30 or not between 10:00
and 11:00 (like considered in [10]). Such negations could
be beneficial anyway, as they might lead to an even better
compression (if only single departures are missing in long
arithmetic progressions). Finally, our frequency-Dijkstra is
not custom-tailored for frequency-labels based on timetable
data, but might also be applicable to other scenarios, e.g.
considering synchronized signal transmissions or flows over
time.

7. ACKNOWLEDGEMENT
This work was partially supported by a Google Focused

Research Award on Next-Generation Route Planning.

8. REFERENCES
[1] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert

Geisberger, Chris Harrelson, Veselin Raychev, and
Fabien Viger. Fast routing in very large public
transportation networks using transfer patterns. In
European Symposium on Algorithms (ESA), pages
290–301, 2010.

[2] Hannah Bast, Jonas Sternisko, and Sabine Storandt.
Delay-robustness of transfer patterns in public
transportation route planning. In Workshop on
Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS), pages 42–54,
2013.

[3] Claudio Bettini and Sergio Mascetti. An efficient
algorithm for minimizing time granularity periodical
representations. In Symposium on Temporal
Representation and Reasoning (TIME), pages 20–25,
2005.

[4] Daniel Delling, Bastian Katz, and Thomas Pajor.
Parallel computation of best connections in public
transportation networks. Journal of Experimental
Algorithmics (JEA), 17:4–4, 2012.

[5] Daniel Delling, Thomas Pajor, and Renato Fonseca
Werneck. Round-based public transit routing. In
Workshop on Algorithms Engineering and
Experiments (ALENEX), pages 130–140, 2012.

[6] Julian Dibbelt, Thomas Pajor, Ben Strasser, and
Dorothea Wagner. Intriguingly simple and fast transit
routing. In Symposium of Experimental Algorithmics
(SEA), pages 43–54, 2013.

[7] Yann Disser, Matthias Müller-Hannemann, and
Mathias Schnee. Multi-criteria shortest paths in
time-dependent train networks. In Workshop on
Experimental Algorithms (WEA), pages 347–361,
2008.

[8] Uriel Feige. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM), 45(4):634–652,
1998.

[9] Lenwood S. Heath. Covering a set with arithmetic
progressions is NP-complete. Information Processing
Letters (IPL), 34(6):293–298, 1990.

[10] Romans Kasperovics, MH Bohlen, and Johann
Gamper. Representing public transport schedules as
repeating trips. In Symposium on Temporal
Representation and Reasoning (TIME), pages 54–58,
2008.

[11] Marc Niezette and Jean-Marc Stevenne. An efficient
symbolic representation of periodic time. In
Conference on Information and Knowledge
Management (CIKM), pages 161–168, 1992.

[12] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis. Efficient models for timetable
information in public transportation systems. Journal
of Experimental Algorithmics (JEA), 12:2–4, 2008.

[13] Gerth Stølting Brodal and Riko Jacob.
Time-dependent networks as models to achieve fast
exact time-table queries. Electronic Notes in
Theoretical Computer Science (ENTCS), 92:3–15,
2004.

[14] Ben Strasser and Dorothea Wagner. Connection scan
accelerated. In Workshop on Algorithms Engineering
and Experiments (ALENEX), pages 125–137, 2014.

