
TRAVIC: A Visualization Client for Public Transit Data
(Demo Paper)

Hannah Bast
University of Freiburg

79110 Freiburg, Germany
bast@informatik.uni-

freiburg.de

Patrick Brosi
geOps

Kaiser-Joseph-Str. 263
79098 Freiburg, Germany

patrick.brosi@geops.de

Sabine Storandt
University of Freiburg

79110 Freiburg, Germany
storandt@informatik.uni-

freiburg.de

ABSTRACT
We present TRAVIC, a thin browser-based client that is able
to display smooth vehicle movements on a map. The focus is
on visualizing world-wide public transit vehicle movements
in an interactive way. But we also investigate other use
cases, for example, traffic simulation. We describe in de-
tail which server requests are fired and how the received
data is handled. We also provide a performance evalu-
ation conducted on several browsers. We show that, in
combination with an efficient back-end, TRAVIC is able
to display many thousands of vehicle movements in real-
time. Our prototype implementation can be accessed under
http://tracker.geops.ch .

Categories and Subject Descriptors
H.3.5 [Information Systems Applications]: Web-based
service

General Terms
Visualization

1. INTRODUCTION
Live maps for various kind of vehicles are available nowa-

days in form of web applications. For example, the flight-
radar for planes1, the vessel tracker2, and live train move-
ment visualizations for Switzerland3 and Germany4. There
are also live maps for local traffic, for example, subways in
Munich5, or tubes6 and buses7 in London. Several tran-
sit agencies provide position visualizations of their vehicles.

1http://www.flightradar24.com/
2http://www.marinetraffic.com/de/
3http://swisstrains.ch
4http://bahn.de/zugradar
5http://s-bahn-muenchen.hafas.de
6http://traintimes.org.uk/map/tube/
7http://busestraintimes.org.uk/map/london-buses/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL ’14, Nov 04-07 2014, Dallas/Fort Worth, TX, USA
ACM 978-1-4503-3131-9/14/11.
http://dx.doi.org/10.1145/2666310.2666369

However, all current live maps are either restricted to a cer-
tain transportation mode (as train) or to a very small area.
The main reason for that (besides data availability issues)
is that the data associated with the complete public transit
movement of a whole country (or even of the whole world)
is very large. For a smooth visualization, this data has to
be adequately processed and displayed in real-time.

For example, the German train network alone consists of
only about 6,650 stations and about 600,000 times per day a
train departs from a station. Including local traffic, there are
about 250,000 stations and the number of departure events
approaches 15 millions per day. In a metropolitan area like
New York, thousands of vehicles move around at any point
of time during the day. Visualizing this many vehicle move-
ments on a zoomable and draggable map presents a challenge
to both the back-end and the client.

We present a client implementation that in combination
with a suitable client/server architecture can display many
thousands of smooth vehicle movements projected onto a
map. As our main application is the visualization of public
transit data, we call our client TRAVIC (TRAnsit VIsu-
alization Client). We will discuss further use cases of our
client towards the end of the paper. TRAVIC makes use
of Leaflet, an OpenSource JavaScript library for interactive
web maps. Leaflet can handle most of the available map
tile formats, but is mostly used with Google Maps or Open-
StreetMap (OSM) tiles. Figure 1 provides a screenshot of
TRAVIC visualizing vehicles in the Netherlands, using tiles
from the OSM Transport Map8 layer.

In this paper, we describe how TRAVIC handles the data
received from the back-end, explain how the vector layer is
built and how smooth vehicle movements are realized.

2. CLIENT-SERVER COMMUNICATION
We assume the availability of a server which holds static

timetable data. Our system is built on freely available GTFS
feeds9, but of course other data sources could be used as
well. The advantage of GTFS feeds is the already high cov-
erage, as many agencies world-wide provide data in this for-
mat. Moreover there is an extension called GTFS-realtime,
which allows to report delays and route changes. For ex-
ample, public transit in the Netherlands is completely cov-
ered by GTFS and GTFS-realtime. From the GTFS feeds
the server extracts vehicle trajectories. A trajectory is a
sequence of spatio-temporal waypoints. Each waypoint is

8http://wiki.openstreetmap.org/wiki/Featured_tiles
9https://developers.google.com/transit/gtfs/



Figure 1: Vi-
sualization of
long-distance and
local traffic with
TRAVIC. If the
user clicks on a
specific vehicle,
the complete route
with arrival and
departure times is
displayed (and also
occurring delays).

specified by coordinates x, y in the plane and a timestamp t.
So a trajectory describes how a single vehicle moves through
space and time. The timestamps correspond to vehicle ar-
rival/departure times according to the schedule, but can be
updated when real-time delay information is available.

One possible client-server interface would be to let the
client fire periodical position requests for all vehicles inside
a spatial bounding box (the actual map view). This inter-
face is used for most live maps based on GPS and sensor
data, see e.g [1], [2] or [3]. But for temporal coverage, the
frequency of such requests has to be high (especially if ve-
hicle movements should be smooth). This results in a huge
amount of client-server communication. Moreover, if the
connection is interrupted there is no fall-back and vehicle
movement stops on client side. To avoid these drawbacks,
we use another interface based on look-ahead queries. Re-
quests then have the form of a spatio-temporal bounding
box. This means that the client asks for all vehicle trajecto-
ries which intersect the map view in a certain time interval.
The server then has to identify the relevant trajectories and
crop them to the requested bounding box. These partial
trajectories are then send back to the client. The client
then iterates over the partial trajectories, computes new ve-
hicle positions, and moves the marker accordingly. In many
GTFS feeds, spatio-temporal waypoints are only provided
at stations but not in between. Therefore, temporal and
spatial interpolation is necessary for smooth movement visu-
alization. Because trajectories are basically piecewise linear
curves, these interpolations can be performed on the fly.

With this interface, a new server request has only to be
fired by the client after the previously requested interval ex-
pired (minus some buffer to deal with network latency etc.).
In our implementation, TRAVIC fires a spatio-temporal re-
quest every 60 seconds or after the view box exceeds the
bounding box of the current set of (partial) trajectories (due
to dragging or zooming). As TRAVIC can send arbitrary
spatio-temporal requests to the server, it is also possible to

”fast-forward” vehicle movement by a factor of up to 60, and
thus visualize vehicle trajectories of entire days.

Because the actual drawing of the vehicle takes up most of
the computation time, TRAVIC cannot simply redraw the
whole map at each interval. We describe an effective method
to update the canvas in the next section.

3. THE TRANSIT LAYER
The common way to display locations on web maps is

to draw a marker through the map’s own API. Many tran-
sit maps handle vehicles as map markers and draw them
by using some map method that usually takes latitude and
longitude values as coordinates. The marker is then drawn
with one of two methods. Either as a single HTML element,
usually an <IMG> wrapped inside a <DIV>. This approach is
used, for example, by Google Maps or Bing. Or the marker
is an actual vector object on an SVG layer. This approach is
used, for example, by OpenLayers or Leaflet. While vector
layers are, in general, more efficient when it comes to display-
ing thousands of markers, the basic method to place markers
on them is still a method accepting latitude (φ) and longi-
tude (λ) coordinates as parameters. As mentioned above,
this requires the map to do a projection of φ and λ onto
the map plane, which, in this case, is the screen itself. For
a few hundred markers that are positioned once, this com-
putation is a negligible one-time cost. But consider public
transit in New York during the morning rush-hour, with up
to 4,000 vehicles moving around at each point in time. For
a smooth visualization, each vehicle marker should be up-
dated at least every 50 ms. If we positioned markers using
latitude/longitude coordinates, there would be 4,000×20 =
80,000 projections per second. In a JavaScript environment
or on a mobile device, this is too much for the client to
handle.

Therefore, we let the server project trajectory waypoints
onto the map plane and sent projected pixel coordinates to



4
2

7 1

Transit Layer

Map Layer

minimal interaction

Figure 2: General architecture of TRAVIC and the
Transit Layer.

the client. TRAVIC leverages this by bypassing the map
service almost completely. It primarily builds on Transit
Layer, a vector layer we developed for Leaflet. It is espe-
cially designed to display vehicles of any kind moving on
trajectories. Interaction between the map API (Leaflet) and
the Transit Layer only consists of a few callbacks responding
to map dragging or zooming. The Transit Layer is based on
Raphaël, a vector library for JavaScript for the sake of im-
proved browser compatibility (there are still browsers that
do not support SVG). Figure 2 shows the general concept
of the Transit Layer. A canvas or a vector layer is laid over
the actual map layer, pans and zooms along with it and
passes through DOM events like mouse clicks. Vehicles on
the Transit Layer are drawn as vector objects and are po-
sitioned via pixel coordinates that have been computed by
the server and that need not be transformed further by the
client in any way.

There are still subtle difficulties in redrawing the map.
For example, deleting and creating a new marker is much
more expensive than re-positioning a marker that already
exists on the canvas. On the other hand, searching 4,000
markers to find the marker belonging to a single trajectory
is equally expensive. TRAVIC is heavily optimized for time
over space and holds a simple JavaScript array containing
each marker that is currently visible, indexed by its trajec-
tory ID. Because trajectory IDs are always output as integers
by the server, most browsers implement the array as a map
optimized for fast key access. Additionally, during the first
update of a newly requested set of partial trajectories, the
marker of each trajectory is saved as a reference field inside
the trajectory object.

4. DEMONSTRATION
The demonstration will highlight the visualization capa-

bility of our implemented client and its compatibility with
different browsers (see also our experimental evaluation in
Section 6). Users are invited to access our live public tran-
sit tracker (http://tracker.geops.ch) on their own device
and check for data coverage in their home area.

The user can zoom in and out, and drag the map to ar-
bitrary locations. Single vehicles can be tracked easily by
clicking on the respective marker. Then the marker gets en-
larged and the complete route of the vehicle is drawn on the
map. Additional information about the vehicle (line num-
ber, operation days, agency) are displayed in an info-box
along with the sequence of stops to come and respective ar-
rival and departure times (see Figure 1). If delay information
is available it is displayed along with the schedule.

5. FURTHER USE CASES
The applicability of TRAVIC goes beyond the scope of

public transit. The Transit Layer can, in theory, be used to
display vehicles or moving objects of any kind. Outside the
domain of public transportation, a vehicle could be a plane,
a satellite or even an individual object like a car, a bike or a
person. Tracking data is also available for certain animals.10

One possible application of TRAVIC could be as a client
for a server that outputs trajectories of cars travelling on
certain roads to visualize the traffic volume at certain times.
Figure 3 shows a visualization of the motorized private traffic

Figure 3: TRAVIC used for traffic simulation.

on Freiburg’s main east-west-corridor. The vehicle numbers
follow a bimodal distribution with peaks at the morning and
evening rush hours. About 20,000 vehicles pass the central
bridge in a single direction per day11.

6. EXPERIMENTAL RESULTS
Measuring JavaScript performance is challenging. Code

examples that run efficiently on one browser type can com-
pletely lock up another one. To evaluate the performance of
TRAVIC, we chose to run tests on the current versions of
five different web browsers: Firefox 27.0, Internet Explorer
11.0.2, Chromium 32.0.1700, Safari 5.1.7 and Opera 12.16.
We loaded a server installation with a combined feed of 22
single GTFS feeds from Europe, North America, Australia
and New Zealand and centred TRAVIC in Amsterdam at
the highest zoom level possible and gradually zoomed out.
We consider 20 zoom levels (with z = 20 zoomed in and
z = 0 zoomed out), and a hierarchy of transportation modes
(subways and buses are only displayed if the user zooms in
far enough, trains and ferries are also visible on lower zoom
levels). For each zoom level, we measured the number of
displayed vehicles #v and the time it took to do a single
screen refresh tr, using SVG rendering. We did the same
tests starting at the dome of New York City Hall, but in-
voking canvas rendering instead. TRAVIC uses lower refresh
rates (1/f) at lower zoom levels. Hence we multiplied this
time with the number of refreshes per second at each level.
This gives the amount of time ttot/s that TRAVIC was busy
with refreshing the screen during a single second. A value
ttot/s > 1000 ms would indicate that the intended number
of refreshes per second is not feasible.

Tests for Firefox, Google Chrome and Opera were done
on a machine with an Intel Core i5-3320M Processor, 8 GB
RAM and NVIDIA Quadro NVS 5400M graphics, running
Ubuntu 13.10. Tests for Internet Explorer and Safari were
done on the same machine, running Microsoft Windows 8

10https://www.movebank.org/
11http://www.svz-bw.de/fileadmin/verkehrszaehlung/
dz/2013/rpt-95-vz-2013-06.pdf



Chrome Firefox Opera Safari IE
z 1/f #v tr ttot/s tr ttot/s tr ttot/s tr ttot/s tr ttot/s

19 60 0 < 0.1 0.5 < 0.1 1.2 < 0.1 1.3 < 0.1 0.8 < 0.1 0.7
18 85 3 4.7 55.8 7.2 84.8 6.0 70.1 6.6 77.5 7.8 91.9
17 110 33 16.0 139.4 21.5 195.8 17.7 160.6 10.5 95.7 33.2 301.4
16 120 74 13.6 113.2 22.6 188.7 15.9 132.6 11.7 97.7 28.9 240.5
15 140 145 24.0 171.3 35.0 250.1 27.0 193.1 19.3 137.5 50.6 361.6
14 170 317 35.0 205.8 56.4 331.9 35.1 206.5 29.6 174.3 77.4 455.2
13 250 200 31.5 126.1 48.3 193.0 37.8 151.2 25.7 102.7 94.7 378.9
12 400 95 38.0 94.9 57.7 144.3 50.5 126.3 34.1 85.3 216.8 542.1
11 500 130 15.4 30.7 17.4 34.8 15.2 30.5 8.7 17.4 18.6 37.1
10 1 k 221 20.0 20.0 27.2 27.2 19.8 19.8 14.9 14.9 2.2 24.2
9 1 k 363 27.6 27.6 38.3 38.8 26.2 26.2 19.4 19.4 34.6 34.6
8 1 k 423 33.9 33.9 45.5 45.5 31.6 31.6 23.3 23.3 38.9 38.9
7 1 k 455 32.6 32.6 47.2 47.2 32.0 32.0 24.9 24.9 40.8 40.8
6 1 k 1 k 69.2 69.2 109.4 109.4 33.1 33.1 47.2 47.2 88.0 88.0
5 1 k 1.2 k 85.7 85.7 124.4 124.4 40.3 40.3 64.3 64.3 104.2 104.2

Table 1: TRAVIC per-
formance on different
browser types and zoom
levels, using SVG render-
ing. Map was centered
at Amsterdam

Chrome Firefox Opera Safari IE
z 1/f #v tr ttot/s tr ttot/s tr ttot/s tr ttot/s tr ttot/s

19 60 3 0.03 0.50 0.16 2.67 0.02 0.33 0.02 0.33 0.05 0.83
18 85 12 0.04 0.47 0.76 8.94 0.04 0.47 0.04 0.47 0.08 0.95
17 110 50 0.11 1.00 1.62 14.72 0.02 0.18 0.11 1.00 0.12 1.09
16 120 131 0.11 0.91 2.89 24.08 0.03 0.25 0.15 1.25 0.47 3.91
15 140 320 0.91 6.50 10.73 76.64 0.22 1.57 0.60 4.28 1.12 8.86
14 158 1045 2.91 18.35 14.98 96.14 1.11 6.53 1.55 9.11 4.69 27.5
13 250 412 1.52 6.08 3.18 12.72 0.59 2.36 0.87 3.48 1.71 6.84
12 400 567 1.42 3.55 3.79 9.46 1.36 3.40 1.37 3.42 4.44 11.10
11 500 623 1.79 3.58 4.27 8.54 2.52 5.04 1.89 3.78 3.74 7.48

10-5 1 k 50 0.23 0.23 13.00 13.00 0.15 0.15 0.29 0.29 1.77 1.77

Table 2: TRAVIC perfor-
mance on different browser
types and zoom levels, us-
ing canvas rendering. Map
was centered at New York.

Server Client

t

t1

t2

t3

update

update

δ = 5

δ = 0

δ = 0

δ = 5

δ = 5

?

Figure 4: Asynchronous delay.

(SP1). All tests were run in full-screen mode at 1920×1080.
Values are averaged from 100 sample runs. Results can be
seen in Tables 1 and 2. We observe that for both rendering
schemes and zoom levels, the performance of TRAVIC is
sufficient to allow for real-time movement visualization, even
if there are more than 1,000 vehicles present in the actual
view. Using canvas rendering, the values for ttot/s are far
from the performance critical value of 1000 for all tested
browsers. Our current implementation of TRAVIC, serving
more than 80 GTFS feeds around the world, can be accessed
via http://tracker.geops.ch .

7. FUTURE WORK
Visualizing all near-by vehicles is especially interesting for

mobile users. So a natural direction of future work is to
implement TRAVIC for mobile clients. The client/server
architecture we presented is already suitable for this, but
the GUI has to be adapted.

For large update intervals, the problem of asynchronous
delay information poses a problem that has yet to be ad-
dressed. Consider the scenario depicted in Figure 4: a ve-
hicle travels on a certain route between two waypoints. At
time t1, the client sends a spatio-temporal request to the

server, which currently holds a delay δ = 5 for the trajec-
tory. A delay of 5 is communicated to the client. Then the
server does an update and fetches the newest version of the
real-time feed. Somehow, the vehicle has regained the lost
time and δ is now 0 (at t = t2). The client, however, still
operates within the bounds of the spatio-temporal request
answer received at t1. Now, at t = t3 , the client finally fires
a new spatio-temporal requests and learns that the actual
position of the vehicle is far behind the position it currently
displays. There is, of course, also the possibility of the ve-
hicle being far ahead of the current client position. At the
moment, we resolve such a situation by letting the vehicle
’jump’ to its correct position. An alternative would be to
calculate a new travel speed for the vehicle that allows to
sync it with its real position, but using smooth movements.

8. REFERENCES
[1] Michela Bertolotto, Ailish Brophy, Alan Martin,

O Gregory, Robin Strahan, Eoin McLoughlin, et al. Bus
catcher: A context sensitive prototype system for
public transportation users. In Web Information
Systems Engineering Workshops, International
Conference on, page 64. IEEE Computer Society, 2002.

[2] Frédéric Bertrand, Alain Bouju, Christophe Claramunt,
Thomas Devogele, and Cyril Ray. Web architecture for
monitoring and visualizing mobile objects in maritime
contexts. In Web and Wireless Geographical
Information Systems, pages 94–105. Springer, 2007.

[3] Siyuan Liu, Ce Liu, Qiong Luo, Lionel M. Ni, and
Huamin Qu. A visual analytics system for metropolitan
transportation. In Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’11, pages
477–480, New York, NY, USA, 2011. ACM.


