
Provable Efficiency of Contraction Hierarchies
with Randomized Preprocessing

Stefan Funke1 and Sabine Storandt2

1 FMI, University of Stuttgart (Germany)
funke@fmi.uni-stuttgart.de

2 Department of Computer Science, University of Freiburg (Germany)
storandt@informatik.uni-freiburg.de

Abstract. We present a new way of analyzing Contraction Hierarchies
(CH), a widely used speed-up technique for shortest path computations
in road networks. In previous work, preprocessing and query times of
deterministically constructed CH on road networks with n nodes were
shown to be polynomial in n as well as the highway dimension h of the
network and its diameter D. While h is conjectured to be polylogarithmic
for road networks, a tight bound remains an open problem. We rely on the
empirically justifiable assumption of the road network exhibiting small
growth. We introduce a method to construct randomized Contraction
Hierarchies on road networks as well as a probabilistic query routine.
Our analysis reveals that randomized CH lead to sublinear search space
sizes in the order of

√
n log

√
n, auxiliary data in the order of n log2 √n,

and correct query results with high probability after a polynomial time
preprocessing phase.

1 Introduction

Contraction Hierarchies (CH) [1] are a preprocessing based technique to accel-
erate shortest path computations in road networks. The basic idea behind CH
is to augment the network with shortcut edges which allow to settle less nodes
in a Dijkstra run without compromising correctness of the result. CH are widely
used on real-world instances, as they provide an excellent trade-off between the
amount of auxiliary data (only doubling the network size) and speed-up (about
three orders of magnitude compared to a plain Dijkstra). But these values are
solely empirical, based on experiments on real-world networks [2]. Theoretical
explanations for this good empirical behaviour are still not fully satisfying.

1.1 Related Work

In [3], the notion of the highway dimension h of a network was introduced to
explain the practical performance of CH and other speed-up techniques (on
undirected networks). A small highway dimension indicates that shortest paths
in the road network longer than a parameter r can be hit by a set S of nodes
with S being locally sparse. Here, locally sparse means that the intersection

of a ball of radius r with S contains at most h elements. Assuming optimal
preprocessing, it was shown that O(nh logD) shortcut edges are added to the
original network, with n being the number of nodes in the network and D ≤ n
the network diameter. The number of nodes settled in a CH-Dijkstra run was
shown to be in O(h logD). As optimal CH preprocessing is NP-hard (using
Hitting Set computations as a subroutine), they also study a polynomial time
approximation version. This adds another factor of log n to the auxiliary data
size and the query time. While h is conjectured to be polylogarithmic for road
networks, the problem of proving h to be small is still open (for grids it is known
that h ∈ Θ(

√
n)). Moreover, h-values for real-world networks are unknown (as

its computation is NP-hard as well) and the preprocessing methods introduced
to study CH theoretically are too slow to be practical for large road networks
[4]. Hence validating whether the theoretical results reflect real-world behavior
is difficult.

In [5], CH were studied based on the topology of the network. It was shown
that for planar graphs, CH preprocessing based on nested dissection leads to
auxiliary data in the order of O(n log n). For minor-closed graphs with bal-
anced O(

√
n) separators, search spaces are shown to be in O(

√
n), for graphs

with treewidth k in O(k log n). For graphs with highway dimension h, results
matching those in [3] were reported assuming edge costs that maximize h. An
implementation of CH based on nested dissection [6] showed that it leads to
good performance in practice. Nevertheless a real comparison to the theoretical
results again is hardly possible due to h being unknown. Moreover all results so
far heavily use Big-O-Notation, making it difficult to tell whether the observed
behaviour in practice is due to asymptotics or due to hidden constants.

1.2 Contribution

We exhibit a so far unexplored connection of CH to Skip Lists [7], a data struc-
ture for fast search within ordered sets of elements. Based on the model of
randomized Skip List construction, we describe a CH variant with randomized
preprocessing for some probability parameter p ∈]0, 1[. We prove the expected
number of shortcuts to be at most n(1− p)(0.5 · log2

1/p

√
n+ (1− p2)−1), and the

expected search space size to be (6 ln 1/p log
√
n + 2)

√
n (no O-notation here!).

Preprocessing is in polynomial time. For our results to be valid, we rely on a
simple and intuitive bound on the growth rate of the underlying metric. More-
over, we prove our theoretical bounds to be meaningful by comparing them to
experimental results on real-world road networks. Surprisingly, the randomized
construction shares certain characteristics with a common heuristic CH construc-
tion scheme. For this simple heuristic construction, no theoretical guarantees of
any kind are known. While heuristically constructed CH naturally outperform
CH with randomized preprocessing, our studies are the first to give some in-
sight in the theoretical auxiliary data size and search space parameters for this
heuristic construction.

2 Preliminaries

In the following, we describe preprocessing and query answering for conventional
CH carefully. We then briefly review randomized Skip Lists to show their poten-
tial to serve as model for randomized CH construction. Finally, we provide some
details on the graph model that is used in our analysis.

2.1 Contraction Hierarchies

Given a road network G(V,E) and edge costs c : E → R+, the preprocessing
phase of CH works as follows: Every node v ∈ V gets assigned a level l : V → N
inducing a (not necessarily total) order on the nodes. Then a CH-graph G′(V,E∪
E+) is constructed upon this order where E+ denotes the set of shortcut edges.
For a pair of nodes v, w a shortcut edge e = (v, w) is added to E+ if all nodes on
the shortest path between v and w exhibit a level smaller than min{l(v), l(w)}.
The cost of e is set to the shortest path distance between v and w. Determining
node levels that minimizes |E+| is APX-hard [8],[9].

In practice, though, there exist heuristics which construct CH-graphs with
small sets of shortcut edges very efficiently. The most common heuristic is based
on the node contraction operation [1]. Here, a node v and all its adjacent edges
are removed from the current graph, and shortcut edges are inserted between
any pair of neighbors u,w of v if u, v, w was the shortest path from u to w.
Nodes are contracted one-by-one and their rank in the contraction order is used
as node level. If the goal is keeping |E+| small, a good candidate for the next
node to contract is the one with minimal edge difference (ED), which denotes the
number of added shortcuts if v is contracted minus the number of edges that are
currently adjacent to v (some heuristics also consider a linear combination of the
ED and other values). So after contraction of v, the current graph has one node
less and ED(v) more edges (note that ED(v) can be negative). The ED-values
need to be continuously updated, as contracting a node influences the ED-values
of its neighbors. It was noted, though, that independent sets of nodes can be
contracted at once without violating correctness. So nodes in the current graph
are first sorted increasingly by their ED-value. Then an independent set of nodes
is chosen greedily considering the nodes in the ED-order (with all nodes in the
set receiving the same level). This approach allows to construct the CH-graph
in very few contraction rounds and leads to few added shortcuts in practice.

The final CH-graph (original graph plus all shortcuts) has the following nice
property (no matter how l was chosen): Between any pair of nodes s, t there exists
a shortest path on which the node levels at first monotonously increase and then
monotonously decrease (so the path is unimodal wrt. l). Therefore queries can
be answered via a bi-directional Dijkstra computation that only relaxes upward
edges (v, w) with l(v) ≤ (w) in the forward run and accordingly downward edges
in the backwards run. By construction, the forward and the backward run both
settle the node(s) with the highest level on the shortest path from s to t. Hence a
node that minimizes the forward plus the backwards distance yields the optimal
shortest path distance.

2.2 Randomized Skip Lists

Skip Lists are a data structure for efficient search and maintenance of an ordered
set of elements. Skip Lists consist of layers of linked lists. The bottom layer is
a linked list that contains all n elements in sorted order. Each element gets as-
signed a height h. To determine the height values randomly, first a probability
p ∈]0, 1[is chosen. Then for every element a coin with probability p for HEAD is
flipped until TAIL shows up. The number of times the coin showed HEAD marks
the height. The maximum height among all elements determines the number of
additional layers in the Skip List data structure. Each list i contains only links
between elements with a height ≥ i and ’skips’ over the others. In expectation,
the maximum height is log1/p n and therefore the total space consumption is in
O(n log1/p n). Searching for an element using a suitable query algorithm that
works its way from the topmost layer down demands 1/p log1/p n. Choosing dif-
ferent values of p allows to trade search costs against storage costs. We will use
randomized Skip List construction as model for randomized CH construction by
interpreting the road network as the bottom layer.

2.3 Our Model: Graph Metrics with Bounded Growth

Like [3] we need to make some assumptions about the structure of our road
networks for an analysis to succeed. In typical representations of a road network
(as for example derived from data of the OpenStreetMap project) as graphs
G(V,E, c) with edge costs c : E → N, edges represent road segments of rather
uniform length, so we can replace edge costs by respective sequences of unit-
cost edges withouth blowing up the size of the graph by more than a constant
factor. So from now on we will focus on graphs with unit edge costs. Our crucial
assumption on the structure of G can be stated as follows: For any node v ∈ V ,
the number of nodes w at distance k is bounded by g ·k for some constant g ≥ 1,
that is

|{w ∈ V : d(v, w) = k}| ≤ g · k

We have verified this condition to hold for small values of g for several real-
world networks. It also implies |{w ∈ V : d(v, w) ≤ k}| ≤ gk(k + 1)/2 – which
mimics the area growth in R2 when increasing the radius of a circle. To keep the
presentation simpler, we assume in the following g = 1, but it is easy to see that
the parameter g could be carried along all following calculations.

Our condition has some connection to already existing characterizations of
graph metrics. For example, demanding that the number of nodes at distance k
is exactly g · k implies an expansion rate of 4 according to the definition of [10]
as well as constant doubling dimension [11]. On the other hand there are metrics
with an unbounded expansion rate yet satisfying our condition.

3 Randomized Contraction Hierarchies

3.1 Preprocessing

We start the preprocessing phase by assigning levels l : V → N by coin tosses in
the same way as for Skip Lists (with a probability p for HEAD). So l(v) is an
integer greater than zero with P (l(v) ≥ L) = pL−1.

To complete the preprocessing, we need to compute the set of shortcuts
resulting from our randomized choice of node levels. To that end, we run a
Dijkstra computation from each node v until on every active path in the search
tree there is a node with a level ≥ l(v). For every first node w on a shortest path
from v with l(w) ≥ l(v) we insert the shortcut e = (v, w) with c(e) = dv(w) in
the CH-graph (avoiding multi edges).

The preprocessing obviously demands only polynomial time. We expect a
maximum node level of O(log n), so assigning levels to n nodes can be done
in expected O(n log n) time. The n Dijkstra runs in the second phase require
O(n2 log n+ nm) time and dominate the overall runtime.

3.2 Analysis

Let us now analyze our CH construction. The two key performance indicators
are the total number of shortcuts and the number of settled nodes in a query.
Ideally, both of these values should be small in order to guarantee a space-efficient
CH-graph and a good speed-up compared to plain Dijkstra’s algorithm.

Throughout the analysis, log always refers to log1/p.

Total Number of Shortcuts To bound the total number of shortcuts we first
bound the number of upward edges emanating from some node v. We provide
two such bounds, one being stronger for nodes v with small levels, the other
being stronger for nodes v with large levels.

Lemma 1. The expected number of upwards edges (original or shortcut) ema-
nating from a node v with level L is bounded by p1−L.

Proof. A shortcut (v, w) from v to a node w with a shortest path v w of length
k exists if and only if the level of w is at least L while the level of all k−1 nodes
inbetween on the shortest path from v to w is less than L. So the probability for
the shortcut (v, w) to exist can be expressed as P (l(w) ≥ L) · P (l < L)k−1. Due
to our condition we have at most k nodes at distance k, hence the total number
of upward edges can be bounded as:

E(X) ≤
D∑
k=1

k · P (l ≥ L) · P (l < L)k−1 =

D∑
k=1

kpL−1(1− pL−1)k−1

Here D is the diameter of the graph, D ≤ n. We then substitute 1− pL−1 with
q and end up with:

E(X) ≤ 1− q
q

D∑
k=1

kqk <
1− q
q

∞∑
k=0

kqk =
1− q
q
· q

(1− q)2
=

1

pL−1
ut

Lemma 2. The expected number E(X) of upwards edges (original or shortcut)
emerging from a node v with level L is bounded by npL−1.

Proof. Upwards shortcuts demand the target node to have a level ≥ L. Therefore
the total number of shortcuts emerging from a node with level L is bounded by
the expected number of nodes with a level ≥ L in the network. As the expected
number of nodes with level L equals n(1−p)pL−1, the expected number of nodes
with a level at least L is npL−1. ut

We observe that the bound by Lemma 1 is tighter for L ≤ log
√
n and the bound

by Lemma 2 for L > log
√
n.

Theorem 1. The expected number of upwards edges in the CH-graph is bounded
by n(1− p)(0.5 · log2√n+ (1− p2)−1).

Proof. Using Lemma 1 and the fact that we expect npL−1(1− p) nodes at level
L we bound the number of outgoing edges from nodes with level ≤ log

√
n by

log
√
n∑

L=1

n(1− p)pL−1p1−L ≤ n(1− p) · 0.5 · log2√n

and the number of edges from nodes with higher level using Lemma 2 by

∞∑
L=log

√
n+1

n(1− p)pL−1npL−1 =
n2(1− p)

p2
·

∞∑
L=log

√
n+1

p2L

=
n2(1− p)

p2
· p

2(plogn − p2n)

1− p2
=
n2(1− p)(1/n− p2n)

1− p2
≤ n(1− p)

1− p2
ut

The analysis for the number of downwards edges can be done analogously. So the
final number of expected edges in the CH-graph is n(1− p)(0.5 · log2√n+ (1−
p2)−1) for undirected networks (summing up the two bounds in the Theorem)
and twice this number, i.e., n(1−p)(log2√n+2(1−p2)−1) for directed networks.

Search Space Analysis We define the search space SS(v) for a node v ∈ V
as the number of nodes that are pushed into the priority queue (PQ) during
a CH-Dijkstra run from v (relaxing only upwards edges). We will first analyze
the direct search space (DSS) of v. A node w is in DSS(v) if on the shortest
path from v to w all nodes have levels ≤ l(w). Therefore, w will be settled
with the correct distance d(v, w) in the CH-Dijkstra run. Unfortunately, SS(v)
is typically a superset of DSS(v) as also nodes on monotonously increasing but
non-shortest paths are considered. We will modify the query algorithm to bound
the number of such nodes.

Lemma 3. The expected size of DSS(v) is bounded by (1 + p)
√
n.

Proof. We can assume that all nodes with a level l > log
√
n are always in

DSS(v). In expectation, there are
∑∞
L=log

√
n+1 np

L(1− p) =
√
n such nodes in

the network. A node w is in DSS(v) if on the shortest path from v to w all
nodes have a level of at most l(w). The expected number of such nodes with
l(w) ≤ log

√
n can be bounded by

log
√
n∑

L=1

P (l = L)

D∑
k=1

kP (l ≤ L)k−1 =

log
√
n∑

L=1

pL−1(1− p)
D∑
k=1

k(1− pL−1)k−1.

As the last sum can be bounded by p−2L+2, we get:

log
√
n∑

L=1

p−L+1(1− p) = p(
√
n− 1)

Together with the at most
√
n nodes in DSS(v) with a level greater than log

√
n,

the size of DSS(v) is bounded by (1 + p)
√
n. ut

To characterize and reduce the number of nodes in SS(v)\DSS(v), we need the
following properties about nodes in DSS(v).

Lemma 4. The probability for a node w at distance k from v to be in DSS(v)
but exhibiting a level l(w) < log k − log(c ln(1/p) log k) is bounded by k−c.

Proof. If w ∈ DSS(v), all k nodes on the shortest path from v to w have a level
of at most l(w). As l(w) < log k− log(c ln(1/p) log k) the same needs to hold for
all nodes on this shortest path. The probability for that can be expressed as:(

1− plog k−log(c ln(1/p) log k)
)k

=

(
1− c ln(1/p) log k

k

)k
Using (1+x) ≤ ex with x = −c ln(1/p) log k ·k−1, we can upper bound the above
formula by(

e−c ln(1/p) log k·k
−1
)k

= e−c ln(1/p) log k = e−c ln(1/p) ln(k)/ln(1/p) = k−c. ut

Applying the above Lemma we show that with high probability a node inDSS(v)
whose shortest path from v is at least n1/4 long does not have too small a level.

Lemma 5. A node w at shortest path distance k > n1/4 from v is in DSS(v)
and exhibits a level l(w) ≥ log k−log(c ln(1/p) log k) with probability ≥ 1−n−c/4.

Proof. The probability P = P (l(w) < log k− log(c ln(1/p) log k)) is bounded by
k−c (according to Lemma 4). So the larger k the smaller the probability. For
k > n1/4 we get P < n−c/4. Hence we can lower bound the probability of the
counter-event by 1− n−c/4. ut

Armed with this insight, we modify our query algorithm such that nodes
with too small a level relative to their distance are discarded during the ex-
ploration. That is, during the run of CH-Dijkstra, we discard a node w from
further consideration (not pushing it into the PQ) if d(w) > n1/4 and l(w) <
min (log

√
n, log d(w)− log(c ln(1/p) log d(w))), where d(w) denotes the current

distance label of w in the CH-Dijkstra run. The following theorem shows that
for appropriate choice of c, this leads to small search spaces and with high prob-
ability to the correct result.

Theorem 2. Our modified query algorithm has an expected search space size of
at most

√
n(2 + c ln(1/p)

√
2 log

√
n) and computes the correct result with proba-

bility ≥ 1− 2n
−c+4

4 .

Proof. We know that always d(v, w) ≤ d(w) has to be true, where d(v, w) is
the true distance from v to w. Therefore, the number of nodes with d(v, w) ≤
d(w) ≤ n1/4 can be bounded by

∑n
1/4

i=1 k ≤
√
n. The number of nodes with

l(w) ≥ log d(w)− log(c ln(1/p) log d(w)) can be bounded by

D∑
k=1

xkP (l ≥ log k − log(c ln(1/p) log k)

with xk ≤ k, ∀k = 1, . . . , D and
∑
xk = n. As P (l ≥ log k − log(c ln(1/p) log k)

decreases with growing k, this sum can be upper bounded by:
√
2n∑

k=1

kP (l ≥ log k − log(c ln(1/p) log k) =

√
2n∑

k=1

k
c ln(1/p) log(k)

k

= c ln(1/p)

√
2n∑

k=1

log k ≤ c ln(1/p)
√

2n log
√
n

Together with the at most
√
n nodes above level log

√
n in expectation, our

search space size does not exceed
√
n(2 + c(ln(1/p)

√
2 log

√
n) nodes.

It remains to show that queries are answered correctly with high probability.
Queries are answered correctly for sure if SS(v) ⊇ DSS(v). According to Lemma
5, a node w ∈ DSS(v) at distance k > n1/4 is not contained in our pruned search
space with probability at most n−c/4. We are interested in an upper bound for the
probability that at least one of the nodes in DSS(v) is not in our search space.
We simply apply the union bound upper bounding the probability that one or
more nodes of DSS(v) do not have large enough level by n · n−c/4 = n(−c+4)/4.

So with probability ≥ 1− n−c+4
4 , all nodes of DSS(v) are actually in the search

space of v and with the same argument holding for the (reverse) search space of
the target, we arrive at the bound for the correctness of the query result. ut

The above Theorem implies for c = 4 +α, α > 0 our query routine produces
the correct result with probability ≥ 1−2n−α/4. Choosing for example c = 6 we
have a success probability of 1− 2/

√
n and expected search space sizes for source

and target of less than
√
n(2 + 6 log

√
n) for p = 1/2.

4 Experimental Results

We implemented randomized CH construction and the proposed query answering
algorithm in C++. We also implemented the heuristic CH construction based on
iterative contraction of independent sets as described in Section 2.1. Experiments
were conducted on a single core of an Intel i5-4300U CPU with 1.90GHz and
12GB RAM. We used the OSM road network data of a cut-out of Germany with
2,275,793 nodes and 4,637,537 directed edges for evaluation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

distance

#nodes at distance k
f(x)=x

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20

hierarchy level

#nodes (rand)
expected #nodes (rand)

#nodes (heuristic)

Fig. 1. Left: Our model predicts the number of nodes with distance k to be beneath
the green line. The red boxes indicate the real distance dependent node distribution
based on Dijkstra search trees from 1,000 randomly chosen source nodes. Right: Node
level distribution resulting from heuristic and randomized CH construction.

We first validate our chosen model. In Figure 1, left, we compare the average
number of nodes at distance k from a source in our real network (with euclidean
distances as cost metric) to the prediction according to the model. We observe
that up to distance about 1000 there are indeed almost exactly k nodes with
distance k. Then the number declines.

Unless mentioned otherwise, the following experiments are conducted using
p = 1/2 for randomized CH. We first want to evaluate the CH preprocessing.
Figure 1, right, shows that the expected number of nodes per level reflects the
real node levels quite perfectly. While this is not surprising for the randomized
construction, it is indeed for the heuristic construction. So basically in every con-
traction round, about half of the remaining nodes form an independent set and
get contracted at once, leading to the same node level distribution as for our Skip
List based randomized levels. The maximum level in the heuristic construction
was 99, though, and therefore about a factor of 5 higher than in the randomized
CH, but this is due to the fact that towards the end of the contraction process
the remaining nodes form clique-like structures which only allow for contracting
a single element as independent set.

For randomized CH, we expect the number of shortcuts to be less than 41
million for n = 2, 275, 793. Averaged over three runs, our CH-graph contained
23, 758, 675 shortcuts. In the heuristically constructed CH-graph, 8, 678, 644 short-

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 4 8 16 32 64

hierarchy level

bound 1
#shortcuts (randomized)

avg (randomized)
#shortcuts (heuristic)

avg (heuristic)
bound 2

Fig. 2. Number of
upwards shortcuts
emerging from a
node dependent on
its level. Both axes
are in logscale.

cuts are inserted, which is better by a factor of about 3. Figure 2 provides a
detailed overview of the number of upwards shortcuts emerging from a node in
dependency of its level. We observe that bound 1 and 2 resulting from Lemmas
1 and 2 are almost perfect predictions for the average value per level. For the
heuristic construction the curve is stretched and exhibits a lower peak. This is
a result of a wider range of node levels and a lower number of total shortcuts
(due to the ED-related node contraction order).

Finally, we evaluated search spaces and query times for randomized and
heuristic CH. In a query answered in the heuristically constructed CH-graph,
497 nodes were settled on average. Query times were in the order of a half
microsecond which results in a speed-up of factor 500 compared to plain Dijkstra.
With randomized CH, the predicted search space size for c > 4 is over 66,000.
The number of actually settled nodes in our experiments was only 5,241, showing
that some of our upper bound assumptions in the analysis are too pessimistic.
All queries were answered correctly in our experiments. Query times were in the
order of 20 ms, yielding only a speed-up of 10 compared to plain Dijkstra. Still,
the fact that there is speed-up at all using a randomized construction shows
that our results have some degree of practical justification. Moreover, it follows
straight from the Skip List like construction that the expected number of nodes
on the optimal CH-path from s to t with d(s, t) = k is 2 log k. Evaluating 1,000
example queries, we observed that this result is matched accurately – indeed for
both, randomized and heuristically constructed CH.

To study the influence of p, we ran the same experiments with p = 1/4 and
p = 3/4. For p = 1/4, the expected maximum number of shortcuts is 32 million, the
real number was 16, 941, 163. For p = 3/4 our upper bound implies no more than
49 million expected edges in the CH-graph, and we ended up with 28, 526, 499
in the experiments. The search space sizes and query times were slightly worse
for both p = 1/4 and p = 3/4 compared to p = 1/2. If levels are more spread due
to higher p they are also more connected due to more shortcuts. If levels are
less spread there are large connected components of nodes with the same level
which are explored until our level-distance-bound kicks in. Hence p = 1/2 seems

to be a suitable choice, not only because it leads to a close relation with the
heuristic CH construction but also since the auxiliary data size vs search space
size trade-off is good.

5 Conclusions

It is rather surprising that it is possible to construct CH via a level assignment
that does not take into account the structure of the graph. This is in stark con-
trast to common heuristic construction schemes as well as the approaches in [3]
and [5] where the construction process is heavily guided by the graph structure.
Furthermore, our randomized construction scheme shares some natural charac-
teristics with the common heuristic construction scheme – both in theory as well
as in empirical evaluations. Our results should be seen as a step towards a better
understanding of the good performance of contraction hierarchies in practice.

References

1. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transportation Science 46(3) (2012) 388–
404

2. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. arXiv
preprint arXiv:1504.05140 (2015)

3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest
paths, and provably efficient algorithms. In: Proc. 21st Ann. ACM-SIAM sympo-
sium on Discrete Algorithms. (2010) 782–793

4. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway di-
mension and provably efficient shortest path algorithms. Microsoft Research, USA,
Tech. Rep 9 (2013)

5. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction
hierarchies. In: Automata, Languages, and Programming. Volume 7965 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2013) 93–104

6. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Experimental Algorithms. Springer (2014) 271–282

7. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM
33(6) (1990) 668–676

8. Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing speed-up
techniques is hard. In: 7th Int. Conf. on Algorithms and Complexity (CIAC’10),.
Volume 6078 of Lecture Notes in Computer Science., Springer (2010) 359–370

9. Milosavljević, N.: On optimal preprocessing for contraction hierarchies. In: Pro-
ceedings of the 5th ACM SIGSPATIAL International Workshop on Computational
Transportation Science, ACM (2012) 33–38

10. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: Proc 34th Annual ACM Symposium on Theory of Computing. STOC ’02, New
York, NY, USA, ACM (2002) 741–750

11. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proc. 44th Symposium on Foundations of Computer
Science (FOCS 2003), 11-14, IEEE Computer Society (2003) 534–543

