
Approximation Algorithms in the Successive
Hitting Set Model

Sabine Storandt1

Department of Computer Science, University of Freiburg (Germany)
storandt@informatik.uni-freiburg.de

Abstract. We introduce the successive Hitting Set model, where the
set system is not given in advance but a set generator produces the sets
that contain a specific element from the universe on demand. Despite
incomplete knowledge about the set system, we show that several ap-
proximation algorithms for the conventional Hitting Set problem can be
adopted to perform well in this model. We describe, and experimentally
investigate, several scenarios where the new model is beneficial compared
to the conventional one.

1 Introduction

The Hitting Set problem is a classical NP-complete problems, with applications
in various areas as computational geometry [1], sensor networks [2], or route
planning [3]. The unweighted Hitting Set problem (HS) is defined as follows.

Definition 1 (Hitting Set). Given a set system (U,S) with U being a universe
of elements and S a collection of subsets of U , the Hitting Set problem demands
to find a smallest subset of the universe H ⊆ U such that all sets in S are hit
by H, i.e. ∀S ∈ S : S ∩H 6= ∅.

In the weighted version, additionally a weight function w : U → R+ is given.
The goal is then to find the cheapest H ⊆ U which hits all sets in S.

Both problem versions are not only NP-hard but exhibit also an inapprox-
imability bound of ln(m)(1− o(1)) with m = |S| as the dual of the Hitting Set
problem, the Set Cover problem, was proven to be ln(n)(1−o(1)) inapproximable
with n being the number of elements in the universe [4]. Hitting Set problems
are often tackled in practice with the greedy algorithm [5], as it provides an
asymptotically optimal approximation guarantee of ln(m) +Θ(1). For more re-
fined Hitting Set problem versions, or with a priori knowledge about the set
system, better approximations and custom-tailored heuristics are possible.

The main obstacle for solving Hitting Set type problems in practice is that
with S ⊆ P(U) the number of sets might be significantly larger than the number
of elements in the universe U . Therefore storing S explicitly can demand enor-
mous space, and operations on the complete set system are extremely expensive.
This limits the applicability of greedy and other approximation algorithms to
rather small instances.

A natural question is, whether we could solve the Hitting Set problem without
having to store and investigate whole S at once. Obviously, this demands that
we can access certain subsets of S efficiently. We formalize this idea into a new
model, which we call the successive Hitting Set (SHS) model .

Definition 2 (Successive Hitting Set Model). Given a universe of elements
U , and a deterministic set generator G : U → P(U). The set generator called for
u ∈ U reveals the collection of sets that contain u. The universe together with
∪u∈UG(u) forms the set system.

The Hitting Set problem in the successive model remains basically unchanged.
And, of course, we could just call the generator for all elements first, and then
run the conventional Hitting Set algorithms to compute H. But the scope of the
paper is to design (approximation) algorithms that issue calls to the generator in
a way that the number of known sets (i.e. sets that have to be explicitly stored)
at any point in time is significantly lower than |S|.

1.1 Related Work

Hitting Set problems or Set Cover problems with the set system being not fully
provided a priori were tackled before in the context of an on-line model [6]. In
this model, sets or elements are revealed to the algorithm in some unpredictable
order and have to be handled immediately. On-line algorithms are analyzed by
bounding the competitive ratio, that is the solution cost in the on-line model
divided by the solution cost in the conventional off-line model. This differs sig-
nificantly from our successive setting, as here the sets are not revealed by some
’adversary’ but it is part of our envisioned approximation algorithms to call the
set generator for elements in the universe wisely.

Furthermore, there is a wide range of heuristics for the conventional Hit-
ting Set problem which aim at compressing the set system or avoid its explicit
construction in order to be able to tackle large instances or to accelerate the com-
putation [7–10]. Most often these heuristics are custom-tailored for certain kinds
of set systems, and the focus is rather on providing good solutions in practice
than on investigating theoretical approximation guarantees. We will provide suc-
cessive algorithms in the following which exhibit good approximation guarantees
and perform well in practice at the same time.

1.2 Contribution

– We adopt the standard greedy algorithm to work in the SHS model with an
approximation guarantee of ln(m) + 2.

– We show that the k-approximation for the k-Hitting Set problem via the
pricing method carries over to our new model.

– We prove that for set systems with VC-dimension d, a 2dc log(dc) approxima-
tion is possible in the SHS model. In the conventional model, the guarantee
is dc log(dc).

– We investigate several applications where the successive model leads to a
considerably reduced space consumption and/or faster computation times
compared to the conventional model. Furthermore, we show that in practice
our devised approximation algorithms achieve close-to-optimal solutions.

2 Preliminaries

In this paper we restrict ourselves to algorithms where the generator is only called
once per element in the universe. Otherwise, every time an operation needs to
be conducted in a conventional Hitting Set algorithm, the respective part of the
set system is generated (if it fits in memory) and simply forgotten afterwards.
But this potentially leads to a very high number of calls to the generator. Hence
the time spend on set generation might dominate the total runtime, which is not
what we aim for. So the paradigm in this paper is that a set once generated can
only be forgotten after it was hit. This also provides us with an easy correctness
prove for all our algorithms: If the generator was called for every element in the
universe and the set system is empty, a feasible Hitting Set is at hand.

We use the following notation. With c we denote the size of the optimal
solutionH∗. We refer to the underlying set of elements for a collection of sets S as
S = ∪S∈SS. We assume the sets in S to be closed under intersection, that is we
cannot divide S into two partitions SA and SB with SA∩SB = ∅. This of course
is only a technical restriction. If S is not closed under intersection, we could
define independent subproblems and solve them individually. In our algorithms,
whenever a temporary set system runs empty because no sets intersect with
previously chosen ones, we just call the generator for some arbitrary element
(for which the generator was not already called), and proceed from there.

3 Greedy Algorithm for General Set Systems

The classical greedy algorithm for the Hitting Set problem works as follows. In
every round of the algorithm, the element u ∈ U is selected which hits most so far
unhit sets. Or, in the weighted case, the element u which minimizes w(u)/|{S ∈
S : S 3 u}|. Then u is added to the Hitting Set H, and all newly hit sets are
removed from the system. The algorithm proceeds until S runs empty.

The computation of the best hitter in every round and the removal of the
newly hit sets induce a complete sweep over all elements in so far unhit sets.
This makes the execution of greedy quite expensive, especially in early rounds.

The greedy algorithm guarantees a ln(b) +Θ(1) approximation with b being
the size of the largest subset of S that can be hit with a single element from U . As
this subset potentially contains (almost) all sets from S, we have a ln(m)+Θ(1)
approximation with m = |S|.

3.1 Successive Greedy

In the SHS setting, we proceed as follows. We start with an arbitrary subset
S′ ⊆ S. (If no such set is specified, we call the generator G for an arbitrary

element in U and refer to the resulting set as S′.) We select the best hitter
for S′, add it to the solution H and remove all hit sets from S′ just like in the
conventional greedy algorithm. But now, for every set that was hit, we call the set
generator for all contained elements. (Of course, we never call the set generator
twice for an element during the course of the algorithm, and we discard sets
immediately that are already hit.) The generated sets are added to S′. Then
the whole process is repeated. The algorithm stops after the set generator was
called for every element in U , and S′ ran empty.

3.2 Approximation Quality

The successive greedy algorithm has very limited knowledge about the set system
in every round. This is the very opposite of the way conventional greedy works,
as it always selects the best hitter globally. Nevertheless, we will prove that the
approximation guarantee of the successive greedy algorithm is quite close to the
guarantee in the conventional model, as specified in the following Theorem.

Theorem 1. Successive greedy computes a Hitting Set H with the property
|H| ≤ c · (lnm + 2) where c denotes the optimal solution size and m being
the number of sets in the complete set system.

Proof. Let h be a hitter in the optimal solution, and S(h) the collection of sets
hit by h. With s = |S(h)| we denote the number of sets hit by h, i.e. every set
in S(h) is bought at cost w(h)/s (in the unweighted case w(h) = 1). We will
argue that the total costs for S(h) in the successive greedy algorithm are lower
or equal to w(h)(Hs−1 +1) with Hs−1 indicating the (s−1)th harmonic number.

Let h0 be the first hitter in the course of the successive greedy algorithm
which hits a set S in S(h). Obviously, S is bought at cost≤ w(h), as h would have
been a possible choice as well. After h0 is added to H, all sets are generated which
intersect with S. Therefore, in the next round of the successive algorithm all sets
S(h)\S are available in the temporary set system. (Of course, h0 might hit more
than one set in S(h), but this would only reduce the total costs for S(h).) The
successive greedy algorithm could now choose h as the next hitter for S(h), with
a cost ratio of w(h)/(s − 1). So the only reason why the algorithm decides for
another element h1 is, that its ratio is even better or equal to w(h)/(s−1). This
ratio determines the cost for the next hit set in S(h). Then we can apply the
same argument recursively, providing us with a cost ratio of ≤ w(h)/(s− i) for
hitter hi, until i = s− 1 and all sets in S(h) are hit. Hence the total cost for all
sets in S(h) can be expressed as:

w(h) +

s−1∑
i=1

w(h)

s− i
= w(h) + w(h)

s−1∑
i=1

1

i
= w(h)(Hs−1 + 1)

Using Hn < lnn+ 1, we can upper bound the costs for S(h) by w(h)(ln(s) + 2).
So compared to the costs of w(h) for S(h) in the optimal solution, we pay more
by at most a factor of ln(s)+2. As this is true for every hitter in the optimal solu-
tion, and s ≤ m, successive greedy has an approximation guarantee of ln(m)+2.

Arguing more precisely, the standard greedy algorithm exhibits an approx-
imation guarantee of Hb with b being the size of the largest subset of S that
can be hit with a single element from U . This term converges to ln(b) + γ for
growing b, with γ denoting the Euler-Mascheroni constant (γ ≈ 0.57721). In the
successive model, the approximation guarantee is Hb−1 + 1 = Hb + 1−1/(b−1).

4 Pricing Method for the k-Hitting Set Problem

We now consider the k-Hitting Set problem. Here, all sets in the collection S con-
tain at most k elements. For this special kind of Hitting Set problem, the general
inapproximability bound does not apply. In fact, there exists a k-approximation
algorithm which is an instance of the primal-dual method. The algorithm is
called the pricing method as it assigns prices pS to sets in the system. Initially
all prices are zero, so ∀S ∈ S : pS = 0. For every element u ∈ U , the following
constraint yields

∑
S∈S(u) pS ≤ w(u) with S(u) being the collection of sets that

contain u. If equality holds, the element u is called tight. The pricing method
operates in rounds. In every round, a set S from S is selected which contains
only elements that are not tight. Then the price of the set pS is increased as
much as possible without violating any constraint. This leads to at least one of
the elements in S becoming tight. The algorithm exits as soon as every set in S
contains some tight element. All tight elements form then the Hitting Set H.

4.1 Successive Algorithm

Again, we start with some arbitrary set S′ ⊆ S. We select a set S from S′ in
every round to make one of the contained elements tight. But we have to be
very careful about not violating any constraints when increasing the price of S.
Therefore, we maintain potential weights w′ for every u ∈ U . In the beginning,
we have w′(u) = w(u) for all elements. Then after selecting S, we compute
∆ = minu∈S w

′(u). We increase the price pS by ∆ and at the same time decrease
all potential weights from elements in S by ∆. At least one of those elements
will have a potential weight of 0 afterwards. All elements with w′ being 0 are
added to H, and hit sets are removed from S′. Note, that it does not matter
how we issue calls to the generator. We can just select some arbitrary element
u in every round (for which the generator was not already called); and add the
respective sets G(u) to S′. Again, the algorithm exists as soon as the generator
was called for all elements and S′ is empty.

4.2 Correctness and Analysis

Correctness of the successive pricing method is obvious, as the algorithm only
terminates when every set in the system contains some tight element; and the
tight elements coincide with the Hitting Set.

The quality analysis works similar to the conventional pricing method analy-
sis. The only point we have to assure is not to violate any constraint. Every time
we increase the price of a set, we decrease the potential weights of all contained
elements. Therefore the summed prices of sets that contain a specific element are
always equal to the original potential weight minus the final potential weight of
the element. As potential weights never drop below 0, the summed prices of sets
that contain element u are bounded by w(u). Therefore all constraints are satis-
fied at any point in time. Accordingly, the quality analysis for the conventional
pricing method can be applied, proving that the successive pricing method also
has an approximation guarantee of k.

Theorem 2. The successive pricing method returns a solution H for an in-
stance of the k-Hitting-Set problem with |H| ≤ c · k where c denotes the optimal
solution size.

The advantage of the successive approach is again that it requires only a
very small subset of S to be explicitly stored. More precisely, a single set being
available in each round suffices for correctness and to achieve the desired ap-
proximation quality. Hence, linear space in the size of U would be enough for
the pricing method to work, if our set generator can be instrumented to produce
the sets per element one by one. For comparison, whole S might require space
in the order of k · |U |k.

5 Concatenated Hitting Sets

Lets assume we have some algorithm A for HS which provides a better approx-
imation guarantee than the generally tight ln(m) bound by making use of char-
acteristics of the underlying set system. A famous incarnation of such A is the
algorithm by Brönimann and Goodrich [11] which provides for set systems with
VC-dimension d a solution within dc log(dc). In this context, the VC-dimension
can be regarded as a complexity measure for the set system. Low VC-dimensions
are exhibited e.g. by many set systems on geometric objects [12]. We now de-
scribe a successive scheme which can exploit such algorithms A to find good
approximate solutions while only operating on subsets of S.

5.1 Successive Algorithm

Like before, we start with some arbitrary subset S1 ⊆ S. We apply algorithm
A to S1 conventionally. This provides us with an initial Hitting Set H1. Then
we delete the sets in S1 from the system but add all sets that have a non-empty
intersection with a set in S1 (by calling the generator for all elements in S1).
Of course, we never add already hit sets to the system at any point in time. For
the newly generated set system S2, we again apply A which leads to a second
Hitting Set H2. We repeat the process until the generator was called for every
element in U and the set system is empty. The final Hitting Set returned is the
union of H1, H2, · · · , Hk.

5.2 Correctness and Approximation Quality

As every set in S is generated at some point and only deleted after it was hit,
correctness of the successive algorithm is obvious.

It remains to analyze the solution quality. We make the following two simple
but crucial observations:

Observation 3 The optimal solution size ci for Si is smaller or equal to the
optimal solution size c = |H| for S reduced to Si, i.e. ci ≤ |H ∩Si|.

Observation 4 Si ∩ Sj = ∅ if |i − j| > 1, because all sets intersecting with
Si are either already contained in Si−1 or are created in Si+1 and therefore hit
and deleted before the construction of Si+2.

The second observation tells us that Sodd = S1,S3, · · · is a collection of pair-
wise intersection free instances, and the same is true for Seven = S2,S4, · · · .
According to the first observation, the optimal solution for whole S requires at
least as many hitters for Si as the individual optimal solution. As the union of
intersection free instances can not lead to any redundant hitters, we conclude

c ≥
∑k/2

i=1 c2i and c ≥
∑k/2

i=1 c2i−1. In total we get 2c ≥
∑k

i=1 ci.

Now, we consider A with an approximation guarantee of d log(dc) with d
denoting the VC-dimension of the set system. For any subset of S, the VC-
dimension can not be higher than d. So we have |Hi| ≤ dci log(dci). The optimal
solution for any Si is smaller or equal to the global solution, i.e. ci ≤ c. Hence
we can upper bound |Hi| by dci log(dc). Then we can upper bound the size of
the solution resulting from combining all individual Hi by:

k∑
i=1

|Hi| ≤
k∑

i=1

dci log(dc) = d log(dc)

k∑
i=1

ci ≤ 2dc log(dc)

The last inequality uses our lower bound for the optimal solution c as constructed
above.

There are other set systems which even exhibit constant approximations [13]
or PTAS [1]. The respective approximation algorithms can easily be plugged into
our successive scheme and the analysis is quite similar.

Theorem 5. For an approximation algorithm A which computes a Hitting Set
H with the guarantee |H| ≤ f(c), the successive variant of A exhibits an approx-
imation guarantee of 2f(c).

So our successive scheme produces a solution with an approximation guarantee
which is only worse by a factor of 2 compared of the original approximation
guarantee. At the same time, our algorithm only requires the storage of the
actual Si, and operations to compute H are only performed on sub-instances.

For improving the solution quality in practice, we can apply a backwards
pruning strategy. At the moment we constructed the Hitting Set Hi for Si, we
can check if elements in Hi−1 become superfluous due to Hi. For that purpose,
we sweep over the sets in Si−1 that are not hit by Hi and only maintain their
hitters in Hi−1.

1
2

3

4
5

6

7

Fig. 1. Left: Illustration of the successive greedy algorithm. Hitters are indicated by
black dots, the enumeration reflects the order in which they were chosen. Middle:
Independent collection of sets picked by the successive pricing method. All elements in
the lilac sets form the Hitting Set. Right: Illustration of the concatenation algorithm.
The first instance is given by the blue sets, the second by the red sets and the third
by the green sets (together with a Hitting Set per instance). The green and the blue
instances are intersection-free. The colorless set on the right is not in the green instance
as it is already hit by the red Hitting Set.

6 Applications

Our theoretical investigations showed that operating in the successive model
leads to the same approximation guarantees in Big-O-notation than in the con-
ventional model. But the question remaining is, if there are really applications
where the intermediate sizes of the set system known to the successive approxi-
mation algorithms are considerably smaller than |S|.

Figure 1 illustrates all three introduced algorithms (successive greedy, suc-
cessive pricing method and concatenation). For the k-Hitting Set problem we
observed that a single known set suffices for the pricing method to work cor-
rectly. But for greedy and the concatenated algorithm, the existence of elements
u ∈ U with G(u) containing a significant fraction of the elements in U possi-
bly leads to set systems with their size comparable to S. So in that case our
successive algorithms are not advantageous.

In this section, we will describe applications where the successive model is
intuitively beneficial compared to the conventional one.

Set Systems with Efficient Generators. The efficiency of our successive
algorithms relies on how quick they can operate on the temporary set system as
well as on how quick they can generate the next required sets. We will describe
an exemplary application in the following, where efficient generators are easily
available. So at the latest when the complete set system would no longer fit in
memory, the successive algorithm will outperform the conventional one.

Example 1 (Hitting k-Paths or Shortest Paths). Given a graph G(V,E), the
objective is to hit all simple paths in G which contain at least k nodes or have
a length exceeding some bound B (when additionally given a cost function f :
E → R). The efficient construction of all paths that contain a certain vertex v
can be accomplished using a breadth-first-search or Dijkstra based approach [8].

Note that the successive framework only makes sense when k or B are chosen
as a small fraction of the diameter of the graph.

Incomplete Knowledge. In some applications, it might not even be possible
to call the generator G a priori for every element, as necessary information might
be missing. This is typically the case in AI applications, where e.g. mobile robots
have to explore unknown terrain. Let, for example, the task of the robot be to
physically mark every square of side length a which contains a certain amount
of items in some finite area. Of course, the robot might explore the whole area
first, then compute the set of all relevant squares, identify the respective marker
positions, and then drive back to place them. But in the spirit of our successive
scheme, it always could explore areas next that intersect with the ones just hit
by driving in an a-tube around them. Then the set of squares it has to remember
and that are used for computation of the next marker position(s) is smaller, and
potentially the robot has to drive less of a detour to place the marker.

Solving Conventional Instances in the SHS Model. Even if the set system
is explicitly available and fits in memory, it might be beneficial in terms of
runtime to use the successive version of the greedy algorithm. Think of a set
system where the best hitter hits only a very small fraction of all sets. Therefore
the number of sets will decrease slowly in the greedy algorithm. But every round
requires a complete scan over all remaining sets, so the computation gets quite
expensive. In the successive algorithm, we could define S′ as a collection of
sufficiently small sets in S. Then, computing the initial hitter can be made as
cheap as desired. If every element can hit only a small fraction of sets in S, also
the increase in the set system size by calling the generator is moderate.

An efficient generator for explicitly available set systems is easy to design.
For example, one could store S as an array of sets and keep for every element
u ∈ U a list of corresponding set indices.

7 Experiments

We implemented the standard greedy algorithm and the described successive
greedy variant in C++ and evaluated them in terms of quality, space consump-
tion and runtime. The timings were measured on a single core of an Intel i5-4300U
CPU with 1.90GHz and 12GB RAM.

As example application we chose the construction of Hitting Sets on shortest
paths in a graph (Example 1 in Section 6) as it is of theoretical and practical
interest (see [14], [3] and [8]).

We extracted real-world road networks from OSM1 to model the graphs. We
chose networks with the number of nodes increasing from about 100,000 to 20
million. The number of edges in our test graphs is about twice the number
of nodes. We demanded to find a Hitting Set for each of the graphs which
hits every shortest path with a length exceeding 1000 meters. The results for

1 openstreetmap.org

Table 1. Comparison of greedy and successive greedy on several benchmarks. ’k’ equals
103. ’lb’ stands for lower bound, T(ext) is time for set extraction, T(hit) for hitting set
computation, T(total) or T for complete execution time. Timings are given in seconds
(s), minutes (m) or hours (h).

Greedy Successive Greedy
#nodes lb |S| space T(ext) T(hit) T(total) |H| max |S′| T |H|

100k 1,857 731k 0.17 GB 12 s 47 s 59 s 3,302 15k 21 s 4,411
500k 8,959 4,431k 1.08 GB 99 s 19 m 21 m 16,423 72k 457 s 21,313
996k 18,862 8,033k 1.98 GB 172 s 76 m 79 m 33,909 126k 18 m 41,073

6,611k 96,468 – – – – – – 749k 10 h 246,370
21,945k 274,981 – – – – – – 2251k 37 h 691,513

greedy and successive greedy are provided in Table 1. We observe that the greedy
algorithm can only provide solutions for the instances with up to one million
nodes in the graph. For larger benchmarks, the space consumption of the set
system exceeds our hardware capabilities. The successive greedy algorithm on the
other hand leads to results on all benchmarks. The solution quality is naturally
worse compared to the classical greedy solution (about 25% on average in our
experiments). To make statements about the solution quality compared to the
optimum, we computed simple lower bounds along by selecting a collection of
pair-wise independent sets in the system. Comparing the solutions found by
successive greedy to those lower bounds (provided in Table 1, second column),
we see that they are never more than a factor of 3 apart. So the approximation
ratio of successive greedy is quite good in our setting.

If we compare the size of the complete set system |S| to the maximum number
of sets in the temporary set system (max |S′|) maintained by successive greedy,
we observe a drastic reduction. For example, for the 996k instance, S′ has at
most 1.5% of the size of S. The space consumption of S′ was comparable to
the space consumption of the input graph for all instances. This is also reflected
in the computation times. The extraction times of the set system are negligible
compared to the times for the Hitting Set computation. For successive greedy
the total time is always smaller than for conventional greedy, e.g. by a factor of
4.28 for the 996k instance. For larger instances this effect expectedly would be
even more pronounced.

So in concurrency with out theoretical investigations, successive greedy turns
out to be a useful tool to construct Hitting Sets in practice – especially on large
instances.

8 Conclusions and Future Work

We introduced the successive Hitting Set model and designed algorithms that
work in this model with good theoretical approximation guarantees – close to
the guarantees in the conventional model. The experimental study confirmed
that there are indeed applications where algorithms in the successive model lead

to less space consumption and better computation times than the conventional
algorithms. In future work, memory consumption could be turned into a hard
constraint. We observed that the successive pricing method works if only a single
set is available in every round. For successive greedy and the concatenation
algorithm, the ’wavefront’ of sets might become huge, though. Therefore it would
be interesting to study algorithms in the successive model with the number of
sets in the temporary system being restricted a priori – either instance-dependent
(e.g. considering the maximal number of sets that can be hit by a single element)
or completely ad hoc.

References

1. Mustafa, N.H., Ray, S.: Ptas for geometric hitting set problems via local search.
In: Proceedings of the twenty-fifth annual symposium on Computational geometry,
ACM (2009) 17–22

2. Hefeeda, M., Bagheri, M.: Randomized k-coverage algorithms for dense sensor
networks. In: INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, IEEE (2007) 2376–2380

3. Eisner, J., Funke, S.: Transit nodes-lower bounds and refined construction. In:
ALENEX, SIAM (2012) 141–149

4. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM
(JACM) 45(4) (1998) 634–652

5. Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. In: Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, ACM (1996)
435–441

6. Alon, N., Awerbuch, B., Azar, Y.: The online set cover problem. In: Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, ACM (2003)
100–105

7. Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates.
International Journal of approximate reasoning 25(2) (2000) 123–143

8. Funke, S., Nusser, A., Storandt, S.: On k-path covers and their applications.
Proceedings of the VLDB Endowment 7(10) (2014)

9. Funke, S., Nusser, A., Storandt, S.: Placement of loading stations for electric
vehicles: No detours necessary! In: Twenty-Eighth AAAI Conference on Artificial
Intelligence. (2014)

10. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on
massive networks. In: Algorithms-ESA 2014. Springer (2014) 321–333

11. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite vc-dimension.
Discrete & Computational Geometry 14(1) (1995) 463–479

12. Matoušek, J., Seidel, R., Welzl, E.: How to net a lot with little: small epsilon-
nets for disks and halfspaces. In: Proceedings of the sixth annual symposium on
Computational geometry, ACM (1990) 16–22

13. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the vc-dimension is small.
Information Processing Letters 95(2) (2005) 358–362

14. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Vc-dimension
and shortest path algorithms. In: Automata, Languages and Programming.
Springer (2011) 690–699

