
GRASP: Generic Reasoning And SPARQL Generation
across Knowledge Graphs - Demo System
Sebastian Walter1,∗, Hannah Bast1

1University of Freiburg, Georges-Köhler-Allee 51, 79110 Freiburg im Breisgau, Germany

Abstract
GRASP is the first approach for SPARQL-based question answering that, in principle, works for arbitrary given
RDF knowledge graphs zero-shot, that is, without prior training or information on the graph. In this work, we
present and describe a prototypical demo system that implements the GRASP approach. The system also supports
general question answering and follow-up questions. We extend the evaluation of the associated research paper
by experiments on the IMDb knowledge graph and the TEXT2SPARQL challenge.

Keywords
Question Answering, SPARQL, Knowledge Graphs

1. Introduction

GRASP is an approach for answering questions on arbitrary given knowledge graphs without the need
for training or graph-specific information [1]. GRASP accepts an arbitrary question in natural language
and tries to find a SPARQL query on the given knowledge graphs, using a fixed set of pre-defined
functions. The function calls are controlled by a large language model (LLM) and serve to interactively
explore the knowledge graphs, much like a human would when confronted with the same task. In [1],
this approach was shown to give good results for a variety of knowledge graphs, including popular
ones like Wikidata [2], Freebase [3], and DBLP [4].

The goal of this work is to build a complete system based on this approach. The system is composed of
the LLM-based agent (see Section 3.1), knowledge graph indices (see Section 3.2), and a web application
that allows users to interact with the agent. Fig. 1 provides an overview of the system.

Contributions

1. We have built a complete system based on the GRASP approach. We provide a detailed description of
the architecture and the core components (see Section 3).
2. Beyond the core SPARQL question answering functionality, the system supports multi-turn follow-up
questions, as well as general-purpose question answering. These modes can be freely mixed.
3. We extend the evaluation of [1] by experiments on IMDb [5] and the TEXT2SPARQL challenge [6].
4. We provide all code, indices, and documentation at github.com/ad-freiburg/grasp. Users can easily
use GRASP via a CLI, setup their own server, or visit the public demo at grasp.cs.uni-freiburg.de.

2. Related Work

The SPARQL QA problem fits within the broader domain of knowledge graph question answering,
which can be divided into three categories. The first category includes methods that are fine-tuned for
a specific benchmark and knowledge graph [7, 8, 9]. These methods often achieve strong results by
being able to adapt to patterns in the benchmark and knowledge graph. The second category includes

ISWC 2025 Companion Volume, November 2–6, 2025, Nara, Japan
∗Corresponding author.
Envelope-Open swalter@cs.uni-freiburg.de (S. Walter); bast@cs.uni-freiburg.de (H. Bast)
GLOBE https://ad.informatik.uni-freiburg.de/staff/walter (S. Walter); https://ad.informatik.uni-freiburg.de/staff/bast (H. Bast)
Orcid 0009-0006-2613-3209 (S. Walter); 0000-0003-1213-6776 (H. Bast)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://github.com/ad-freiburg/grasp
https://grasp.cs.uni-freiburg.de
mailto:swalter@cs.uni-freiburg.de
mailto:bast@cs.uni-freiburg.de
https://ad.informatik.uni-freiburg.de/staff/walter
https://ad.informatik.uni-freiburg.de/staff/bast
https://orcid.org/0009-0006-2613-3209
https://orcid.org/0000-0003-1213-6776
https://creativecommons.org/licenses/by/4.0/deed.en

GRASP Server

Knowledge graph
SPARQL endpoints

Knowledge graph
indices

GRASP Webapp

GRASP Agent

{
 “question”: “Who published
 the most papers …”,
 “knowledge_graphs”: [“dblp”],
 “task”: “sparql-qa”
}

Execute
SPARQL

Search in
indices

Get index
data*

Query
subgraphs

Send update
messages

Send query message

* Building knowledge graph indices is currently done offline and uses pre-defined SPARQL queries to extract the
index data from the knowledge graphs via the SPARQL endpoints. However, these queries could in theory also be
found by the GRASP agent itself and the index building could happen online, if the knowledge graph is reasonably
small.

{
 “type”: “function”,
 “content”: “search_entity”,
“args”: {“query”: “ICLR”,
 “kg”: “dblp”},
 “result”: “Top 10 entity …”,
}

{
 “type”: “function”,
 “content”: “search_entity”,
 “args”: {“query”: “ICML”,
 “kg”: “dblp”},
 “result”: “Top 10 entity …”,
}

{
 “type”: “function”,
 “name”: “search_entity”,
 “args”: {“query”: “NeurIPS”,
 “kg”: “dblp”},
 “result”: “Top 10 entity …”,
}

{
 “type”: “model”,
 “content”: “To answer the
 question, I need to follow
 these steps: …”,
}

Figure 1: The GRASP client-server setup allows the user to invoke the GRASP agent via an intuitive web
application. The user initiates the process by sending a query message containing the question, knowledge graph
selection, and task name to the server. The server starts a GRASP agent that begins exploring and querying the
specified knowledge graphs to answer the question according to the task. Progress updates are sent back to the
web application after each reasoning step or function call of the agent and displayed there upon arrival.

methods that do not require fine-tuning but instead use in-context learning with information that is
specific for the benchmark or knowledge graph, such as exemplary question-SPARQL pairs [10, 11, 12].
The third category covers methods which function without any of the above, but rather explore the
knowledge graph on the go [1, 13, 14, 15]. For a more detailed account of related work, we refer to [1].

Only one of the latter methods, SPINACH [13], provides a publicly available demo of their approach
at spinach.genie.stanford.edu, which uses a chat-like interface similar to ours.1 But like its underlying
approach, this system is limited to the Wikidata knowledge graph.

3. System

In the following, we describe the main components of our system: an LLM-based agent that controls the
function calls (Section 3.1), the indices used by the agent to search the knowledge graphs (Section 3.2),
and the configuration allowing the user to adapt the system to their needs (Section 3.3).

The GRASP CLI is the main tool for working with the GRASP system. It is used to prepare knowledge
graphs, build indices, start the GRASP server, run the GRASP agent in a headless fashion, and more.
See Fig. 2 for an overview. Most users will use GRASP in a client-server setup. For that, we also provide
a compatible web application. See Fig. 1 for an overview.

3.1. GRASP Agent

In a nutshell, the GRASP agent works as follows: starting from the user’s question augmented by a
generic instruction prompt, it enters a loop, querying the knowledge graph exploratively until it finds a
SPARQL query that produces the desired answer. It reasons about previous query results to determine
the next query or whether the final answer has been found. The queries are realized via function calling.
Specifically, the agent is provided with a fixed set of functions, each with a unique name and a

1See also www.wikidata.org/wiki/User:SpinachBot

https://spinach.genie.stanford.edu/
https://www.wikidata.org/wiki/User:SpinachBot

Run GRASP agent on a question
echo "Name 10 german race car drivers" |
grasp run <config>
Run GRASP agent on multiple questions
cat questions.jsonl | grasp file <config>
Start the GRASP server
grasp serve <config>

Get search index data for a knowledge graph
grasp data <kg> [--endpoint <endpoint>]
Build search indices for a knowledge graph
grasp index <kg>
Build an example index from question-sparql-pairs
grasp examples examples.jsonl examples.index
Evaluate GRASP's predictions on a benchmark
grasp evaluate benchmark.jsonl pred.jsonl <endpoint>

Figure 2: The GRASP CLI: On the left, we show how to run GRASP on single questions, question files, and
as a server. On the right, we show how one can prepare knowledge graphs and SPARQL QA examples for the
use with GRASP, and how to evaluate GRASP’s predictions on a benchmark. <config> refers to the path of
a configuration file (see Section 3.3), <kg> to the name of a knowledge graph, and <endpoint> to a SPARQL
endpoint. All commands have additional optional flags not shown here for brevity.

Table 1
Statistics about the average number of steps, function calls, and time it took GRASP with GPT-4.1 to answer
questions on the main benchmarks used in [1]. We also show how function calls are distributed among all
functions (ignoring ANS and CAN). F1-scores are taken from [1].

Average Distribution (%)
KG Benchmark F1-score Steps Fn calls Time EXE LST SEN SPR SPE SOP

Freebase
CWQ [21] 44.2 19.5 14.0 37.5 s 8 55 14 5 18 0
WQSP [22] 52.1 16.3 11.5 29.8 s 11 58 12 4 15 0

Wikidata

QALD-10 [23] 72.5 10.7 7.0 22.5 s 23 25 27 15 9 0
QALD-7 [24] 79.4 10.1 6.2 18.2 s 28 17 28 22 5 1
SPINACH [13] 40.8 15.9 10.9 43.8 s 20 29 22 25 4 0
WWQ [25] 75.3 10.3 6.4 21.4 s 25 25 24 14 12 1

description in natural language of its purpose and its parameters.2 The functions are: EXE (execute an
arbitrary SPARQL query), LST (list triples with given constraints), SEN (search for entities matching a
given query string), SPR (search for properties matching a given query string), SPE (search for properties
of a given entity), SOP (search for objects of a given property), ANS (answer and stop), CAN (cancel and
stop). If few-shot examples are available, one of the functions FSE (find similar examples) or FEX (find
random examples) is provided as well. See [1] for a more detailed description of each of these functions.
For this paradigm to work properly, we rely on the underlying model being trained to support

zero-shot function calling, which is true for nearly all recent closed-source models like GPT-4.1 by
OpenAI [16] or Gemini 2.5 by Google [17], as well as for many recent open-source models like Qwen2.5
[18] or Qwen3 [19]. The latter can be easily self-hosted via vLLM [20]. Wherever supported by the
model provider, we use constrained decoding to force the model to output valid function calls that are
guaranteed to follow the available function signatures for increased reliability.

Table 1 provides F1-scores and statistics on six benchmarks. For CWQ, WQSP, and SPINACH, GRASP
achieves a comparatively low F1-score and, on average, uses more steps, function calls, and time. We
suspect that this is due to the harder questions, in particular on SPINACH. For CWQ and WQSP, we
observe more LST and fewer EXE calls than on the other benchmarks. We assume that this is due to the
older Freebase knowledge graph being less familiar to the underlying LLM, which thus requires more
exploration and verification steps (which GRASP typically realizes via LST). We also find that the SOP
function is almost never used; it could therefore probably be removed without loss of performance.

Tasks

Not all questions are answerable by or via a SPARQL query. We have therefore implemented an
extension that allows the user to dynamically switch to the task of general question answering over

2The implementation of the functions is fixed and part of the GRASP system. When calling a function, the model provides the
function name and parameter values, and receives back the results in text format from our implementation.

https://docs.vllm.ai/en/stable

knowledge graphs by adapting the GRASP instruction and ANS and CAN functions respectively. For this
task, the final output is not a SPARQL query, but arbitrary natural language text. For example, this is
useful for a question like “Write a Python script to download all Wikipedia articles about dog breeds”,
which can be answered by first finding a SPARQL query to retrieve the article URLs, and then using
this SPARQL query in a Python program.

Follow-up question answering

In [1], the GRASP agent is used to answer questions by finding a corresponding SPARQL query in a
single uninterrupted interactive process between model and knowledge graphs. In practice, one would
like to have multi-turn conversations and ask follow-up questions, potentially switching tasks and the
underlying knowledge graphs at each subsequent question. We implement this by first determining
the GRASP instruction for the current task and knowledge graph selection, then adding all previous
questions and reasoning or function call steps unchanged, and finally asking the follow-up question.
The web application supports this use case by sending an additional past field containing the full
interaction history on follow-up questions.

3.2. Search indices

Besides the agent, the search indices are the second integral part of the overall GRASP approach.
Currently, the GRASP system supports two types of search indices: prefix-keyword indices (PFX) for
prefix-sensitive keyword search, and similarity indices (SIM) for vector-based similarity search. We
refer to [1] for a more detailed explanation of both index types.

The indices enable search queries that are either inefficient in SPARQL (in the case of prefix-keyword
search) or not supported by SPARQL (in the case of vector-based similarity search). We make the search
indices accessible to the GRASP agent via easy-to-use search functions (see Section 3.1), which are
purpose-built for the most common types of searches a human expert performs while writing SPARQL
queries. It is shown in [1] that these search functions (implemented using the mentioned indices)
significantly boost the overall system performance (compared to when only EXE is provided).
For entities, we build a PFX by default, because it requires less disk space and RAM, and is faster

to query than a SIM. Besides, SIM does not give significantly better results because keyword search
works well on entities. Given a PFX query, we calculate a score between each entity and the query as
the weighted sum of the number of exact and prefix keyword matches minus a weighted sum of the
number of unmatched query and entity keywords. If there is neither an exact nor a prefix keyword
match, the entity is excluded entirely. The entities with the 𝑘 highest scores are then returned as search
results, where 𝑘 is a GRASP configuration option (see search_top_k: in Fig. 3).

For properties, keyword queries often miss relevant search results. For example, searching for “born
in” should also match “place of birth”, but does not when using a PFX. We therefore build a SIM for
properties by default. Since knowledge graphs typically have only few properties, the higher disk space
and RAM consumption of SIM compared to PFX does not matter. Given a search query, we compute its
vector embedding (using Qwen/Qwen3-Embedding-0.6B [26] by default), compute the cosine-similarity
to all pre-computed property embeddings and return the top 𝑘 properties with the highest similarity as
search results. Note that a GPU is required to run a SIM efficiently in practice.
Both PFX and SIM support specifying a subset of items to restrict the search to. Together with a

SPARQL endpoint we use this functionality to implement the advanced search functions of GRASP.
For example, SPE allows searching for properties of a given entity. For that, we first send a SPARQL
query to the endpoint to retrieve all potential properties for the given entity, restrict the corresponding
property index to these properties, and execute the search query over that restricted index.
Table 2 provides statistics for the search indices of eight knowledge graphs. Starting the GRASP

server with all these indices takes less than 20 s, and uses ≈ 20 GB of RAM and ≈ 3 GB of GPU memory,
measured on a machine with an AMD Ryzen 9 7950X CPU, an NVIDIA GeForce RTX 4090 GPU, and 4
× 4 TB NVMe SSD.

https://huggingface.co/Qwen/Qwen3-Embedding-0.6B

Table 2
Statistics about our search indices for major knowl-
edge graphs, summed over entities and properties.
Size refers to number of indexed items, Disk to the
total size on disk, and Build to the total build time.

KG Size Disk Build

DBLP [4] 141M 22GB 271 s
DBpedia [27] 19M 3GB 74 s
Freebase [3] 23M 3GB 62 s
IMDb [5] 26M 3GB 34 s
ORKG [28] 0.5M 0.1GB 14 s
OSM [29] 97M 11GB 243 s
UniProt [30] 4M 0.6GB 11 s
Wikidata [2] 84M 14GB 193 s

Table 3
F1-score of GRASP with GPT-4.1 on our own IMDb bench-
mark and the domain-specific knowledge graph from the
TEXT2SPARQL challenge representing a corporate setting.
For TEXT2SPARQL, we evaluate all methods with both the
evaluationmetric of [1] andwith the official TEXT2SPARQL
evaluation tool at github.com/aksw/text2sparql-client. The
first score refers to the former, the second to the latter.

Benchmark Method F1-score

IMDb GRASP 57.8

TEXT2SPARQL
(corporate)

GRASP 77.5 / 50.2
INFAI 61.1 / 47.9
IIS-Q 54.2 / 44.5

Model setup
model: env(MODEL:openai/gpt-4.1)
model_endpoint: env(MODEL_ENDPOINT:null)

Model inference
model_kwargs: env(MODEL_KWARGS:null)
temperature: env(TEMPERATURE:0.2)
top_p: env(TOP_P:0.8)
reasoning_effort: env(REASONING_EFFORT:null)

System behavior
seed: env(SEED:null)
fn_set: env(FN_SET:search_extended)
feedback: env(FEEDBACK:false)
max_feedbacks: env(MAX_FEEDBACKS:2)
know_before_use: env(KNOW_BEFORE_USE:false)

Function behavior
list_k: env(LIST_K:10)
search_top_k: env(SEARCH_TOP_K:10)
result_max_rows: env(RESULT_MAX_ROWS:10)
result_max_columns: env(RESULT_MAX_COLUMNS:10)

Token, time, and message limits
max_completion_tokens: env(MAX_TOKENS:8192)
completion_timeout: env(TIMEOUT:120)
max_messages: env(MAX_MESSAGES:200)

Few-shot examples (index specified per KG below)
force_examples: env(FORCE_EXAMPLES:null)
random_examples: env(RANDOM_EXAMPLES:false)
num_examples: env(NUM_EXAMPLES:3)

Knowledge graphs
knowledge_graphs:
- kg: env(KG:wikidata)
if endpoint is null, we fallback to
https://qlever.cs.uni-freiburg.de/api/<kg>
endpoint: env(ENDPOINT:null)
example_index: env(EXAMPLES:null)
entities_type: env(ENTITIES_TYPE:null)
properties_type: env(PROPERTIES_TYPE:null)

more knowledge graphs can be added here
- kg: dblp
...

Figure 3: Configuration options for GRASP in YAML format with sensible defaults for the GRASP agent based
on GPT-4.1 over Wikidata. The user can either set an option directly in the YAML file or via environment variables
using placeholders of the form env(VAR_NAME:default). We show all options for completeness here.

3.3. Configuration

GRASP can be easily configured via a single configuration file in YAML format. See Fig. 3 for the
file structure and configuration options. We provide sensible defaults for all configuration options,
so the user often only needs to configure the particular knowledge graphs they want to use with
GRASP. For example, a YAML config to run GRASP with Wikidata and Freebase can be as simple as
knowledge_graphs: [kg: "wikidata", kg: "freebase"]. With the client-server setup, all config-
ured knowledge graphs are automatically available in the web application, which itself requires no
configuration; only the address and port of the GRASP server need to be set.

We briefly discuss the three most important configuration options for GRASP besides the model and
knowledge graphs themselves:

1. Setting feedback: true corresponds to GRASP-F from [1] and allows the GRASP agent to re-
flect on and improve its own answers, which increases quality at the cost of longer runtimes. The

https://github.com/aksw/text2sparql-client

max_feedbacks: option sets the upper bound for the number of feedback loops per generation.

2. Setting force_examples: to a knowledge graph that specifies an example index via example_index:
triggers a call of either the FEX or FSE function (depending on whether random_examples: is set to
true or false) at the beginning of a generation. This enables few-shot learning in the style of the
few-shot evaluations from [1].

3. Setting know_before_use: true tells GRASP to verify knowledge graph items before using them in
EXE function calls. This is enforced by returning an error message rather than the query result if an
EXE call uses items that were not present in any previous function call result. This mechanism avoids
hallucinations of knowledge graph items, which we found to be a frequent problem with GRASP, in
particular on knowledge graphs that are less familiar to the underlying LLM. For example, for the
DBLP-QuAD [31] benchmark, without this setting, GRASP often uses incorrect properties without
verification, like the seemingly more canonical dblp:author instead of the correct dblp:authoredBy.
Consequently, this setting improves the F1-score on this benchmark from 51.0 to 66.8.

4. Additional Evaluations

To further validate GRASP’s zero-shot question answering capabilities, we extend the set of evaluated
knowledge graphs and benchmarks from [1]. First, we build an own small benchmark for IMDb [5],
the popular movie and series database, consisting of 15 questions. Second, we evaluate GRASP on
the small, domain-specific knowledge graph representing a corporate setting from the TEXT2SPARQL
challenge [6]. The corresponding challenge benchmark contains 50 questions and is “designed to test a
model’s ability to adapt to restricted and domain-focused data environments”. On both benchmarks,
GRASP achieves good results and even surpasses the best (INFAI) and second best (IIS-Q) entries from
the TEXT2SPARQL challenge by a large margin. See Table 3 for full results.

5. Conclusion

We have built a complete system based on the GRASP approach from [1]. We have combined the core
SPARQL question-answering capability with general question answering and multi-turn follow-up
questions. We have extended the evaluation from [1] by new experiments on the IMDb knowledge
graph and the TEXT2SPARQL challenge, with strong results. This provides further support for GRASP’s
zero-shot capabilities across knowledge graphs.
For future work, we consider the support of automatic builds of search indices from nothing but a

SPARQL endpoint, as well as integrating search indices and their functionality directly into SPARQL.
This would be a step towards both zero-shot and zero-configuration question answering on arbitrary
given knowledge graphs. To prevent GRASP from repeatedly making the same mistakes, which can
occur in the zero-shot setting, we also consider adding memory or other forms of online learning as
potential future work.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID
499552394 – SFB 1597.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] S. Walter, H. Bast, GRASP: Generic reasoning and SPARQL generation across knowledge graphs,
in: ISWC, 2025. Accepted for publication. Preprint available at https://arxiv.org/abs/2507.08107.

[2] D. Vrandecic, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Commun. ACM 57
(2014) 78–85.

[3] K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created
graph database for structuring human knowledge, in: SIGMOD Conference, ACM, 2008, pp.
1247–1250.

[4] M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, S. Ollinger, The dblp
knowledge graph and SPARQL endpoint, TGDK 2 (2024) 3:1–3:23. URL: https://doi.org/10.4230/
TGDK.2.2.3. doi:10.4230/TGDK.2.2.3.

[5] IMDb, IMDb: Ratings, Reviews, and Where to Watch the Best Movies & TV Shows, 2025. URL:
https://www.imdb.com/.

[6] AKSW, TEXT2SPARQL’25 - AKSW, 2025. URL: https://text2sparql.aksw.org/.
[7] D. Yu, S. Zhang, P. Ng, H. Zhu, A. H. Li, J. Wang, Y. Hu, W. Y. Wang, Z. Wang, B. Xiang, DecAF:

Joint decoding of answers and logical forms for question answering over knowledge bases, in:
ICLR, OpenReview.net, 2023.

[8] L. Luo, Y. Li, G. Haffari, S. Pan, Reasoning on graphs: Faithful and interpretable large language
model reasoning, in: ICLR, OpenReview.net, 2024.

[9] H. Luo, H. E, Z. Tang, S. Peng, Y. Guo, W. Zhang, C. Ma, G. Dong, M. Song, W. Lin, Y. Zhu, A. T. Luu,
ChatKBQA: A generate-then-retrieve framework for knowledge base question answering with
fine-tuned large language models, in: ACL (Findings), Association for Computational Linguistics,
2024, pp. 2039–2056.

[10] M. Patidar, R. Sawhney, A. K. Singh, B. Chatterjee, Mausam, I. Bhattacharya, Few-shot transfer
learning for knowledge base question answering: Fusing supervised models with in-context
learning, in: ACL (1), Association for Computational Linguistics, 2024, pp. 9147–9165.

[11] Y. Gu, X. Deng, Y. Su, Don’t generate, discriminate: A proposal for grounding language models
to real-world environments, in: ACL (1), Association for Computational Linguistics, 2023, pp.
4928–4949.

[12] J. Ma, Z. Gao, Q. Chai, W. Sun, P. Wang, H. Pei, J. Tao, L. Song, J. Liu, C. Zhang, L. Cui, Debate on
graph: A flexible and reliable reasoning framework for large language models, in: AAAI, AAAI
Press, 2025, pp. 24768–24776.

[13] S. Liu, S. J. Semnani, H. Triedman, J. Xu, I. D. Zhao, M. S. Lam, SPINACH: SPARQL-based
information navigation for challenging real-world questions, in: EMNLP (Findings), Association
for Computational Linguistics, 2024, pp. 15977–16001.

[14] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, L. M. Ni, H. Shum, J. Guo, Think-on-Graph: Deep
and responsible reasoning of large language model on knowledge graph, in: ICLR, OpenReview.net,
2024.

[15] J. Jiang, K. Zhou, Z. Dong, K. Ye, X. Zhao, J. Wen, StructGPT: A general framework for large
language model to reason over structured data, in: EMNLP, Association for Computational
Linguistics, 2023, pp. 9237–9251.

[16] OpenAI, Introducing GPT-4.1 in the API, 2025. URL: https://openai.com/index/gpt-4-1/, accessed:
2025-05-11.

[17] Google DeepMind, Introducing Gemini 2.0: our new AI model for the agentic era, 2024. URL: https:
//blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/, accessed:
2025-05-11.

[18] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al., Qwen2.5
technical report, arXiv preprint arXiv:2412.15115 (2024).

[19] Qwen Team, Qwen3 technical report, 2025. URL: https://arxiv.org/abs/2505.09388.
arXiv:2505.09388.

[20] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, I. Stoica, Efficient

https://arxiv.org/abs/2507.08107
https://doi.org/10.4230/TGDK.2.2.3
https://doi.org/10.4230/TGDK.2.2.3
http://dx.doi.org/10.4230/TGDK.2.2.3
https://www.imdb.com/
https://text2sparql.aksw.org/
https://openai.com/index/gpt-4-1/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2505.09388

memory management for large language model serving with pagedattention, in: Proceedings of
the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023.

[21] A. Talmor, J. Berant, The web as a knowledge-base for answering complex questions, in: NAACL-
HLT, Association for Computational Linguistics, 2018, pp. 641–651.

[22] W. Yih, M. Richardson, C. Meek, M. Chang, J. Suh, The value of semantic parse labeling for
knowledge base question answering, in: ACL (2), The Association for Computer Linguistics, 2016.

[23] R. Usbeck, X. Yan, A. Perevalov, L. Jiang, J. Schulz, A. Kraft, C. Möller, J. Huang, J. Reineke,
A.-C. N. Ngomo, M. Saleem, A. Both, QALD-10 – the 10th challenge on question answering
over linked data: Shifting from DBpedia to Wikidata as a KG for KGQA, Semantic Web 15
(2024) 2193–2207. URL: https://journals.sagepub.com/doi/abs/10.3233/SW-233471. doi:10.3233/
SW-233471. arXiv:https://journals.sagepub.com/doi/pdf/10.3233/SW-233471.

[24] R. Usbeck, A. N. Ngomo, B. Haarmann, A. Krithara, M. Röder, G. Napolitano, 7th open challenge
on question answering over linked data (QALD-7), in: SemWebEval@ESWC, volume 769 of
Communications in Computer and Information Science, Springer, 2017, pp. 59–69.

[25] S. Xu, S. Liu, T. Culhane, E. Pertseva, M. Wu, S. J. Semnani, M. S. Lam, Fine-tuned LLMs know
more, hallucinate less with few-shot sequence-to-sequence semantic parsing over Wikidata, in:
EMNLP, Association for Computational Linguistics, 2023, pp. 5778–5791.

[26] Y. Zhang, M. Li, D. Long, X. Zhang, H. Lin, B. Yang, P. Xie, A. Yang, D. Liu, J. Lin, F. Huang, J. Zhou,
Qwen3 embedding: Advancing text embedding and reranking through foundation models, arXiv
preprint arXiv:2506.05176 (2025).

[27] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. G. Ives, DBpedia: A nucleus for a web
of open data, in: ISWC/ASWC, volume 4825 of Lecture Notes in Computer Science, Springer, 2007,
pp. 722–735.

[28] M. Y. Jaradeh, A. Oelen, K. E. Farfar, M. Prinz, J. D’Souza, G. Kismihók, M. Stocker, S. Auer, Open
research knowledge graph: Next generation infrastructure for semantic scholarly knowledge, in:
K-CAP, ACM, 2019, pp. 243–246.

[29] H. Bast, P. Brosi, J. Kalmbach, A. Lehmann, An efficient RDF converter and SPARQL endpoint for
the complete OpenStreetMap data, in: SIGSPATIAL/GIS, ACM, 2021, pp. 536–539.

[30] L. Garcia, J. Bolleman, S. Gehant, N. Redaschi, M. Martin, A. Bateman, M. Magrane, S. Orchard,
S. Raj, S. Ahmad, E. Alpi, E. Bowler, R. Britto, B. Bursteinas, H. Bye-A-Jee, T. Dogan, P. Garmiri,
G. Georghiou, L. Gonzales, E. Hatton-Ellis, A. Ignatchenko, G. Insana, R. Ishtiaq, V. Joshi, D. Jyothi,
J. Luo, Y. Lussi, A. MacDougall, M. Mahmoudy, A. Nightingale, C. Oliveira, J. Onwubiko, V. Pod-
dar, S. Pundir, G. Qi, A. Rifaioglu, D. Rice, R. Saidi, E. Speretta, E. Turner, N. Tyagi, P. Vasudev,
V. Volynkin, K. Warner, X. Watkins, R. Zaru, H. Zellner, A. Bridge, L. Breuza, E. Coudert, D. Lieber-
herr, I. Pedruzzi, S. Poux, M. Pruess, L. Aimo, G. Argoud-Puy, A. Auchincloss, K. Axelsen, P. Bansal,
D. Baratin, T. Batista Neto, M.-C. Blatter, E. Boutet, C. Casals-Casas, B. Cuche, E. De Castro,
A. Estreicher, L. Famiglietti, M. Feuermann, E. Gasteiger, V. Gerritsen, A. Gos, N. Gruaz, U. Hinz,
C. Hulo, N. Hyka-Nouspikel, F. Jungo, A. Kerhornou, P. Lemercier, T. Lombardot, P. Masson,
A. Morgat, S. Pilbout, M. Pozzato, C. Rivoire, C. Sigrist, S. Sundaram, C. Wu, C. Arighi, H. Huang,
P. McGarvey, D. Natale, L. Arminski, C. Chen, Y. Chen, J. Garavelli, K. Laiho, K. Ross, C. R.
Vinayaka, Q. Wang, Y. Wang, L.-S. Yeh, J. Zhang, U. Consortium, FAIR adoption, assessment and
challenges at UniProt, Scientific Data 6 (2019) 175. URL: https://doi.org/10.1038/s41597-019-0180-9.
doi:10.1038/s41597-019-0180-9.

[31] D. Banerjee, S. Awale, R. Usbeck, C. Biemann, DBLP-QuAD: A question answering dataset over
the DBLP scholarly knowledge graph, in: BIR@ECIR, volume 3617 of CEUR Workshop Proceedings,
CEUR-WS.org, 2023, pp. 37–51.

https://journals.sagepub.com/doi/abs/10.3233/SW-233471
http://dx.doi.org/10.3233/SW-233471
http://dx.doi.org/10.3233/SW-233471
http://arxiv.org/abs/https://journals.sagepub.com/doi/pdf/10.3233/SW-233471
https://doi.org/10.1038/s41597-019-0180-9
http://dx.doi.org/10.1038/s41597-019-0180-9

	1 Introduction
	2 Related Work
	3 System
	3.1 GRASP Agent
	3.2 Search indices
	3.3 Configuration

	4 Additional Evaluations
	5 Conclusion

