
REFEREED PAPER

Large-Scale Generation of Transit Maps from OpenStreetMap Data
Patrick Brosi and Hannah Bast

Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany

ABSTRACT
We investigate the automatic generation of transit map overlays (either geographically correct
or schematic) for the entire planet from OpenStreetMap (OSM) data. To achieve this, we �rst
extract relevant transit line geometries (together with their line name, and, if present,
colour) from OSM using SPARQL queries against an RDF version of the OSM data. The
queries are run against our SPARQL engine QLever. In the second step, we build a global
line network graph where every edge is labelled with the lines travelling through it. The
components of this network graph are then rendered as a transit map using tools and
methods developed in previous work. Final maps are delivered as vector tiles to an
interactive web map, from which individual network graphs (in a GeoJSON format proposed
in this work) can be downloaded for research purposes. The vector tiles are also freely
available. We brie�y describe the methods used in each pipeline step, evaluate the speed
and quality of our approach and discuss possible shortcomings.

ARTICLE HISTORY
Received 29 April 2023
Accepted 27 February 2024

KEYWORDS
Metro map drawing; transit
maps; automated map
generation; OpenStreetMap
data; tiled maps; map design

Introduction

Since the days of Harry Beck, transit maps have mostly been created manually by professional map designers
(Garland 1994; Wu et al. 2020). The primary focus was on static maps, either distributed in print or
electronically. These maps are typically schematic, and the classic octilinear design (network segment
orientations are multiples of 45�) is still prevalent. In the late 1990s, the graph drawing community started to
investigate the problem of drawing such maps automatically. The following questions were investigated: (1)
How can graphs be drawn in an octilinear fashion? (2) Which hard criteria should a transit map ful�l? (3)
Which soft criteria should be optimized? Several methods have since been proposed (see below). A set of soft
and hard criteria, �rst described by Nöllenburg (2005), has since been generally accepted. The important sub-
problem of �nding an optimal line ordering of lines travelling through network segments has also been
identi�ed very early by Benkert et al. (2006).

The methods presented in the literature so far typically assume a network graph G = (V , E), embedded in R2,
as input. V is a set of stations, E is a set of network segments, and each e [E is labelled with a set of lines L(e)
travelling through it. Evaluation is done on a hand-picked set of networks, although a set of standard networks
has emerged over the years. Neither the input nor the output format are well-de�ned, and only a single static
network map is rendered. Several open practical problems remain:

(1) Obtaining network data It remains unclear how a clean input graph G can be generated from noisy, real-
world input data.

(2) Comparability Because no standard input and output formats exist, it is still hard to consistently compare
di�erent approaches.

(3) Usability Static rendered images are hard to explore, especially for large maps.
(4) Scalability It is unclear whether existing approaches scale to larger networks.

In this work, we aim to tackle these problems. We describe a pipeline to render (schematic) transit maps for the
entire world. Using tools developed in previous work, we describe how network data can be obtained from
OpenStreetMap (OSM) and demonstrate the scalability of our existing transit map rendering suite LOOM1.
We extend LOOM to be able to render vector tiles and o�er a web map2 of our results. Our web application

CONTACT Patrick Brosi brosi@cs.uni-freiburg.de
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article
has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

THE CARTOGRAPHIC JOURNAL
https://doi.org/10.1080/00087041.2024.2325761

can also be used to download network graphs for individual components. As a data serialization format for
network graphs, we propose GeoJSON (Butler et al. 2016) (see below).

Our primary goal was not to produce perfect maps, but to demonstrate that a fully automated generation of
transit maps on a global scale is possible with the techniques described in this work, and to establish a pipeline and
an interchange format that might allow researchers to replace individual components with novel approaches.
With this in mind, we consider the following our main contributions:

. We describe a pipeline to render global transit maps from OSM data. Previous work only considered individual
steps of this process on manually selected networks which were curated by hand or generated from schedule
data. The method for �nding optimal line orderings has been previously published (Bast et al. 2018, 2019), but
also with a focus on manually selected networks. The method for map schematization has also been previously
published (Bast et al. 2020, 2021).

. We present a web application o�ering transit maps for the entire planet.

. The vector tiles produced in this web application are freely available3.

. We propose a GeoJSON-based format for exchanging public transit line graphs. All line graphs extracted from
OSM can be downloaded from our web app.

. We evaluate the performance and scalability of our approach and discuss quality shortcomings using selected
examples from our map.

. All of our tools are available as open source software4.

Throughout this work, we call a map of a public transit network a transit map. A transit map may either be
schematic or geographically correct. The input network graph G = (V , E) is called the line graph. Each edge e [E
is labelled with the set L(e) of lines using the edge, as well as a polyline P(e) describing the geographic course of the
edge. For greater �exibility, we allow non-station nodes and maintain a set S # V of station nodes. A label
function s(v) labels a station node with its name.

Our full pipeline consists of the following steps: (1) We �rst obtain a line graph G from OSM data using a
SPARQL query on an RDF database. (2) We then extract a so-called free linegraph, without overlapping
segments. A free line graph is a line graph in which each intersection or stop of the transit network is (within
a threshold) merged into a single node, and in which each segment has enough space around it to later render
all lines passing through it without overlap. (3) For better readability, we �nd optimal permutations of the
lines on each segment, minimizing the weighted number of line crossings and line separations. (4) Optionally,
the line graphs are then schematized, using an octilinear, geo-octilinear (approximated geographical courses),
or orthoradial layout. (5) We render the maps as vector tiles, which can be easily included in web maps.
Network segments are rendered by �rst freeing the area around nodes, and then rendering each line on each
segment o�set to the segment’s centre line. The freed node areas are then reconstructed with Bézier curves
(we call these line connections). Then the station markers are rendered.

Related Work

Map Construction

Our line graph construction method described below is strongly related to existing work on map construction.
In the latter case, the goal is to construct a road network (where are the intersections, where are the roads) from
a collection of strongly overlapping vehicle GPS traces. In our case, we have a collection of overlapping
geographical transit vehicle paths from which we want to construct the underlying topological transit
network (where are the intersections, where do lines branch, where are the stations, where are network
segments and which lines travel on them). Existing map construction methods may be classi�ed into point
clustering, intersection linking, and incremental construction methods (Ahmed et al. 2015). Point clustering
methods operate directly on the GPS sample points. These are �rst clustered (using e.g. k-means clustering
based on the geographic distance) (Biagioni and Eriksson 2012). The clusters are then connected based on
the original GPS input traces. Such methods have previously been investigated by Edelkamp and Schrödl
(2003), Schrödl et al. (2004), Davies et al. (2006), and Biagioni and Eriksson (2012). Instead of clustering all
input points, intersection linking �rst reconstructs the network intersections and then connects these
intersections, again based on the original GPS traces. Such methods have been investigated by Karagiorgou
and Pfoser (2012), and Xie et al. (2017). Incremental techniques start with an empty map and insert GPS
traces iteratively. The basic idea is to merge neighbouring sample points under a threshold distance during
this process. A method based on dense input trace sampling was �rst described by Rogers et al. (1999). A

2 P. BROSI AND H. BAST

similar and re�ned method was later described by Cao and Krumm (2009). Instead of simply merging nearby
sample points, the currently inserted trace may also �rst be (partially) map-matched to the existing map
(Ahmed and Wenk 2012). The method used to construct a free line graph, �rst described by Brosi (2022),
can be considered an incremental construction technique. It does not use the map-matching described by
Ahmed and Wenk (2012) but uses the greedy approach of selecting the nearest sample point as a merge
candidate.

Automated Metro Map Drawing

Our work is also strongly related to previous work on automated metro map drawing, in particular to the sub-
problems of �nding optimal orderings of the lines traversing through network segments, and the drawing of
schematic maps. For a comprehensive recent survey on automated metro map drawing, we refer to Wu et al.
(2020).

Our method for the line-ordering optimization problem is based on previous work on the MLCM (metro
line crossing minimization) problem, �rst introduced by Benkert et al. (2006). In this original formulation,
line crossings were only allowed along network segments (see below for details). Bekos et al. (2007)
described a polynomial algorithm for a special case and proved the NP-hardness of another variant of
MLCM. Other special-case algorithms for MLCM and variants were later described by Asquith et al.
(2008), Nöllenburg (2009), and Argyriou et al. (2010). In 2013, the NP-hardness of the raw MLCM
problem was proven (Fink and Pupyrev 2013). The proof can be modi�ed to also work for MLNCM
(Brosi 2022).

In contrast to previous work, our method only allows line crossings at nodes. In this form, it was �rst
described by Bast et al. (2018) and later re�ned (Bast et al., 2019). The problem was called the metro line
node crossing minimization problem (MLNCM), and a weighted variant (MLNCM-W) was also
introduced. In MLNCM-W, they may only cross at nodes, but there may be non-station nodes. Bast et al.
(2018) also described a problem variant which additionally punishes line separations (MLNCM-WS).
Algorithms using a similar idea as our greedy search with lookahead were described by Groeneveld (1989)
and by Pupyrev et al. (2016).

Regarding the automated generation of schematic maps, early methods have been described for the road-
network case by Elroi (1988a), Elroi (1988b), Avelar and Müller (2000), Ware et al. (2006), Anand et al.,
(2007), and Li and Dong (2010) or for single polylines by Neyer (1999). Schematic transit maps were �rst
studied by Hong et al. (2004), Stott and Rodgers (2004), and Hong et al. (2006). In this con�guration, the
problem is usually called metro map drawing. An approach based on �nding octilinear embeddings using an
ILP was described in (Nöllenburg 2005). There, the set of soft and hard constraints typically used in metro
map drawing methods was introduced. Several follow-up works built on this method (Nöllenburg and Wol�
2011; Milea et al. 2011; Wu et al., 2012). Our own method was �rst described in Bast et al. (2020), and later
re�ned in Bast et al. (2021). It also builds on the soft and hard constraints described by Nöllenburg (2005)
and is based on �nding an optimal image of an input graph in a grid graph. Batik et al. (2022) extended this
method to work with arbitrary template graphs. Orthoradial layouts have also been investigated by Barth et al.
(2017), Niedermann and Rutter (2020), and Bast et al. (2021).

Existing Transit Map Projects

We are not aware of any previous research work on providing transit maps covering the entire world. There are,
however, existing global transit layers. Both HERE Maps and Google Maps o�er such layers as map overlays,
although with an often disappointing quality (see Figure 1). These layers also do not o�er schematic transit
maps, but can only show geographically correct line courses. Existing global public transportation map tiles
for OpenStreetMap (e.g. OpenRailwayMap5 or TransportLayer6) focus on the physical track layout and do not
o�er a view in the style of a classic transit map.

Some projects exist that aim to provide metro maps under open licenses or provide software to achieve this.
For example, Open Metro Maps7 o�ers a map editor and import scripts for OpenStreetMap data and GTFS. It
also strives to develop an interchange format for rendered metro maps8. However, the maps still have to be
edited mostly manually. The project also appears to be no longer under active development. Another project,
metrolinemap.com9 o�ers a world-wide collection of manually selected metro-maps. The maps are manually
created coloured overlays of the geographical line courses. No automatic bundling of overlapping lines,
optimization of line orderings, or schematization is done.

THE CARTOGRAPHIC JOURNAL 3

Figure 1. The tram network of Zurich on the transit overlay of HERE Maps (top), on Google Maps (middle), and on our geographically correct map rendered
from raw OpenStreetMap data (bottom).

4 P. BROSI AND H. BAST

OpenStreetMap RDF Data

We extract the line graphs from OpenStreetMap data cast to the Resource Description Framework (RDF). The
RDF models data as subject-predicate-object triples, or, equivalently, as a directed labelled multigraph (often
called a knowledge graph), where each node models an entity (either a subject or an object), and each directed
edge models a predicate relationship between two entities. The edge labels are also often called relations. For
more details on how to cast OSM data to RDF, and how RDF data can be queried, see below. The RDF
dumps used in this work were generated by osm2rdf 10, a tool developed by us in previous work (Bast et al.
2021). An alternative tool for generating RDF data from OSM is Sophox11. Stadler et al. (2012) also describe a
tool to generate RDF data from OSM. The general problem of building RDF triples from any spatial data
source has been investigated by Kyzirakos et al. (2018) and Patroumpas et al. (2019). To query the OSM RDF
data, we use the QLever12 SPARQL engine (Bast and Buchhold 2017). QLever provides e�cient query
processing also on large knowledge graphs, e�cient context-sensitive autocompletion (Bast et al. 2022), and a
GUI to display results on a map. The latter also includes a GeoJSON download functionality. We use these
GeoJSON exports as input for our rendering pipeline.

Obtaining Network Data

Our pipeline requires the physical transportation network as GeoJSON data. After a quick introduction on how
public transit networks are modelled in OSM, this section describes how such a GeoJSON �le can be obtained
with a single SPARQL query.

Public Transit Networks in OpenStreetMap

OSM data consists of nodes (point-like objects), ways (sorted lists of nodes modeling polylines and polygons), and
relations (groups of other objects). Each type of object can have arbitrary key-value pairs. To maintain
consistency, these key-value pairs are described in a comprehensive Wiki13. Public transit networks are
modelled in OSM as route=* relations, which group all ways and nodes associated with a single transit line.
Possible values for the route attribute are for example bus, tram, subway, or light_rail. These
relations are usually out�tted with a ref=* value holding the line’s short name and a colour=* value
giving the line’s colour. The route=* relations may also contain the stop nodes served by the respective line,
or even the stop platforms, although we ignore the latter. Figure 2 gives an example.

Querying OpenStreetMap

We require only a small subset of the OSM data which describes public transit. There are three established ways to
�lter OSM data (Bast et al. 2021): (1) Using custom code to parse and �lter raw OSM dump �les. (2) Using tools to

Figure 2. A route=tram relation in OSM (blue) for tram line 3 (direction ‘Munzinger Straße’) in Freiburg, Germany, with its tags (simple key/value pairs).
Relations in OSM group multiple spatial objects, in this case, the tracks the line travels on, the stop points, and a platform, which can again all be tagged.
We only show the tags relevant for this work. The relation itself is for example tagged with the line label (ref=) and its colour (colour=). The stop
position is tagged with the station name (name=). We ignore platform objects in this work.

THE CARTOGRAPHIC JOURNAL 5

�lter raw OSM dump �les (e.g. osm�lter or osmconvert). (3) Loading the data into a database management system
(DBMS) to query it (e.g. a generic DBMS like PostgreSQL or OSM-speci�c systems like OverpassAPI).

As described above, our pipeline uses SPARQL queries on an RDF dump of the entire OSM data, generated by
our tool osm2rdf .

The standard query language for RDF data is SPARQL. In its basic form, a SPARQL query speci�es a graph
pattern, which can be seen as a small knowledge graph template, where some of the nodes and edges are
replaced by variables. The goal of a SPARQL engine is then to �nd all subgraphs matching that template, and
for each match return the values matching the variables. Figure 3 shows a SPARQL query to retrieve the OSM
ways of all tram networks, together with all station/stop nodes marked as serving trams. A full list of queries
used in this work can be found online in our evaluation setup14. This query is then run against the SPARQL
engine QLever, loaded with the complete OSM RDF data15. Using the QLever map UI, we then download the
query result as GeoJSON data.

Network Topology Extraction and Interchange Format

The data extracted from OSM describes the physical layout of lines in a transportation network. As seen in
Figure 4, such a network is not suited for rendering a transit map. Because each line has its own geometry,
and because most lines run in two directions on di�erent tracks or di�erent sides of the road, lines will
overlap in the �nal map. Additionally, stations are usually modelled as many individual stop positions in
OSM, which is not how stations are usually presented in a transit map. This section describes how we
transform this network data into a clean, overlap-free line graph representing the topological network, called
the free line graph. The general process is shown in Figure 5. Each edge should be labelled with the lines
travelling through it and should leave enough space on the left and right for rendering these lines.
Additionally, similar stations should be aggregated.

Our general approach is as follows: �rst, we build a support graph in which edges within a distance of d̂ are
merged. This step uses a tailored map-construction approach and ignores station nodes. Second, we infer line
turn restriction. This step is important to correctly render intersection nodes where one or more lines branch
into multiple network segments. Last, we cluster station nodes based on their name and distance, and insert a
single cluster node at the most �tting position in the support graph.

Support Graph Construction

The steps of our approach are shown in Figure 6. We start with an initially empty support line graph H0 and an
input line graph G. The edges of G are sorted incrementally by their length, yielding an edge list e1, . . ., en. The
polyline P(ei) of an ei is then densely sampled using a sampling length l (we used l = 5 m). This yields a list p1. . .pl
of coordinates. This list of coordinates is then used to insert ei into Hi�1, yielding the intermediate support graph
Hi. For each sample point pk, the nearest node v in H0 within a distance threshold d̂ is retrieved from a geospatial
index based on an R-Tree. The position of v is then moved to the average of the previous position and pk. If no
node v within d̂ is found, a new node vk at pk is inserted. Otherwise, we set vk = v. Then, if k > 1, we add an edge

Figure 3. A SPARQL query to retrieve the tram networks on earth. Answering this query with QLever took under 1 second.

6 P. BROSI AND H. BAST

f = {vk�1, vk} to H0 and set L(f) = L(ei). If such an edge f was already present, we set L(f) = L(f) < L(ei). To
avoid sub-sampling the geometry of an edge by always merging pk with vk�1, we maintain a blocking set B of
the last d̂/l inserted nodes for ei. If all n edges have been inserted, we contract degree 2 nodes in Hn (if the
adjacent edges have matching lines).

Repeated Construction Until Convergence
Because we insert the edges e1, . . ., en iteratively, we may miss some merge opportunities. To mitigate this, we
apply the described procedure repeatedly in rounds, using the �nal Hn after each round as the input for the
next round. We stop as soon as the edge length gap |1 � L�/L| is smaller than 0.2%. Here L =

�
e[E len(P(e))

is the sum of all input edge polyline lengths at the beginning of a round, and L� is the value of that sum at the
end of the round. The threshold of 0.2% was empirically determined via experiments on six datasets of bus,
tram and light rail networks, which included a manual inspection of the map quality (in particular the
number of artefacts remaining). For lower thresholds, we did not observe any noticeable change in the map
quality.

Artefacts, Line Creep, and Intersection Smoothing
If an edge e = {u, v} in Hn has a length below the sampling rate l, and if it is shorter than any adjacent or
surrounding edge, it will be reproduced exactly during any subsequent support graph construction. As e
appears in the sorted edge list before any surrounding edge, node u will yield a new node at exactly the same
position, and node v will not be merged with u, as u is in the blocking list B of e. To avoid such artefacts, we
contract such edges after each iteration.

Figure 4. Left: The tram lines of Freiburg, Germany, as extracted from OpenStreetMap (OSM), with the city centre enlarged. Top right: A transit map
rendered from this raw data is not very informative (overlapping lines are hidden, and stops are rendered multiple times). Bottom right: The transit
map produced by our pipeline.

Figure 5. Left: An input line graph with many overlapping edges and station nodes. Middle: Overlap-free line graph. Overlapping segments have been
merged into single edges. A node u� was added where lines {A, B} and {C, D} branch. Right: A transit map rendered from this line graph using our pipeline.

THE CARTOGRAPHIC JOURNAL 7

Another problem is that two input edges e and f that meet at an obtuse angle will be interlaced (see Figure 7 for
an example). This may lead to a new edge h between the original e and f with L(h) = L(e) < L(f). As the
reconstructed edges e and f will again meet h at an obtuse angle, the segment containing the lines of both e
and f will grow with each iteration, until the lines on the original edges e and f are completely merged into a
single segment. We call this line creep. To avoid it, we extend our blocking set B. Let p1 be the �rst sampling
point of an edge ei to be inserted into Hi�1, and pl be its last sampling point. Given a candidate node v (at
position pv) for some sampling coordinate pk of ei, we add v to B if a • dist(pk, p1) � dist(pk, pv) or
a • dist(pk, pl) � dist(pk, pv). That is, if pk is – within a factor of � – nearer to the �rst or last sampling node
of e than to pv, we block v. We choose a = sin (p/4): assuming that p1, pk and pv form a right triangle with
the hypotenuse p1, pk

������
, then v [B if pk, p1

������
and pk, pv

������
meet at an angle greater than or equal 45�.

Edge geometries at large intersections will also often have visually unpleasing zig-zag patterns (Figure 8). To
avoid this, we iterate over each node v in the �nal support graph and crop the polyline of each adjacent edge at a
distance of d̂ to v. Node v is then moved to the average position pavg of all resulting adjacent edge polyline
endpoints. The new pavg is then reconnected to each of the polylines.

Inferring Line Turn Restrictions

So far, we have assumed that all lines follow simple paths. This is not always the case, and Figure 9 (a transit map
of the so-called Chicago loop) gives three examples. In the maps in the middle and on the right, all lines except the
green one have a node, where more than two segments of that line are connected and this correctly models the
real course of each of these lines (which indeed each goes in a loop). In the map on the left, there are two
additional such ‘branching’ nodes for the red line and the pink line, yet these are not correct, but an artefact
of our construction of the support graph. In road networks, a connection between networks segments that
exists but should not be used in route planning is called a turn restriction, and we will also use that term here.

Consider two edges e and f connected at a node u in the support graph H constructed thus far. For each line l
running over these edges, we want to check whether they are indeed connected at this point in the original input
graph G. However, that is not straightforward because the input line graph G contains many edges (all with
potentially slightly di�erent courses) that were merged to form e and f in the support graph H. See Figure 10,
which shows both the edges of the support graph and of the input line graph. To solve this, we track the
merged original edges through the construction process of the support graph. For each edge e in the support
graph H, we then have a set M(e) with the original edges in G that were merged into e.

We cut each edge in H into three parts of equal length and add two handle nodes at the cutting points. In Figure
10, the two handle nodes relevant for determining which lines on e and f should be connected or not are marked �
and �. We then project the handle node position onto the edges from the original input graph. In Figure 10, for
the two handle nodes � and � from the support graph H, this yields sets of handle nodes A and B in the original
input graph G.

Figure 6. Incremental support graph construction. (1) An edge e1 that is about to be inserted into the support graph H j
i�1. (2) e1 is densely sampled, and

pairs of sample nodes and nearby graph nodes are identi�ed. (3) These pairs are contracted, resulting in a graph H j
i . (4) All remaining nodes of degree 2 are

contracted as well.

Figure 7. Line creep during our map construction process. In the example, edge e with L(e) = {A} meets a part of Hi that was sampled from an edge f with
L(f) = {B} at an obtuse angle. The insertion of the (densely sampled) e might merge sample nodes in such a way that a small edge segment is created that
shares the original lines of e and f. We mitigate this by preventing a merge with existing nodes if a previously inserted node of e is nearer by a factor of at
least �.

8 P. BROSI AND H. BAST

For each line l [L(e) > L(f), we then compute the cost c(l) of the (undirected) shortest path on the input
graph G between A and B, where we only allow edges to be used that belong to line l16. We compare c(l) to
the length c of the shortest path between � and � in the support graph H. We draw a connection for line l
between e and f in the �nal transit map if and only if |c � c(l)| � t, for a threshold parameter t. For all our
transit maps, we set t = 500 m.

Station Insertion

To re-insert stations into our support graph H, we �rst group the input stops S using a straightforward approach.
Two stops s1 and s2 belong to the same cluster if they are part of the same input graph component, and have
exactly matching string labels.

After clustering, we retrieve for each cluster A the set O =
�

s[A adj(s) of all original edges adjacent to any
station in a. For each cluster A, we calculate the station centroid c and retrieve each edge and each node from
H within a threshold distance to c. The candidate edges and nodes are then ranked based on the number of
merged original edges on the edge itself (for edge candidates) or on all adjacent edges (for node candidates)
shared with A. We say that a candidate serves these original edges. The stop is then inserted at the candidate
of the highest score. In some cases, the candidate position does not serve all original edges in O. We then
continue with the next candidate that serves at least one of the remaining edges, and add an additional station
there. This process continues until all edges O have been served.

Line Graph GeoJSON Format

To share data between individual steps of or pipeline, and to also enable a consistent evaluation of future research
methods in metro map drawing, we propose a simple GeoJSON-based �le format for free line graphs. Edges are

Figure 8. Left: The green input graph produced unsteady edges in the constructed free line graph. We crop the adjacent edge polylines at intersection
nodes at a distance d̂ and then connect them again (right).

Figure 9. Left: Chicago loop without line turn restrictions. At large intersections (marked red), matching lines in adjacent segments are connected,
although in reality there is no connection. Middle: Same map, with line turn restrictions which prohibit these connections. Right: Same map, but with
unordered lines.

THE CARTOGRAPHIC JOURNAL 9

represented as LineString features, and nodes as Point features. LineStrings and Points form a
graph via node ID attributes.

In particular, we propose the Point and LineString attributes described in Table 1. Each point has a
node ID and can optionally hold a station_label and a non-unique station_id, used to group
multiple station nodes. Each LineString can hold a list of transit lines, described by an ID, as well as
an optional color and a label. Lines can be globally de�ned on the FeatureCollection level, and
may be referenced by their ID in a LineString Alternatively, they can be de�ned directly in the
LineString. Color and label of lines with the same ID can then be overwritten per edge. Lines may
also hold a node ID which describes the line’s direction on this edge, which essentially models a
directed multi-graph. If no such direction node ID is given, the line travels in both directions. Points
may list lines not extending from adjacent node node_from to adjacent node node_to in the
excluded_conn attribute.

This format can be readily inspected using standard GIS tools. It can also be easily extended by additional
attributes, e.g. by providing more style options to lines using CSS rules. As mentioned above, GeoJSON line
graph �les for individual networks can be download from our web GUI.

Figure 10. Illustration of the procedure to determine whether a line l that runs over edges e and f should be connected in the �nal transit map. Both the
support graph H (black) and the original input graph G (colored) are shown. The handle nodes in H relevant for the connections between e and f are
marked � and �. The corresponding sets of handle nodes in G are marked A and B. For example, for the red line A, we compare the cost of the
shortest path between � and � in H (which is relatively short) with the cost of the shortest path between A and B in G using only the red edges
(which is relatively long because the two lines are not actually connected around u). For line A, we would therefore infer that there is no connection
between e and f for that line (a ‘turn restriction’).

Table 1. Attributes of our proposed line graph GeoJSON format.

10 P. BROSI AND H. BAST

Line-Ordering Optimization

As mentioned above, we produce our �nal map by rendering all lines on a network that share the same segment of
the network next to each other, with a distinct o�set for each line. The o�sets correspond to an ordering of the
lines and which ordering is chosen is crucial for the readability of the �nal map. Figure 9 gives (on the right) an
example of a transit map with a suboptimal line ordering. This problem has been identi�ed early in the context of
metro map drawing. In its original formulation, as the Metro Line Crossing Minimization (MLCM) problem, the
number of line crossings is minimized, and line crossings are only allowed on edges, not on nodes (Bekos et al.
2007). Figure 11 provides an example for this on the left. The authors’ intuition behind this was that crossings
should not be hidden behind station nodes. However, with crossings occurring only along edges, it remains
unspeci�ed where exactly these crossings should be rendered in the �nal transit map (note that edge
geometries can be long). Additionally, real-world transit maps often hide crossings behind large station
markers or place crossings at non-station nodes. For these two reasons, we only allow crossings at nodes.
Figure 11 provides an example for this on the right.

Weighted Minimization of Line Crossings and Separations At Nodes

A variation of MLCM which only allows lines crossings at nodes, then called the Metro Line Node Crossing
Minimization (MLNCM) problem, was introduced in Bast et al. (2018). For an example, see Figure 11, right.
In a weighted variant (MLNCM-W), crossings can be weighted per node and line pair. As seen in Figure 12,
only minimizing the number of crossings is also not enough to achieve visually pleasing maps. Lines that
travel next to each other through the network should do this for as long as possible. To achieve this, we
introduced the concept of also minimizing weighted line separations (Bast et al. 2018). Let e = {u, v} and
f = {v, w} be two adjacent edges, both containing lines l1 and l2 (that is, l1 [L(e) > L(f) and
l2 [L(e) > L(f)). A line separation between l1 and l2 occurs at v if l1 and l2 are placed next to each other in e,
but not in f, or vice versa. See Figure 12 for examples.

MLNCM-WS considers the following problem: given a line graph G = (V , E, L), �nd a set � containing
permutations pe for each L(e). These permutations should optimize the sum of all induced crossings and
separations, weighted by functions w||(v, l1, l2) (separation penalty per node and line pair) and w×(v, l1, l2)
(crossing penalty per node and line pair).

Figure 11. A line graph G with line orderings in the MLCM formulation (left) and our MLNCM formulation (right). Under MLCM, crossings are not allowed to
occur in nodes and must happen on edge e. Under MLNCM, crossings are only allowed at nodes.

Figure 12. All four line orderings produce four crossings (C:4). The drawing at the bottom right looks best because it also minimizes the number of line
separations (S:0).

THE CARTOGRAPHIC JOURNAL 11

Finding Optimal Line Orderings

Finding an optimal line ordering solution in the original MLCM formulation was proven to be NP-hard
by Fink and Pupyrev (2013). The problem remains NP-hard in the MLNCM and MLNCM-WS variants
(Brosi 2022). In this work, we optimize the line orderings using a combination of previously established
reduction rules, a simple greedy optimization algorithm, and a subsequent local search to polish the
solution. This heuristic has been experimentally shown to be very close to optimal on real-world instances
(Brosi 2022).

Line Graph Reduction
In previous work, we developed a set of graph transformation rules that reduce an input line graph G to its core
problem graph G� (Bast et al. 2019). These reduction rules can be applied in polynomial time. Any core problem
graph G� is still an MLNCM-WS problem instance, and any optimal line ordering solution for G� can be
transformed in polynomial time into an optimal line ordering solution G. The application of these reduction
rules typically results in a core graph G� of much lower search space size. Intuitively, the reduction rules
implicitly compute optimal partial line orderings on edges. The most basic of these transformation rules is the
contraction of degree-2 nodes adjacent to two edges with the same lines travelling through it (if a node with
cheaper crossing and separation weights is adjacent). An example of a more sophisticated transformation rule
is given in Figure 13. For details on these transformation rules, we refer to Bast et al. (2019) and Brosi (2022).

Greedy Search with Lookahead
After we have reduced the line graph to its core, we optimize the individual graph components using an informed
greedy search. This greedy search only considers line crossings and is not guaranteed to yield optimal results.

We �rst de�ne an ordering e1, . . ., en on the input edges E (we simply used the input ordering), and iterate over
the ei in this order. For such an edge ei = {u, v}, we say w.l.o.g. that u is the reference node. We now consider two
lines l1 and l2 from L(e) for which no ordering has been established yet and sort them so that their order is locally
optimal w.r.t. u. There are four cases we have to consider: (1) l1 and l2 branch at u into two edges f and g. (2) l1 and
l2 extend into the same edge f = {v, w}, and we have settled an ordering for l1 and l2 in L(f). (3) Like (2), but
without a settled ordering for l1 and l2 in L(f). (4) None of the above. In the case of (1), the circular ordering
of f and g around u implies a crossing-free ordering of l1 and l2. In the case of (2), an ordering of l1 and l2 in
L(e) which does not cause a crossing at u is induced by the ordering of l1 and l2 in L(f). In the case of (3), we
follow the common path of l1 and l2 through G in the direction of node w until we �nd a node inducing an
ordering. In the case of (4), we say that l1 and l2 are not comparable and check whether they are comparable
w.r.t. node v. If they are, we base they ordering on v. If not, we �nally conclude that they are incomparable.

These rules describe a strict weak ordering < on the lines of L(e). We sort L(ei) accordingly and continue to the
next edge until we have processed all edges.

In the unweighted MLNCM case, where all lines follow simple paths and end at degree 1 nodes, this algorithm
produces an optimal solution (Brosi 2022). For the weighted case, we simply base the ordering of two lines l1 and
l2 on an edge e1 on the adjacent node with a lower crossing cost. Although not necessarily optimal, this produced
good results in our experiments.

Figure 13. Left: Excerpt of a line graph G, where an unavoidable intersection of two line bundles {A, B} and {C} occurs over 2 nodes u and v. For simplicity,
we assume uniform crossing and separation weights. Right: G is transformed into a graph G� in which nodes u and v have been split. It is easy to see that
any optimal line ordering solution for G� can be transformed into an optimal line ordering solution for G. In some sense, the intersection between {A, B} and
{C} has been made explicit.

12 P. BROSI AND H. BAST

Local Search Using Simulated Annealing
To further re�ne the solution, we use simulated annealing. For a given line ordering solution �, let u(s) be the
target function (the sum of all weighted crossings and separations induced by �). We additionally de�ne a
neighborhood N(s) which consists of all solutions that can be constructed from � by swapping a single line
pair on some edge. A simple local search would always chose the neighbour s� with lowest u(s�) , u(s) in
each iteration. To leave local optima, we additionally use a temperature T which decreases over time. Ti is the
temperature at iteration i. We use T0 = 1,000. At each iteration i, Ti is set to T0/i, and we randomly choose a
s� from N(s). If u(s�) , u(s), s� is chosen. Otherwise, s� is chosen with probability
P(s, s�, Ti) = exp ((� u(s�) � u(s))/Ti).

Map Schematization

The pipeline described so far will produce maps in which line segments follow their geographical course17. To also
produce schematic maps, we use a technique �rst described in (Bast et al. 2020). This technique is based on
�nding optimal metro map images of an input graph G in a template grid graph G = (C, V). � was originally
restricted to regular octilinear grid graphs and was later extended to hexalinear and orthoradial settings (Bast
et al. 2021).

Each node v of G is assigned an image node V(v) [C, and each edge e of G is assigned an image path
P(e) = (c0, . . ., cn�1), ci [C. Together, they form the metro map image of G in G. To preserve the
topology, we require as hard constraints that two image paths are node-disjoint (they are allowed to share �rst
and last nodes) and that the circular edge orderings around nodes in G are preserved in their images. Note
that because � is based on a grid, we can also ensure a minimum distance between both image nodes and
image paths by adjusting the grid size. This ensures that the map density of the �nal map is not too high.

To further polish the map appearance, the following soft constraints should be optimized: (1) The node
displacement in the image should be minimized. (2) The total edge path length in the image should be
minimized. (3) The number and acuteness of bends in the image should be minimized. This is sometimes
called path monotonicity.

This section describes how optimal schematic metro map images can be computed using iterative shortest-path
calculation in an extended version of �. We also show how this technique can be used to produce schematic maps
which approximate the geographical line courses. As is typical in metro map drawing, we contract all input nodes of
degree 2 before schematization and later insert them equidistantly onto the �nal map.

Finding Optimal Metro Map Images

As shown in Figure 14, we �rst extend � by adding port nodes to each original grid node �. For each direction in
which a line might leave �, we add a port. In our example, we use an octilinear grid and thus add eight port nodes.
These port nodes are pairwise connected with each other by adding bend edges. Each port node is additionally
connected to the original node by a sink edge.

Figure 14. Extended nodes in our template octilinear grid graph. Each node has port nodes for each possible direction, sink edges connecting port nodes
and the original grid node, and edges modelling turns when passing through the original grid node.

THE CARTOGRAPHIC JOURNAL 13

Modelling Edge Weights
We now focus on �nding image nodes V(u) and V(v), as well as an image path P(e), for a single input edge
e = {u, v} using a single shortest-path computation in the extended grid graph G�. To model displacement
costs of u and v, we �rst base the sink edge weights on the distance d(v, V(v)) between v and its image node,
again weighted by a parameter wm. To minimize the total edge path length, we set the weight of each
horizontal and vertical grid edge to 1. To avoid favouring diagonal edges, and even slightly favour horizontal
and vertical lines, we set the cost of diagonal edges to 1.5. To penalize acute bend angles, we give bend edges
a weight based on the bend angle they describe.

A single bend edge modeling an acute turn might be replaced by a bend edge path consisting of edges
modeling bends of higher angle. This would compromise our penalty system. For example, in Figure 15(1),
a 45� degree bend edge is replaced by a 135� bend edge followed by a 180� bend edge. As can be seen in
Figure 15(2) and in Figure 15(3), the problem gets less severe for grid graphs with fewer allowed directions
and vanishes for grid graphs with only four allowed directions (e.g. orthoradial grids). For graphs with
eight allowed directions, let w180 = 0 � w135 � w90 � w45 be the desired penalty weights of bends of the
speci�ed angle. Then for a = w45 � w135 the following bend weights will not allow any shortcut:
w�

180 = w180 + a, w�
135 = w135 + a, w�

90 = w90 + a, w�
45 = w45 + a (Bast et al. 2020). To avoid distorting the

edge length penalty, we subtract a from each grid edge weight.

Optimization Problem
It is easy to see that the shortest path through G� connecting two original grid nodes will optimize the sum of the
used grid edges and bend penalties. It will thus produce the path that optimizes the sum of the edge weights and
weighted bends. As the sink edge weights are set to the respective displacement costs, we can also include them in
the optimization by computing the shortest path between candidatesets U # C and V # C. It is easy to see that if
U > V = � (as is the case for U = V = C), the shortest such path of 0 cost would always be a single node in
U > V . We hence forbid single node paths. However, it is then still unclear how the node displacement costs
for nodes in U > V should be modelled. An easy solution is to transform G� into a directed graph. This allows
modelling the displacement costs for U on the outgoing sink edges, and the displacement costs for V on the
incoming sink edges. In this work, however, we use an alternative technique and simply ensure that
U > V = � by constructing them from a Voronoi diagram: grid nodes closer to u are added to U, and grid
nodes closer to v are added to V.

To �nd optimal images of an entire input graph G, one last thing remains: we must also penalize edge bends
that do not occur along an image edge path, but between image paths of edges adjacent in G which share a
common line. For each pair e, f of adjacent edges at some input node v, let � be the angle at which their
image paths through � meet. We then add the cost

�
e,f [adj(v)2 wf|L(e) > L(f)| for each v [V .

Given then an input graph G and a template grid graph �, we want to �nd the image of G in � which optimizes
the following target function:

t(V, P) =
�

e[E
c(P e()) +

�

v[V
d v, V(v)()wm +

�

e,f [adj(v)2

wf L(e) > L(f)
�� ��

�

�

�

	, (1)

where c(P) is the cost of the image path P. As a template grid graph �, we used an octilinear grid graph covering
the bounding box of the input graph. The grid cell size was chosen to be the average distance between stations in
the input graph. For the orthoradial setting, we used a special orthoradial grid graph (Bast et al. 2021).

Figure 15. Extended grid nodes and possible bend edge shortcuts in the octilinear setting (1), a hexalinear setting (2), and the orthoradial setting (3).
Figure adapted from Bast et al. (2021).

14 P. BROSI AND H. BAST

Iterative Shortest Path Calculation
In Bast et al. (2020) and Bast et al. (2021), we describe Integer Linear Programs (ILPs) to produce metro map
images which optimize Equation (1). As the optimization times tend to be very large (multiple hours even for
intermediate networks like the Berlin S-Bahn network), we focus on a heuristic approach to quickly �nd
optimal metro map images in the template graph, as �rst described by Bast et al. (2020).

We �rst establish an ordering e1, . . ., e|E| on the input edges. We then iteratively search for a shortest path P(e)
through � connecting candidate sets U and V for input edge ei = {u, v}. As described above, the sink edge costs
for nodes in U and V are set to the displacement costs for u and v, respectively. The �rst node of P(e) is set as V(u),
the last node as V(v). If an image node for a node u was already established in a previous iteration, we consider
this image node settled and simply set U = {V(u)} (Figure 16). In (Brosi 2022), several possible edge orderings

Figure 16. The �rst four iterations of our approximate metro map image construction. The input line graph is depicted in blue, the metro map image in the
template grid graph is depicted in red.

Figure 17. (1) Input line graph node v with adjacent edges e, g, f. (2) Image paths P(g) and P(f) have been found. (3) To consider bend penalties between
adjacent paths, we o�set the sink edge cost with the bend penalty. To maintain the original circular edge ordering around v, we block the sink edges
already used, and the sink edge that would place P(e) between P(g) and P(f). Figure adapted from Bast et al. (2020).

THE CARTOGRAPHIC JOURNAL 15

were described and evaluated, with no clear winner. We used all methods described there and chose the metro
map image with the best objective function value.

To preserve the input graph topology, we use the following techniques: �rst, to prevent that image paths cross,
we set the cost of a grid edge in � to in�nity as soon as it is used by an image path. For non-planar template grid
graphs (e.g. an octilinear graph), we also set the cost of crossing edges to in�nity. Second, we preserve the circular
edge ordering around an input node v by setting any sink edge around V(v) which corresponds to an edge
position violating the circular input edge ordering to in�nity (Figure 17).

To prevent stalling of this greedy construction process, several heuristics are applied (Brosi 2022 provides a
detailed list). If no image is found using the approach above, we reduce the grid cell size by 10%, and try again.

Local Search and Constraint Relaxation
To give the metro map images a �nal polish, we additionally apply a local search. Given an image (V, P), we move
each image node to all of its adjacent grid nodes (if free) and re-route all adjacent image paths. Of all such node
movements, the one that yields the greatest improvement is taken. If no improvement is possible anymore, the
local search stops. Recall that we contracted all degree-2 nodes before starting the construction process. To
prevent image paths that are too short to insert all contracted nodes again (which would lead to a high map
density an compromise readability), we additionally add spring forces to each image path during the local
search phase.

To enable the local search to �x topology violations, we also employ constraint relaxation during the iterative
computation of the image paths. Instead of setting blocked edge weights to in�nity, we choose a very large �xed
value, allowing our incremental approach to produce maps with topology violations.

Approximating Geographical Line Courses

To produce schematic maps which approximate geographical line courses, we simply o�set the original grid edge
costs by the weighted quadratic distance of the grid edge to the geographical course of the currently routed input
edge.

Tiled Map Rendering

As we aim to produce transit maps covering the entire planet, rendering the map to a single raster or vector image
would be impractical. We instead opted to deliver tiled maps in this work, which is the standard way to create web
maps.

Vector Tiles

A map tile is an image covering 256 × 256 pixels of a map in a given resolution. The Tile Map Service18 (TMS)
standard de�nes how these tiles can be accessed via a URL. Tiles are accessed via a URL ending with /<z>/<x>/
<y>.<ext>, were <z> is a zoom level (usually 0–22), <x> is the tile’s x coordinate, <y> is the tile’s y
coordinate, and <ext> is the tile image format extension. If the web mercator projection is used, the globe is
covered by 2z × 2z tiles on zoom level z.

Classic web map tiles are raster images, usually PNG. To allow better map interaction (e.g. hover and click
e�ects) and to also deliver high-quality maps between zoom levels, we extended our render tool transitmap to
deliver vector tiles. We chose to use the MapBox vector tiles standard19, as it is the prevailing standard for
vector tiles and is supported by most major web map libraries. Instead of storing raw RGB pixel values, vector
tiles describe map objects (points, lines, polygons) via a small set of drawing operations (MoveTo, LineTo,
and ClosePath). These drawing operations, together with their target coordinates, are given relative to the

Figure 18. Rendering a line graph. First, lines are rendered o�set around the edge polyline. Then, node areas are freed by extended adjacent node fronts.
Afterwards, line connections in the freed node areas are reconstructed using Bézier curves.

16 P. BROSI AND H. BAST

upper left corner of the tile and are encoded in 32-bit integers. Each tile can hold several layers of objects, and each
object can have arbitrary key-value attributes. The tiles are serialized using Protocol Bu�ers20 and then served via
HTTP.

Map Rendering

Our rendering process, as outlined in Figure 18, consists of 4 steps: (1) For each e = {u, v} [E, all lines L(e) are
o�set around the centre line P(e), based on a prede�ned line width and line spacing. The resulting line bundles
span a polygon. We call the polygon side adjacent to u the node front for u. At each node, all adjacent node fronts
are moved along the original centre line of their edge until they to not overlap anymore. (3) Extending lines at
each node are connected using cubic Bézier curves. (4) Station markers are rendered over station nodes. After the
rendering process is �nished, we have a collection of open polygons representing the lines of our �nal map and
closed polygons representing the stations.

It is not obvious how the control points of the Bézier curves should be placed. Consider a line A that goes from
an edge e to an edge f via node u. Let p be the position of A on the node front Feu, and let q be the position of A on
the node front F fu. We then determine the overall direction of A at both node fronts by sampling a point 5 m
before the node front. At each node front, we then compute line segments of length |p � q| going in this
direction (Figure 19).

If the resulting line segments t fuA and teuA intersect at a point i, we average the length of segments pi and qi. Let
� be this average, and let k = 4/3(

2

	
� 1). We then add two control points p� and q� at a progression of k • d of

the extended lines, starting from p and q, respectively, and draw a cubic Bézier curve over p, p�, q�, q. If the
resulting line segments do not intersect, we add p� at a progression of k • teuA, and q� at a progression of
k • t fuA. A nice property of our chosen k is that the cubic Bézier curve approximates a circular arc if i exists
and pi and qi have the same length.

To �nally produce the vector tiles per zoom level z, we insert all rendered polygons into a spatial grid index. For
each populated cell c, we then compute the x, y coordinates of all tiles that intersect that cell on zoom level z. If a
polygon intersects the tile at x, y, we crop it to the tile’s bounding box and add it to the tile. Note that we do not
produce empty tiles.

Vector tiles only deliver raw vector graphics and come without any styling information. Figure 20 shows a map
rendered with and without styling. Styling has to be done on the client side (usually a web map). To make it easier
to quickly generate maps from the tiles produced by our tool, we output line widths and colours as attributes in
our vector tiles.

Experimental Evaluation

As mentioned above, we extended existing implementations of the methods described earlier to handle large
input graphs. Using the pipeline described in the previous sections, we generated four maps covering the
entire world for (1) all tram lines (tram), (2) all subway and light rail lines (subway), (3) all commuter rail
lines (commuter) and (4) all long-distance rail lines (long-dist). For each map, we �rst extracted the relevant
OSM data using appropriate SPARQL queries against an RDF dump of the entire OSM data. The raw input
dataset sizes are given in Table 2. We then used the LOOM tools topo, loom, octi, and transitmap to generate
tiles for a geographically accurate variant (geo), an octilinear variant (octi), an octilinear variant approximating

Figure 19. Reconstruction of line connections in freed nodes using Bézier curves.

THE CARTOGRAPHIC JOURNAL 17

geographical line course (octi-geo), and an orthoradial variant (orthorad). To make the dataset more manageable,
we broke the input graph into its distance-based components. Two nodes are in the same such component if they
are connected by a path, or if their distance is less then 10 km.

Our complete evaluation setup, including all SPARQL queries used to obtain the network data, can be found
online21. The free line graphs produced by our tool can also be downloaded (per network component) from this
web app. The tiles produced in our experiments are available for free22.

In this section, we list the running times of each individual step for each map and discuss the overall map
quality as well as shortcomings of our approach.

Performance

The running times of each individual pipeline step for our tram, subway, commuter, and long-dist maps are given
in Table 3. We used the same input data, and the same constructed topological graph for all map layouts. Note
that we generated tiles for each of the standard zoom levels. For brevity, we only list the running times for zoom
level 14 in Table 3. We used the same parameters for the free line graph construction (graph), line ordering
optimization (order) and schematization (octi) on each zoom level, so the running times were equivalent. For
the rendering part, the running times were comparable across all zoom-levels, although the running times for
very high zoom levels (. 18) tended to be higher because of the large number of tiles that had to be written.
Overall, we were able to render global tiles for all test networks, and all layouts, in under 2 hours. This
enables us to periodically update our tiles.

Particularly challenging was the memory consumption of the schematization step. Because we construct a grid
graph covering the entire input graph, it was impossible to layout the entire dataset together (because the grid
graph would have covered the entire world). Instead, we process each distance-based component separately.

The memory consumption of the free line graph extraction for long-dist was also problematic. Because our
method is based on a dense sampling of the input lines every l metres, even a single international rail line
may produce hundreds of thousands of sample points, which are all held in memory. We reduced the
maximum memory consumption to under 100 GB by setting the sample rate distance from l = 5 m to
l = 10 m for long-dist. Additionally, we created the free line graph separately for each distance-connected
component.

Map Quality

The quality of our maps can be inspected online23. Figures 21, 23, and 24 also give some examples. For an
evaluation of the approximation errors introduced by our heuristic method for optimizing the line orderings,

Figure 20. Left: Unstyled vector tiles layered above OpenStreetMap tiles. Right: Styled vector tiles.

Table 2. Dimension of our input graphs extracted from OSM and of the constructed free line graphs. |S| is the number of stations, |V| the number of nodes,
|E| the number of edges. C is the number of distance-based graph components, M the maximum number of lines per edge.

Input Graph Free Graph
|S| |V| |E| |S| |V| |E| C M

tram 181.3k 457.1k 137.9k 21.9k 23.9k 24.9k 384 18
subway 91.5k 259.7k 84.1k 15.5k 17.7 18.9 319 11
commuter 98.8k 365.3k 133.2k 4.9k 5.5k 5.6k 74 18
long-dist 90.8k 1.5M 690.2k 1.9k 2.8k 3.1k 23 171

18 P. BROSI AND H. BAST

we refer to Bast et al. (2019) and Brosi (2022), where we compared the target function values of optimal line
ordering solutions obtained via Integer Linear Programming (ILP) to our heuristic methods. For a similar
evaluation of the approximation errors introduced by our heuristic method for drawing schematic maps, we
refer to Bast et al. (2020) and Bast et al. (2021), where we fully optimized the target function given in
Equation (1) using ILP and compared both the target function values and the drawing to our heuristic
approaches. The respective ILPs are also described in these publications.

We are aware that a thorough evaluation of the aesthetic quality and usability of our maps is missing from this
work. However, this would require a detailed user study, which we consider out of scope for this article, especially
given the enormous number of maps that would have to be inspected (for the tram networks alone we created a
map covering 375 individual networks). Also note that an automatic evaluation of the map quality, which would
be more realistic here, is still an open research problem and listed as one of the challenges in the recent survey by
Wu et al. (2020). Nevertheless, we brie�y describe several problems with both our approaches in this section.

Problems with the OSM data mainly consisted of missing public transit lines, missing line colours (very often,
the network simply does not use colours), and inconsistent tagging. If colours were missing, we assigned random
colours (as in the map for Vienna in Figure 21, left). An example for inconsistent tagging can be seen in Figure 24,
left. Here, a small part of the Zurich tram network was tagged as a narrow gauge railway (instead of a tram
railway), leading to a missing segment in our tram map. Other problems included inconsistent tagging of e.g.

Table 3. Performance of each step in our pipeline, for all our test datasets and test layouts.
query trans. free schem order render total topo-errs schem-fail

tram 2.1s 13.4s 10.2m – 1.5m 31.1s 12.5m – –
-octi 38.1s 1.0m 32.0s 12.6m 2 0
-geo-octi 5.9m 1.2m 36.8s 18.2m 4 0
-orthorad 4.3m 1.2m 29.4s 16.5m 277 0

subway 1.9s 8.1s 13.5m – 8.1s 19.0s 14.1m – –
-octi 2.2m 6.1s 16.1s 16.2m 33 0
-geo-octi 5.1m 7.2s 19.1s 19.2m 8 0
-orthorad 9.1m 23.0s 26.1s 23.6m 2.5k 0

commuter 2.3s 9.7s 25.8m – 13.1s 5.0s 26.3m – –
-octi 6.1m 5.1s 3.1s 31.2m 2 0
-geo-octi 4.9m 11.2s 4.1s 31.2m 3 0
-orthorad 6.7m 18.1s 3.0s 33.1m 65 0

long-dist 8.7s 37.1s 1.6h – 3.3m 20.2s 1.7h – –
-octi 1.1m 1.7m 3.1s 1.7h 5 0
-geo-octi 1.7m 1.7m 4.1s 1.7h 0 0
-orthorad 15.3m 1.5m 21.1s 1.9h 256 0

Note: query is the answer time to the SPARQL query, trans. the transfer time of the SPARQL query, free the time to extract the free line graph, schem the
schematization time, order the line ordering optimization time, render the time required for rendering, total the sum of these times. Under topo-errs, we
give the number of topological constraint violations of the schematic map. Under schem-fail, we give the number of network components for which no
schematic drawing was found.

Figure 21. Left: Orthoradial map overlay of the Vienna tram network. Right: 171 rail lines tagged in OSM entering Zuoying station in Kaohsiung, Taiwan.

THE CARTOGRAPHIC JOURNAL 19

network types. For example, the Berlin S-Bahn network is tagged as light_rail, although it arguably is a
commuter railway.

Sometimes, the amount of data contained in OSM was excessive. For example, the Taiwan high-speed rail link
between Taipei with Kaohsiung has nearly 200 individual line relations. This resulted in the line bundle shown in
Figure 21, right.

As seen in Figure 23, some of our maps still show areas of very high density, which makes them very hard to read.
Increasing the cell size of the template grid graph would mitigate this issue. However, we noticed in our experiments
that our heuristic approach to map schematization produces an increasing amount of topological errors if the
template grid size is too large. Using integer linear programming would allow us to also �nd optimal maps in
this case, but with unrealistically high running times (we were not able to produce an optimal solution for the
Europe long-distance network in under 12 hours). A alternative approach would be to preprocess the input
graph and enlarge areas of very high density, for example by using a simple spring embedding.

Many of the problems we encountered were caused by the construction of the free line graph. In particular, the
reconstruction of the line turn restrictions described above did not always work. In Figure 24, middle, for
example, the green line does not extend from the south segment to the northeast segment. The main cause
was that we so far do not extract the direction of individual lines from OSM. During the routing step of the
line turn restriction generation, it is then possible for the shortest path to make a 180� turn, returning a false
positive. We tried to mitigate this problem by penalizing full turns, but only with limited success, as this
sometimes prevented line turns that occurred in the real world. As we remove lines which end at non-station
nodes, this sometimes resulted in lines missing from segments. We plan to fully consider line directions from
OSM in future versions of our tiles. As our maps sometimes include historical or special service lines (which
run only on special occasions or infrequently) it also seems necessary to �lter them out.

Considering the dataset size, the number of topology errors added to our schematic maps was surprisingly low
for the octilinear layouts. However, for the orthoradial setting, the number was signi�cantly higher, with over
2,500 topology errors introduced in the orthoradial subway map. Another problem with the orthoradial maps
was that, in order to avoid topology errors, routed image paths sometimes took large circular detours at the
outside of the map. This can for example be seen in the orthoradial Tokyo subway map shown in Figure 24,
right. Another problem with the schematic maps was that small edge artefacts left from the free line graph
construction were enlarged during the schematization. Here, additional cleanup rules seem to be necessary.

For network types where large distances between lines using the same network segments are possible (e.g. long-
distance rail lines entering a large station), our merge threshold was sometimes not large enough, resulting in

Figure 22. Geographically correct map overlay of the Tokyo subway network.

20 P. BROSI AND H. BAST

half-merged patterns. Also, the free line graph tends to create unsteady edge geometries at these positions.
Additional smoothing would help to produce a cleaner look.

Our maps also lack labels so far. We have implemented a labeller in our tool transitmap in previous
work, but so far it only works for the SVG output. We plan to add the labelling to the vector tiles in the near
future.

Figure 23. Octilinear map overlay of the long-distance rail network of Europe. Note that it is non-trivial to �lter OSM data for long distance rail lines. For
this map, we used lines tagged as either service=national, service=long_distance, service=high_speed, or highspeed=yes.
In many parts of Europe (e.g. Italy, Spain, or the United Kingdom), tags classifying train routes as long distance are rare.

Figure 24. Left: Topology violations and large detours in the orthoradial map of the Toyko subway network. Top right: Inconsistent tagging lead to a
missing segment in the Zurich tram network. Bottom right: Incorrectly reconstructed line turn restrictions in the Stuttgart light rail network.

THE CARTOGRAPHIC JOURNAL 21

	Abstract
	Introduction

