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ABSTRACT
We present osm2rdf, a tool for converting OpenStreetMap (OSM)
data to RDF triples, along with an efficient SPARQL endpoint and
a convenient user interface for formulating SPARQL queries on
that data. Unlike previous tools, osm2rdf retains all data provided
by OSM, including the complete object geometries. Optionally,
the tool can output explicit triples realizing the spatial relations
contains and intersects. We provide weekly updates of the data
(for the whole planet and also per continent and per country) on
https://osm2rdf.cs.uni-freiburg.de. The tool is publicly available
on GitHub. The SPARQL endpoint is realized via the open-source
SPARQL engine QLever. We extended QLever to enable the efficient
geometric filtering of a result by a given axis-parallel rectangle. The
QLever UI provides interactive context-sensitive autocompletion
that helps constructing SPARQL queries without prior knowledge
of the details of the data.
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1 INTRODUCTION
OpenStreetMap (OSM) is a collaborative mapping project, which
provides the most widely used open geo dataset in the world. There
are several established ways to query the OSM data:

1. Filter the raw files using tools like osmfilter, osmconvert, osmium,
or the libosmium library; see https://github.com/osmcode .
2. Use the Overpass API, a search engine built especially for OSM
data, with its own query language; see http://overpass-api.de .
Permission to make digital or hard copies of part or all of this work for personal or
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PREFIX ogc: <http://www.opengis.net/rdf#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#> 
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>
SELECT ?building ?name ?geometry WHERE {
  osmrel:1960203 ogc:contains ?building .
  ?building geo:hasGeometry ?geometry .
  ?building osmkey:name ?name .
  ?building osmkey:building ▏
} "apartments"

"university"
"garage"    

 

 

Figure 1: Left: Interactive SPARQL query on the complete
OSM data, converted to RDF triples using our tool osm2rdf.
The query asks for all university buildings in Neuburg (osm-
rel:1960203), a district of the city of Freiburg. The suggestion
for "university" is high up in the list of suggestions because
the district contains many university buildings. The predi-
cate ogc:contains is supported via explicit triples, see Section
4. Right: an excerpt of the query results, displayed on amap.

3. Use a relational database with spatial data support. The most
widely used setup here is PostgreSQL with the PostGIS extension
and a loading script called osm2pgsql; see https://osm2pgsql.org .

We extend this by a new tool for converting OSM data to RDF triples,
along with an efficient SPARQL endpoint and a convenient user
interface that allows incremental query construction. Different from
the tools above, this allows users to search the OSM data without
prior knowledge of an arcane query language or of the details of
the data representation. We provide evidence that query times are
comparable with or better than those of the engines mentioned
above. Very importantly, the “schema-less” RDF data model allows
easy combination with other datasets, for exampleWikidata (many
OSM objects are linked to their corresponding Wikidata entities).
Different from existing conversion tools to RDF, our tool converts
the complete OSM data (including all the geometric information),
and does so particularly efficiently. Optionally, our tool can add
spatial relations between objects as explicit triples. This enables
basic geometric queries also for SPARQL engines without explicit
GeoSPARQL support. Figure 1 shows a spatial SPARQL query in
the process of being built interactively, using our SPARQL engine
and user interface.

1.1 OSM Data and the RDF Data Model
OSM objects come in three types: nodes, which hold a single co-
ordinate, ways, which are ordered lists of nodes and may be used
to hold polygonal objects (either open, like streets, or closed, like
buildings), and relations, which may group arbitrary objects and are
also used to model polygonal areas with holes. Each OSM object
can have an arbitrary set of key-value pairs, called tags.

https://osm2rdf.cs.uni-freiburg.de
https://doi.org/10.1145/3474717.3484256
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SELECT ?building ?name ?geometry WHERE {
osmrel:1960203 osm2rdf:contains_area* ?building .
?building geo:hasGeometry ?geometry .
?building osmkey:name ?name .
?building osmkey:building "university"

}

osmrel:1960203 osm2rdf:contains_area osmway:37486222 ;
osm2rdf:contains_area osmway:26290128 ;
osmkey:name "Neuburg" .

osmway:37486222 osm2rdf:contains_area osmway:69367089 ;
osm2rdf:contains_area osmway:91332395 .

osmway:69367089 geo:hasGeometry "MULTIPOLYGON(...)"∧∧geo:wktLiteral ;
osmkey:name "Mensa Institutsviertel" ;
osmkey:building "university" .

osmway:91332395 geo:hasGeometry "MULTIPOLYGON(...)"∧∧geo:wktLiteral ;
osmkey:name "Rechenzentrum" ;
osmkey:building "university" .

Figure 2: Above: The SPARQL query from Figure 1, with
ogc:contains rewritten to osm2rdf:contains_area*, as ex-
plained in Section 4. Below: An excerpt of the RDF triples
produced by osm2rdf, which are relevant for the query. The
triples are written in Turtle syntax, using a semicolon when
the following triple has the same subject. The colors indicate
how the triples match the query. Note that osmrel:1960203
(the district of Neuburg) contains the area osmway:26290128,
but that area does not contain any university buildings.

RDF is an elegantly simple data model, where the data is repre-
sented as a set of subject-predicate-object statements, called triples.
Such data can also be considered as a directed graph (then often
called a knowledge graph), where each distinct subject or object is a
node, and each triple corresponds to an edge (from the subject to
the object, labeled with the predicate). Two common serialization
formats of RDF data are N-Triples (one triple per line, with full iden-
tifier names, called IRIs) and Turtle (a more compact format, which
allows abbreviations for repeated prefixes). The standard query
language for RDF data is SPARQL, which is closely related to the
standard database query language SQL. In fact, SPARQL queries can
be translated to equivalent SQL queries, and indeed are when using
tools like PostgreSQL. For spatial queries, there is a standardized
extension called GeoSPARQL [7]. Figure 2 gives an example for a
spatial SPARQL query, along with the RDF triples (produced by our
tool, in Turtle format) relevant for answering the query.

1.2 Related Work
The most closely related previous work to this paper is the Sophox
project; see https://sophox.org . Sophox also provides a tool for gen-
erating RDF triples from OSM data and a corresponding SPARQL
endpoint (using the Blazegraph SPARQL engine). However, tags
with non-ASCII characters in their key are discarded, and for each
way and relation, the geometric shape information is simplified to a
single centroid point. Concerning spatial queries, Sophox provides
filtering of only these centroid points by a given axis-parallel rec-
tangle. In contrast, our tool maps each key-value pair to a triple and
for each OSM object there is a dedicated triple providing the exact
geometry of the object. Our SPARQL endpoint enables filtering of
the exact geometries by a given axis-parallel rectangle, as well as
contains and intersect queries. An older system for transforming
OSM data into RDF triples is described in [8]. They plan to provide

support for spatial queries using PostGIS. In [9], the problem of
linking OSM data with knowledge graphs is investigated.

There is also work on the general problem of building RDF triples
from spatial data (not just OSM). In [5], a conceptually clean sucAh
translation from a variety of sources is described; their largest RDF
dataset has 480M triples. In [6], the focus is on points of interest
(POIs) and the integration of heterogeneous sources. In their evalua-
tion, 7.4M OSM objects are considered as well as a synthetic dataset
consisting of 119M objects. We consider our work to be orthogo-
nal to these works: while they focus on the conceptual side and
use relatively small datasets, we are interested in converting one
particular and very large dataset (OSM, over 5B triples) completely
and as efficiently as possible, and we also consider the aspect of
searching the resulting RDF data efficiently and conveniently.

Concerning existing work on querying OSM data, we already
mentioned the prevailing tools in Section 1. An alternative approach
is OSCAR [1], which provides a combination of text and spatial
search on the OSM data, based on a cell partitioning computed
from a triangulation of all OSM regions. SPARQL/SQL-like queries
are not supported and neither are geo-relations like contains.

The SPARQL engine QLever, which we use in this work, is intro-
duced in [2]. It has been developed significantly further since then;
see https://github.com/ad-freiburg/qlever . QLever’s context-aware
autocompletion feature is described and evaluated in [3]. In [4],
various SPARQL engines were tested for their GeoSPARQL capabil-
ities. Their compliance benchmark shows that (full) GeoSPARQL
support is still lacking, even in engines claiming support.

1.3 Contributions
We consider the following as our main contributions:
• We present an open-source tool osm2rdf, which converts OSM
data to RDF triples efficiently and preserving the information of
all tags and of all all geometries.

• We provide a dedicated website https://osm2rdf.cs.uni-freiburg.
de with weekly data dumps in RDF Turtle format: for the whole
planet, as well as for each continent and each country.

• We also provide on that website an efficient SPARQL endpoint
for the whole data, with support for basic spatial queries.

• We also provide a user interface for constructing SPARQL queries
on the OSM data using interactive context-sensitive autocomple-
tion and for displaying the results on a map.

• We provide a preliminary evaluation, which compares the fea-
tures and performance of our engine with Sophox, the Overpass
API, and PostgreSQL with PostGIS.

2 CONVERTING OSM DATA TO RDF TRIPLES
To convert OSM data to RDF triples, we have to consider four types
of information: (1) the object IDs; (2) the object tags, which are
string-based key-value pairs; (3) the geometric data associated with
the objects; (4) the member relationships between objects (a node
may be part of a way, anything may be part of a relation).

We use the following prefixes: osmkey: (for the predicates cor-
responding to keys), osmmeta: (for information that is implicitly
contained in the OSM data), osmnode:, osmrel:, osmway: (for infor-
mation pertaining to one of these object types), and osm: (for other
information). For each OSM object, we compose a unique IRI by

https://sophox.org
https://github.com/ad-freiburg/qlever
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Table 1: The dimensions of our testing datasets.

FR BW DE EU P
nodes 12.42M 46.71M 337.22M 2.72 B 6.50 B
ways 1.82M 7.72M 55.03M 326.43M 718.51M
relations 31.60 K 101.67 K 677.84 K 5.51M 8.38M
areas 1.24M 5.43M 39.62M 234.80M 499.37M

Table 2: The number of triples generated by osm2rdf for our
testing datasets, and the time needed to generate them.

FR BW DE EU P
triples 22.05M 89.51M 598.73M 3.38B 4.67B
time 19.80s 1.38min 10.21min 1.08h 2.32h

concatenating the suitable prefix and the OSM ID of the object. For
example, the Eiffel tower in Paris becomes osmnode:8690332214,
La Rambla in Barcelona becomes osmway:126336685.

2.1 Tags and Member Relationships
For each key-value pair of each OSM object, a triple is generated:
the subject is the IRI of the OSM object, the predicate is the concate-
nation of osmkey: and a grammar-conform escaping of the key, and
the object is the value as an RDF string literal. Since key and value
can be arbitrary strings, care has to be taken to obtain valid IRIs.
Our tool also considers several special cases in the OSM data. For
example, semicolons are sometimes used to define a set of values
and osm2rdf offers the option to produce multiple triples for such
values for given keys. For explicit relations between OSM objects
in the OSM data, we use the special osmrel:member predicate.

2.2 Spatial Data
For each OSM object with a geometry, we add a triple with the
IRI of the object as subject, the predicate geo:hasGeometry, and
the geometry as object. The object is a string literal written in the
Well-Known Text format (WKT), a standard way to serialize ge-
ometry objects. This task is nontrivial because in the OSM data,
only nodes have explicit point geometries, while ways are repre-
sented via sequences of node IDs. A way is interpreted as an open
or closed polygon, depending on certain conditions1. We also con-
sider (multi-)polygons described by OSM relations. We optionally
add a triple connecting the OSM object to its bounding box via the
osmmeta:envelope predicate. This allows for the efficient filtering
of a result by a given axis-parallel rectangle; see Section 4.

2.3 Performance and Weekly Updates
On https://osm2rdf.cs.uni-freiburg.de, we provide weekly updated
data dumps in RDF Turtle format, for the whole planet, as well as
for each continent and each country. To get a feeling for the size
of the raw data, Table 1 provides the number of OSM objects (by
type) in the following five regions: the city of Freiburg (FR), the
state of Baden-Württemberg (BW), Germany (DE), Europe (EU),
1https://wiki.openstreetmap.org/wiki/Area

and the entire planet (P). For each of these datasets, Table 2 provides
the number of triples and the processing time required by osm2rdf,
without the spatial triples described in Section 4. Processing times
weremeasured on amachinewith anAMDRyzen 7 3700X processor,
128 GB of RAM, and a 1.7 TB SSD. Our tool is carefully engineered
in all its components and uses multi-threading where useful. The
conversion of the OSM data of the whole planet to almost 5 billion
triples takes only about 2.5 hours.

3 SPARQL ENDPOINT AND UI VIA QLEVER
On https://osm2rdf.cs.uni-freiburg.de, we also provide a SPARQL
endpoint via the QLever SPARQL engine [2]. QLever maps each
entity and literal from the given RDF data to a unique integer ID.
The query is then processed entirely in this ID space. QLever always
materializes all intermediate results during query processing. This
is different from other SPARQL engines, where results are typically
produced one element at a time. QLever is generally much faster
for difficult queries with large (intermediate) results.

QLever also provides efficient support for context-sensitive au-
tocompletion, as described in [3]. At each point in the query, an
autocompletion query is launched (itself a SPARQL query, to the
same dataset) that provides suggestion for subjects, predicates, or
objects (depending on the position in the query). The suggestions
are always meaningful continuations of the query typed so far, in
the sense that they lead to a query with a non-empty result. In the
example query of Figure 1, the suggested objects are only building
types, and more than that, only building types that actually occur
in the region specified by the preceding part of the query.

4 SUPPORT FOR SPATIAL QUERIES
We have extended QLever by a FILTER operation that takes a vari-
able, say ?x, that matches an arbitrary set of entities with a geometry,
and an axis-parallel rectangle R. The operation is realized by adding
the triple ?x osmmeta:envelope ?x_env (see Section 2.2), and then
checking for each binding of ?x_env whether the geometry lies in
R. Through a compact and clever representation of the bounding
boxes, this approach can filter around 50M entities per second.

To enable ogc:contains queries (as shown in Figures 1 and 2)
even on SPARQL engines without explicit support for such queries,
osm2rdf has an option to generate explicit triples for this rela-
tion. We distinguish between areas (all ways and relations in the
OSM data that can be represented as a multi-polygon, that is, a
closed polygon or a set of such polygons) and all other objects.
We compute two predicates: osm2rdf:contains_area (whether an
area is contained in another area, excluding containments which
follow by transitivity) and osm2rdf:contains_nonarea (whether a
non-area is contained in an area which is minimal with respect to
the partial ordering defined by osm2rdf:contains_area). The pred-
icate ogc:contains is then realized by the SPARQL predicate path
osm2rdf:contains_area*/osm2rdf:contains_nonarea? . Note that this
mechanism avoids a single very large predicate for ogc:contains.
Figure 2 gives an example, where only the osm2rdf:contains_area*
part is needed. The ogc:intersects relation is realized analogously.
The pre-computation of these predicates is currently slow (16 hours
for Germany, 48 days for the whole planet). However, once they
are computed, SPARQL queries using them are fast.

https://osm2rdf.cs.uni-freiburg.de
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Table 3: Running time of the four example queries described
in Section 5.2. The —means that the query timed out. Query
Q3 on Sophox only considers the centroids (∗).

QLever Overpass API PostGIS Sophox
Q1 61ms — 7min 8s
Q2 390ms — 6min —
Q3 391ms 169ms 100ms 4.5s ∗
Q4 134ms 300ms 188ms n/a

5 COMPARISON TO EXISTING ENGINES
We briefly compare the features and performance of our extended
version of QLever to the three engines mentioned in Section 1.2
(PostGIS, with data imported by osm2pgsql, the Overpass API, and
Sophox) on the two datasets DE (Germany) and P (the whole planet)
from Table 1. We did not compare to OSCAR because their (text-
search) query language does not support the precise semantics
needed for Q2 - Q4.

5.1 Features Comparison
Tags: Our tool osm2rdf retains all tags for all nodes, ways, and rela-
tions. Overpass also retains this information. Sophox discards tags,
where the keys have non-ASCII characters. The PostGIS database
also stores only a subset of the keys. The reason is that osm2pgsql
stores tags in a table with one column per key, and PostgreSQL has
a limit of 1,600 columns per table; see https://www.postgresql.org/
docs/current/limits.html. The complete OSM data currently uses
about 90,000 different keys.
Geometries: osm2rdf includes all the geometries included in the
raw OSM data, as does Overpass and osm2pqsql. Sophox only stores
a centroid point for each entity.
Query Language: QLever, Sophox, and PostGIS can be used with a
standard query language (SPARQL or SQL, respectively). Overpass
uses its own (rather arcane) query language.

5.2 Performance Comparison
We compare all engines on four typical queries. This is not an
exhaustive evaluation; we leave this to future work. Still, this com-
parison gives a hint at which engine works how well (or not) with
which kind of queries. For each engine, we formulated each query
in the respective query language, asking for both the object IDs
and their geometries. We measured the query processing times.
(Q1) All university buildings
(Q2) All university buildings in the bounding box of Germany
(Q3) All university buildings in the bounding box of Freiburg
(Q4) All university buildings in Freiburg
The evaluation for the Overpass API and osm2pgsql/PostGIS was
run on a machine with two Xeon E5649 processors and 96 GB of
RAM. The evaluation for QLever was run on a machine with one
Xeon E5-1650 processor and 256 GB of RAM. The latter machine
was almost twice as fast, which is why in Table 3, for the Overpass
API and PostGIS, we state half the running time that we actually
measured. The Overpass API was run with relaxed constraints for
query time and memory usage. For PostGIS, we used a dedicated
PostgreSQL instance with default configuration and the default

settings of osm2pgsql. In this setting, indices are built only for the
primary key columns (IDs). To allow arbitrary index-backed queries,
we would have to build an index for every column, which is unre-
alistic (additionally, the number of OSM keys greatly exceeds the
maximum number of columns, as described above). For Sophox we
used the endpoint provided at https://sophox.org . Queries Q1-Q3
were run on the complete OSM data (P), and for all four engines.
Query Q4 was run on the OSM data of Germany (DE), but not for
Sophox because it does not support queries involving spatial rela-
tionships between objects. It should be noted that Sophox can query
an Overpass API endpoint via the SPARQL SERVICE keyword, but
we already compare to Overpass explicitly.

For QLever and Sophox, Q1 is a simple join, but QLever processes
joins much more efficiently. Overpass and PostGIS scan all ways
(around 689 million) and filter them by building=university.

Q2 is Q1 plus the efficient bounding box filter described in Sec-
tion 1.2 for QLever. For Overpass and PostGIS it is the same problem
as for Q1, but filtered to the bounding box of Germany. Sophox first
computes all objects in the given bounding box, which times out if
the bounding box is too large.

For QLever, Q3 is comparable to Q2. Overpass and PostGIS can
handle this query by first computing all objects in the (small) bound-
ing box, and so does Sophox.

QLever computes Q4 using the property paths described in Sec-
tion 4. For Overpass and PostGIS, the query processing is similar
as for Q3, except that the filtering is now by a complex geometry.

6 CONCLUSIONS AND FUTUREWORK
We have presented osm2rdf, a tool for efficient conversion of the
complete OSM data to RDF, as well as a SPARQL endpoint for the
efficient and convenient querying of this data. We showed how
explicit spatial triples can support basic spatial queries, also for
SPARQL engines without GeoSPARQL support. However, the pre-
computation of these spatial triples is currently very slow and we
consider it a very interesting and relevant open problem to speed
this up. We also plan to conduct a more extensive evaluation and
comparison of the four engines.
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