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Abstract
We consider the following standard spatial-join problem: Given
two sets of geometric objects in 2D (points, lines, polygonal areas,
and collections of these), compute the spatial relations of all pairs
of intersecting objects as a standard DE-9IM matrix. Most previ-
ous work focuses on one aspect of the problem, like the candidate
generation, candidate reduction heuristics, efficient data structures,
or parallelization. We provide a complete, fully functional, and
carefully engineered implementation, as well as an extensive ex-
perimental evaluation of the relevance of various heuristics and
of two variants for the exact geometry comparisons: our own im-
plementation which preprocesses the geometries, and one using
the GEOS library, which powers spatial joins in the widely used
PostgreSQL+PostGIS. In particular, we find that the former speeds
up spatial joins by more than an order of magnitude when complex
geometries are involved. Our best approach can compute the full
self join of the 1.4 billion geometries from OpenStreeMap in less
than 3 hours on a commodity PC. This was out of reach for any
existing implementation we tried. Our code and all the materials
needed to reproduce our results are freely available on GitHub.

CCS Concepts
• Theory of computation→ Computational geometry; • In-
formation systems→ Geographic information systems.
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1 Introduction
The computation of spatial relations between geometric objects is a
core functionality of spatial libraries and databases. Standard spatial
relations are contains, covers, within, intersects, touches, crosses, and
equals [13]. For example, consider the following queries on the
OpenStreetMap data, which as of this writing contains around 1.4
billion geospatial objects:

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGSPATIAL ’25, Minneapolis, MN, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2086-4/2025/11
https://doi.org/10.1145/3748636.3762757

All streets in Germany
For each of a large set of regions, all contained streets
All street crossings
Spatial joins are typically computed in three (often interleaving)
stages. The first stage generates all pairs of objects, where the axis-
parallel bounding boxes intersect (other pairs cannot be part of
the result, see the definition below for details). The second stage
reduces this set of candidate pairs via heuristics (for example, via
more tightly fitting bounding boxes). The third stage computes the
exact spatial relations for each remaining candidate pair.

For example, the widely used PosgreSQL+PostGIS system real-
izes the first stage by looking up each object from the smaller of
the two input sets in an R-tree-like index structure precomputed
for the larger of the two input sets. No filtering heuristics are used,
and exact geometric computations are done using the GEOS library.

In this paper, we use a sweep line approach for the first stage,
and investigate a number of variations for the second and third
stage. For the second stage, we consider five different heuristics
(three of which are tighter bounding polygons). For the third stage,
we consider two variants: one based on preprocessed geometries
and one using the GEOS library. Our findings regarding the second
and third stage are not specific for the sweep line approach.

1.1 Problem Definition
We consider the problem of computing the spatial join between two
sets 𝑂1 and 𝑂2 of geometric objects in 2D.

Each object can be either a point, a polygonal line, an area that
is delineated by one or several polygonal lines1, or arbitrary col-
lections of these. Specifically, we assume that each object is given
as a pair of an ID (an arbitrary string, unique for that object) and
a Well-Known Text (WKT) string defining the geometry. For ex-
ample, the object for “Freiburg main station” could be given as:
osmnode:21769883 POINT(7.8412948 47.9977308).

The spatial relationship between two geometric objects 𝑜1 and
𝑜2 can be expressed by their DE-9IM matrix [8, 13]. It is defined
as follows, where 𝐼 , 𝐸 and 𝐵 map to 2D point sets and 𝐼 (𝑜) is the
interior of 𝑜 (e.g. the inside of a polygon), 𝐵(𝑜) is the boundary
of 𝑜 (e.g. the border of a polygon), and 𝐸 (𝑜) is the exterior of 𝑜
(everything not belonging to the interior or the boundary):

dim(𝐼 (𝑜1) ∩ 𝐼 (𝑜2)) dim(𝐼 (𝑜1) ∩ 𝐵(𝑜2)) dim(𝐼 (𝑜1) ∩ 𝐸 (𝑜2))
dim(𝐵(𝑜1) ∩ 𝐼 (𝑜2)) dim(𝐵(𝑜1) ∩ 𝐵(𝑜2)) dim(𝐵(𝑜1) ∩ 𝐸 (𝑜2))
dim(𝐸 (𝑜1) ∩ 𝐼 (𝑜2)) dim(𝐸 (𝑜1) ∩ 𝐵(𝑜2)) dim(𝐸 (𝑜1) ∩ 𝐸 (𝑜2))


The standard relations contains, covers, within, intersects, touches,

crosses, and equals can be easily computed from the DE-9IM matrix.
Note, however, that the set of spatial relationships captured by a
DE-9IM matrix is bigger than these standard relations.

1In particular, areas can consist of multiple rings, with holes, and then again areas
insides the holes, etc.
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This matrix is often serialized as a 9-character string, where each
character is 0, 1, or 2 if the respective intersection has that dimen-
sion, or 𝐹 if the intersection is empty. For more details, especially
regarding the definitions of 𝐼 (𝑜), 𝐵(𝑜) and 𝐸 (𝑜) for points and lines,
we refer to [13].

Our goal is to compute the DE-9IM matrix of all pairs (𝑜1, 𝑜2),
with 𝑜1 ∈ 𝑂1 and 𝑜2 ∈ 𝑂2, for which 𝑜1 and 𝑜2 intersect (for non-
intersecting geometries, the DE-9IM matrix is trivial). We output
this information as a list of triples. For example, for the two objects
“Germany” and “Freiburg main station” we output osmrel:51477
0F2FF1FF2 osmnode:21769883.

1.2 Contributions
We provide a complete, fully functional, and carefully engi-
neered implementation for computing spatial joins according to
the definition above. A detailed description is provided in Section
3. We do not claim novelty for any of the individual parts. What
distinguishes our work are two aspects:
• Most previous work focuses on one particular aspect of the prob-
lem, like the candidate generation, heuristics for reducing the
number of candidate pairs, suitable data structures, paralleliza-
tion, or special hardware. We consider all aspects relevant for a
complete implementation. It is highly non-trivial to understand
which of the many ideas from the vast literature actually work
well in practice, and to then implement them efficiently.

• We provide a detailed description of our algorithm, and a com-
plete and fully functional implementation as free open-source
software. There are only very few such implementations be-
cause previous work either focuses on particular aspects (see the
previous point), has not been implemented at all, or the imple-
mentation is dysfunctional or not publicly available.

We provide an extensive experimental evaluation of our ap-
proach and many of its variants, see Section 4. In particular:
• We evaluate two variants for the exact geometric comparisons:
our own implementation based on preprocessed geometries, and
the implementation of the widely used GEOS library, which in
particular powers PostgreSQL+PostGIS. It turns out that our
own implementation outperforms GEOS by at least an order of
magnitude for joins involving complex geometries, while not
being slower for joins involving simpler geometries.

• We evaluate the effect of a variety of heuristics for reducing the
set of candidate pairs, with interesting results. In particular, there
is one heuristic (cell IDs, see Section 3.7) that turns out to be cru-
cial for both of our variants of the exact geometry comparisons,
while there is another heuristic (inner-outer approximations, see
Section 3.6.3) that is crucial only for GEOS.

• Our best implementation can compute the complete spatial self
join of all the 1.4 billion geometric objects from the complete
OpenStreetMap data (with a total size of 31.1 billion triples) in
less than 3 hours on a commodity PC. This was out of each reach
for any other existing implementation we tried. In particular,
PostgreSQL+PostGIS takes weeks for this computation.

All our code and materials are open source and available
on GitHub, including documentation and instructions for how to
reproduce the results from this paper. The repository can be found
at https://github.com/ad-freiburg/spatialjoin.

2 Related Work
The typical way to perform a spatial join, whichwe also use, consists
of the following three phases: (1) retrieve all pairs of geometries,
called candidates, where the bounding boxes intersect; (2) optionally
reduce the set of candidate pairs further, using heuristics; (3) for
each candidate pair, compute the exact geometric relations. We will
discuss the related work for each of these phases.

2.1 Candidate Retrieval
A good overview on algorithms for candidate generation can be
found in the survey [14]. It focuses on intersection, whereas we
consider the full DE-9IM matrix. The survey distinguishes between
internal-memory methods (like R-tree indexing and other hierarchi-
cal data structures, also see [22], [19], [28]) and external-memory
methods (like sweep line techniques). The basic idea of sweep line
techniques is to sweep a vertical line over all bounding boxes, in or-
der of ascending x-coordinate, and to maintain the set of rectangles
that intersect the current sweep line. The typical data structure for
that set is an interval tree. This technique can be used to report all
intersecting pairs in a set of axis-aligned rectangles in O(𝑛 log𝑛)
[23, 25]. Our approach (see Section 3.1) builds on this technique.

2.2 Candidate Set Reduction
Brinkhoff and Kriegel [6] propose a set of geometric approximations
to reduce the candidate set, like the rotated minimum bounding rec-
tangle, the minimum bounding circle, or the convex hull. Another
way of approximating geometries is by overlaying a grid over the
geometric space and representing a geometry by its intersecting
grid cells. Azevedo et al. [3] present a three-color covering, which
for each geometry stores the set of cells which it fully covers and
the set of cells which it partially covers. We describe and analyze a
similar approach in Section 3.7. Georgiadis and Mamoulis [12] use
a four-color scheme with the additional information whether a cell
is covered more or less than 50%. They additionally enumerate the
cells using the Hilbert curve, which allows for efficient compression
and intersection. Google’s S2 library2 combines the Hilbert-curve
approach with a hierarchical grid that can be stored efficiently. S2
does not use colors, but explicitly maintains an outer covering (a
set of cells which fully covers the geometry) as well as an inner
covering (a set of cells which is fully covered by the geometry).

2.3 Full Geometry Comparisons
For full geometry comparisons, we again rely on a sweep line
algorithm. Bentley and Ottmann extend the algorithm by Shamos
and Hoey to report all intersections in a set of line segments [5]. In
this scenario, the algorithm cannot stop on the first intersection,
and line segments may change their order relative to the sweep line
at crossing points. To handle this, intersection points are added as
future events, which requires a dynamic event list. This is typically
realized via a priority queue, which results in a running time of
O((𝑛+𝑘)·log𝑛), where𝑘 is the number of reported intersections. An
important special case of this problem is the red/blue line-segment
intersection problem, where two sets 𝐴 and 𝐵 of line segments are
given, with the property that no two lines from 𝐴 and no two lines
from 𝐵 have intersecting interiors. Then the relative order of the

2https://s2geometry.io
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active segments in 𝐴 and in 𝐵 remains fixed during the line sweep.
Mairson and Stolfi [18] proposed an O(𝑛 · log𝑛 + 𝑘) algorithm for
this problem, which was later simplified by Chan [7]. We use an
approach similar to Chan’s in Section 3.3.1.

2.4 Related Problems
Several works solve variations of our problem by restricting the size
of the input, the type of geometries, or the set of supported spatial
predicates. Kipf et al. [16] discuss the problem where a relatively
small and static set of polygons (e.g., the streets and buildings of
a city) are joined with a large set of points that are streamed into
the algorithm (e.g. the current position of drivers and potential pas-
sengers in a taxi app). They precompute an efficiently compressed
quadtree-based index which stores a hierarchical, cell-based ap-
proximation of the polygons using Google’s S2 library. In particular,
they discuss applications where such an approximation is sufficient
and the exact predicate evaluation can be omitted. Alhammadi et
al. [2] first simplify all input geometries using a variation of the
Douglas-Peucker algorithm and then run a standard filter and refine
approach like described above. This leads to great speedups, but
leads to a loss of precision (which is acceptable in many cases). Note
that our approach also uses simplified geometries (see Section 3.6),
but only in the filtering steps without compromising the precision
of the result. Osborn [20] discusses the spatial join of two data
streams where only a small fraction of both inputs can be stored at
the same time. Aghajarian et al. [1], Geng et al. [11], and Zhang et
al. [32] use GPUs to solve spatial joins efficiently. These approaches
require that the complete input fits into the memory of the GPU.
You et al. [31] discuss the problem of polyline intersection on GPU
clusters. There also is much research on distributed spatial joins
using frameworks like Apache Spark or Apache Hadoop (e.g. [17],
[29], [10], [15], [30]).

2.5 Tools and Software
PostGIS3 is a widely used extension for the PostgreSQL database
that can compute spatial joins with the full DE-9IM matrix, like we
do. It supports the precomputation of R-tree indices for columns
with spatial data. When performing a spatial join, PostGIS only
uses these indices for one of the inputs, even if indices for both
inputs are present or a self-join is performed. For the exact pred-
icate evaluations, PostGIS uses GEOS4, a widely used library for
geometric primitives. In Section 4, we evaluate the use of GEOS.

HyPerSpace [21] is the geospatial extension of the in-memory
database HyPer ; unfortunately, the code is proprietary. HyPerSpace
relies on Google’s S2 for the efficient processing of geospatial
queries on datasets that change frequently.

OSCAR [4] allows specific spatial queries on the complete OSM
data, namely finding all OSM objects in a given set of OSM regions.
The core idea is to precompute a cell arrangement of all the given
polygons. Then the mentioned spatial queries reduce to computing
the intersection of lists of cell IDs. This approach can be considered
as a variant of the grid approaches discussed in Section 2.2, making
use of special properties of the OSM data (namely that the produced
cells are relatively few and of similar size).

3https://postgis.net
4https://libgeos.org
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Figure 1: Reporting pairs of intersecting rectangles using a
sweep line approach. For two rectangles to intersect, a vertical
line must intersect both of them, We sweep such a line from
left to right, checking each position. The set of rectangles
intersecting 𝑠 only changes at the left or right 𝑥 coordinates
(𝑥𝑙 and 𝑥𝑟 ) of rectangles.

3 Experimental Approach
Our basic approach consists of the following two steps: (1) candidate
retrieval, which reports all geometries with intersecting bounding
boxes, and (2) full geometry comparisons between candidates. We
will first describe this baseline method, and gradually extend it
with varying heuristics. The goal of all our heuristics is to keep the
number of expensive full geometric comparisons low. The effect of
our techniques will then be evaluated in Section 4.

3.1 Candidate Retrieval
For the candidate retrieval, we are given a set of axis-aligned bound-
ing rectangles 𝐵(𝐺) = ((𝑥𝑙 , 𝑦𝑙 ), (𝑥𝑟 , 𝑦𝑟 )) for each geometry 𝐺 . Our
goal is then to find all pairs of intersecting rectangles. As described
above, we use a sweep line approach to produce the candidate pairs.

Two axis-aligned rectangles 𝐵(𝐺1) and 𝐵(𝐺2) intersect if and
only if there exists a vertical line 𝑠𝑥 that intersects both. We may
thus sweep such a vertical line over the dataset and retrieve at all
𝑥 positions the rectangles intersecting 𝑠𝑥 . For each of these active
rectangles, we then check whether their 𝑦-intervals also overlap.
The active set changes only at the 𝑥𝑙 and 𝑥𝑟 positions. Thus, it
suffices to sweep along these 𝑥 values (Figure 1).

All 𝑥𝑙 and 𝑥𝑟 and their corresponding object ID are stored as tu-
ples (𝑥𝑙 , 𝑖, 𝐼𝑁 ) and (𝑥𝑟 , 𝑖,𝑂𝑈𝑇 ) in an event list 𝐸. Left 𝑥 coordinates
are an 𝐼𝑁 event, right 𝑥 coordinates are an 𝑂𝑈𝑇 event. If we now
sort 𝐸 by these 𝑥 coordinates, an iteration over 𝐸 is equivalent to
sweeping 𝑠 over the entire dataset, but skipping positions where
the state does not change. On 𝐼𝑁 events, we add the rectangle ID
to an active set 𝐴. On 𝑂𝑈𝑇 events, we remove the ID from 𝐴.

The check for overlapping 𝑦 intervals can be done by using
an interval tree for the active set. The insert, delete, and lookup
operations on thus interval tree can be done in O(log𝑛). Finding
overlapping𝑦-intervals for a single rectangle takes timeO(log𝑛+𝑘),
where 𝑘 is the number of overlapping intervals. This approach thus
runs in O(|𝑂 | · (log 𝐼 + 𝑀)), where 𝑂 is the set of all geometric
object, 𝑀 is the maximum number of rectangles intersecting a
single rectangle, and 𝐼 is the maximum size of 𝐴 at any time.

https://postgis.net
https://libgeos.org
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Figure 2: Two polygons have either intersecting boundaries,
are disjoint, or one is completely contained in the other.

Note that 𝐸 can be easily maintained, sorted, and traversed on
disk. Thus, memory is only needed for the active set and the interval
tree. For real-world input data, 𝐼 is usually small (in our evaluation
dataset OpenStreetMap, it was around 50,000).

3.2 Geometry Cache
So far, the candidate retrieval only delivered geometry IDs. For
further checks, we need the actual geometric objects. As storing all
full geometric objects in memory is unrealistic, we store them on
disk and load them on demand. To avoid excessive disk access, we
use a straightforward LRU cache. This has the effect that very large
polygons requiring many comparisons (e.g. polygons of countries)
usually remain in the cache until they are no longer required.

To further reduce both the I/O and the required disk space, we
distinguish 5 different geometric types: Points are stored as raw
64 bit integer coordinates (𝑥 and 𝑦 are 32 bits, respectively). Sim-
ple Lines have only 2 anchor points, stored as raw 64 bit integer
coordinates. Lines that aren’t simple are stored as lists of segments
(possibly sorted, see Section 3.3.2), together with their length, their
bounding box, and additional precomputed information used by
our heuristics (see Sections 3.5 - 3.7 for details). Simple Areas are
areas with less than 10 anchor points and without any holes, these
are stored as raw lists of their 64 bit integer coordinates.Areas that
aren’t simple are stored as pre-sorted lists of segments, together
with their holes (also possibly pre-sorted, see Section 3.3.2), their
bounding box, their geometric area, and again additional precom-
puted information used by our heuristics. The idea of the distinction
into “simple” and “normal” geometries is that for the simple ge-
ometries, all precomputations are cheaper to do on the fly than
loading them from disk. For our experiments, we used one cache
per geometry type, with a maximum size of 10,000 objects. We
found that this limit provided a good trade-off between memory
requirements and disk I/O.

3.3 Full Geometry Comparisons
The computation of the DE-9IM matrix is trivial for point/point
pairs, as there is only one case: the points are equal (0FFFFFFF2). For
the remaining pairs (point/line, point/polygon, line/line, line/poly-
gon, polygon/polygon), we reduce all comparisons to two basic
operations: (1) given two sets 𝐿1 and 𝐿2 of line segments, retrieve
the set of intersecting line segments. (2) given a point 𝑃 and a set
𝐿 of line segments, find out whether 𝑃 lies on a line segment of 𝐿
(and which), or inside a closed polygon described by 𝐿.

For point/line comparisons, there are only two distinct cases:
either the point is on the line (Operation 2), or the point is on one
of the end points of the line (Operation 2, with subsequent check
whether the found line segment is the first or last of the line, and

5 10 15 20

5

10

s5 s8
s9

s11

A1 = [l4, l1]
l1

l4

l3

l2 A2 = [l3, l2]

Figure 3: Sweeping over two sets of line segments (blue and
red) to find intersections between blue/red and red/blue pairs.
In this case, the line segments are polygon boundaries. 𝐴1
and 𝐴2 are the active sets of the two polygons at 𝑠9.

whether the point is equal to its beginning or end). If none of these
cases apply, then the geometries are disjoint. For point/polygon
comparisons, again there are only two distinct cases: either the
point is on a segment of the boundary (Operation 2), or the point is
inside the polygon (also Operation 2). Again, if none of these cases
apply, the geometries are disjoint.

For line/line comparisons, we use Operation 1 to find the in-
tersecting line segments. We can then fill the DE-9IM matrix by
analyzing only the intersecting line segments (see Section 3.3.3 for
details). If no line segments intersect, the lines are disjoint.

For line/polygon comparisons, there are three distinct cases: (1)
Operation 1 results in intersecting segments pairs. Then we can fill
the matrix by analyzing the individual intersecting segment pairs
(note that we can in particular find out whether any line segment
crosses into the interior of the polygon as we know at each time
which side of polygon’s border segment is "inside", and which is
"outside" the polygon). (2) Operation 1 results in no intersecting
segment pair. Then the geometries are either disjoint, or the line
is completely contained in the polygon. In both cases, the DE-9IM
matrix is trivial to fill, and we can safely distinguish the two cases
by a single Operation 2 for any point on the line.

The same approach can be used to compare two polygons (see
Figure 2 for an example).

Operation 2 is the standard point-in-polygon tests, which can
be solved in linear time by a ray casting algorithm [26]. We will
describe Operation 1 in more detail below.

Note that we ignore polygons with inner rings (holes) here for
brevity, although we considered them in our experiments. In princi-
ple, if a polygon with a hole is involved in a comparison, the inner
rings have to be compared separately to the other side, using the
same approach as described here. To avoid iterating over all inner
rings of polygons for each check (which might be problematic for
polygons with a large number of such inner rings), we store for
each polygon the bounding boxes of each inner ring, together with
a list of inner ring IDs sorted be the leftmost 𝑥-coordinate of the
ring. This enables us to quickly search for the first relevant inner
ring, and to discard them as irrelevant based on the bounding box.

3.3.1 Sweep Line Approach. The naive approach for Operation 1
is a pairwise intersection test between all pairs (𝑙1, 𝑙2) ∈ 𝐿1 × 𝐿2,
resulting in time O(|𝐿1 | |𝐿2 |). As mentioned above, a restricted
variant of Operation 1 is known as the red/blue segment intersection
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Figure 4: Using locally intersecting line segments to decide geometric relationships. (1): A local intersection analysis is enough
to decide global relationships. For example, segments 𝑎 and 𝑏 touch at an end point of 𝑏 (which is a boundary point of 𝐵), and 𝐴

and 𝐵 thus have a DE-9IM matrix of F01FF0102. (2): Cases where local analysis is not enough: segment 𝑏 both locally overlaps
segments 𝑎 and 𝑎′, but line 𝐴 covers line 𝐵. For 𝐶 and 𝐷 , we would locally decide that 𝐶 and 𝐷 touch, although they cross. 𝑒 is to
the right of 𝑓 , but does not lie inside 𝐹 , as another segment restricts the interior. (3) For each segment, we store the outgoing
angles of all adjacent segments. Then we can locally decide that 𝑒 does indeed not cross into 𝐹 by comparing 𝛼 to 𝛾 . (4) Similarly,
we can now decide that based on the comparison 𝑎 vs. 𝑏, 𝑏 is not contained in 𝐴’s exterior, as the outgoing angle of the adjacent
segment is exactly 180◦. For 𝐶 and 𝐷 , the presence of an outgoing angle at the intersections of 𝑑 and 𝑐 makes it clear that the
local touch of 𝑑 and 𝑐 is not a global touch.

problem: In this variant, the interiors of all line segments in 𝐿1 (and
𝐿2 respectively) are only allowed to intersect in their endpoints
(that is, interior intersections are only allowed for pairs (𝑙1, 𝑙2) ∈
𝐿1 × 𝐿2). This restriction can be easily fulfilled in our case: we
simply pre-process all input geometries and add explicit anchor
points at places where segments intersect. The red/blue segment
intersection problem can be efficiently solved using a sweep line
algorithm [7, 18].

We first insert all line segments from 𝐿1 and 𝐿2 into a merged
set 𝐿 and mark each line segment as originating either from 𝐿1
or 𝐿2. We assume that for a line segment 𝑙 = ((𝑥1, 𝑦1), (𝑥2, 𝑦2)),
it already holds that 𝑥1 ≤ 𝑥2 and use the more convenient nota-
tion ((𝑥𝑙 , 𝑦𝑙 ), (𝑥𝑟 , 𝑦𝑟 )). Next, we again build an event list 𝐸, into
which each line segment 𝑙 is inserted as two events: (𝑥𝑙 , 𝑜, 𝑙, 𝐼𝑁 )
and (𝑥𝑟 , 𝑜, 𝑙,𝑂𝑈𝑇 ), where 𝑜 ∈ 1, 2 states whether 𝑙 is from 𝐿1, or 𝐿2.
𝐸 is again sorted by the left and right 𝑥 coordinates.

Again we require an active set that at each sweep line position 𝑠𝑥
holds segments intersecting 𝑠𝑥 , sorted by the 𝑦-coordinate of their
intersection with 𝑠𝑥 . For two line segments 𝑙 and 𝑘 , we say 𝑙 <𝑥 𝑘 if
the 𝑦-coordinate of the intersection of 𝑠𝑥 with 𝑙 is smaller than that
of the intersection of 𝑠𝑥 with 𝑘 (we break ties in ambiguous cases,
for example if an endpoint of 𝑙 is exactly on 𝑘). We now exploit
the fact that no two segments from 𝐿1, and no two segments from
𝐿2, have intersecting interiors. This means that during sweeping,
the relation <𝑥 is constant for each pair (𝑙1, 𝑙 ′1) ∈ 𝐿2

1 , and each
pair (𝑙2, 𝑙 ′2) ∈ 𝐿2

2 : no two line segments from the same set can ever
“switch sides”. We can thus maintain two separate active sets 𝐴1
and 𝐴2, and keep them correctly sorted according to <𝑥 using the
following simple ordering relation: if a segment𝑚 was added to 𝐴
before a segment 𝑛 (if 𝑥𝑚𝑙 < 𝑥𝑛𝑙 ), then 𝑛 < 𝑚 if 𝑥𝑛𝑙 is to the right
of𝑚. If 𝑥𝑚𝑙 > 𝑥𝑛𝑙 , then 𝑛 < 𝑚 if 𝑥𝑚𝑙 is to the left of 𝑛. If the left
endpoint of 𝑛 is on𝑚 (or vice versa), we use the right endpoint. If
the left endpoint of 𝑛 coincides with the right endpoint of𝑚, we
break ties by always ordering 𝑛 < 𝑚. In our experiments, we use a
simple binary search tree (the C++ STL’s std::set) for 𝐴1 and 𝐴2.
Figure 3 gives an example of such a line sweep.

Going over the event list 𝐸, we then have to consider the follow-
ing cases:

(1) On event (𝑥𝑙 , 𝑜, 𝑙, 𝐼𝑁 ): add 𝑥𝑙 to 𝐴𝑜 and search the other ac-
tive set 𝐴𝑜 for the line segments directly above and below of
𝑥𝑙 (if they exist). In both directions, check whether 𝑥𝑙 inter-
sects with them and report if they do (e.g. at 𝑠8 in Figure 3).
If there is an intersection in one direction (as is the case
at 𝑠11 in Figure 3), continue traversing and checking 𝐴𝑜 in
this direction until the first non-intersecting line segment
is encountered. Note that the total number of these checks
is bounded by 𝑂 (𝑘), where 𝑘 is the maximum number of
intersections.

(2) On (𝑥𝑙 , 𝑜, 𝑙,𝑂𝑈𝑇 ): remove 𝑥𝑙 from 𝐴𝑜 . Note that 𝑥𝑙 might
have been a “blocker” masking an intersection between a
line segment from 𝐴𝑜 directly below 𝑥𝑙 and a line segment
from𝐴𝑜 directly above 𝑥𝑙 (or vice versa). This is for example
the case at 𝑠9 in Figure 3. We check all lines below 𝑥𝑙 in 𝐴𝑜

and all lines above 𝑥𝑙 in 𝐴𝑜 for pairwise intersections (and
vice versa), again stopping in either direction as soon as we
cannot find any more intersections. Again, the total number
of these checks is bounded by 𝑂 (𝑘).

Sorting the event lists takes time O(|𝐿 | log |𝐿 |), and sweeping
over the events takes time O(|𝐿 | log max( |𝐿1 |, |𝐿2 |)+𝑘), resulting in
a total running time of O(|𝐿 | log |𝐿 | +𝑘). Note that 𝑘 ∈ O(|𝐿1 | · |𝐿2 |).

3.3.2 Pre-Sorted Geometries. A key benefit of this approach is that
we can store and pre-sort the event lists 𝐸1 and 𝐸2 for 𝐿1 and 𝐿2.
For reporting the intersections between 𝐿1 and 𝐿2, we then do not
have to materialize and sort the combined event list 𝐸: it is enough
to iterate over the pre-sorted event lists 𝐸1 and 𝐸2 in a “zipper”-like
fashion, producing the sorted event list 𝐸 on the fly.

It is important to understandwhy this is relevant for our practical
performance: theoretically, the difference between the bare sweep
complexity O(|𝐿 | log max( |𝐿1 |, |𝐿2 |) + 𝑘) and the total (including
sorting) complexity O(|𝐿 | log |𝐿 | +𝑘) does not appear to be very sig-
nificant. However, the O(log max( |𝐿1 |, |𝐿2 |)) part comes from the
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lookup operations in the binary search trees holding the active sets.
In practice, these sets are extremely small - for a convex polygon,
they contain at most 2 segments, and in our testing datasets, the
active set was typically smaller than 10. Also note that we have to
do 𝑘 = |𝐿1 | · |𝐿2 | additional iterations of the binary search tree in up
and down direction only in the worst case - typically, 𝑘 is very small.
For almost all comparisons in our testing datasets, the sweeping
can thus be assumed to run in linear time (and it strictly runs in
linear time for comparisons between convex geometries), while
the sorting of the merged event list 𝐸 would have still required
O(|𝐿 | log |𝐿 |) time. Additionally, we save the copying of 𝐸1 and 𝐸2
into a sorted merged list 𝐸. This is highly relevant in our scenario
because we typically have millions of comparisons involving the
same geometry - for example, in our testing dataset of the entire
German OpenStreetMap data, we require (without any heuristic)
a geometric check of all ∼ 84𝑀 houses in Germany against the
geometry of Germany itself. Without the pre-sorting, we would
have to sort the line segments constituting the German border 84
million times.

3.3.3 Analyzing Line Segment Intersections. If any two line seg-
ments 𝑙1 and 𝑙2 intersect, we would like to know the following: (1)
Do their geometries only touch at exterior bounds, or do they cross
each other? (2) Do they overlap? For checks against a part of a
polygon boundary 𝑙2, we would additionally like to know whether
(3) 𝑙1 lies on the inside or the outside of the polygon. This would
enable us to fill the DE-9IM matrix between the corresponding
geometric objects.

Checking this seems straightforward: (1) and (2) are easy to
check, and (3) is a matter of storing the polygon boundary 𝑙 in
its original clockwise orientation, in which case any intersecting
line segment crossing to the right of 𝑙 is on the “inside” side of the
segment, and any line segment crossing to the left on the “outside”
side. Figure 4.1 gives examples. However, consider Figure 4.2. Here,
we would for example decide that 𝑒 crosses into the interior of
the polygon corresponding to 𝑓 - but this is not actually the case,
as a neighboring line segment further restricts the interior of the
polygon. A similar problem can be seen between𝐶 and 𝐷 : here, we
would locally decide that two lines touch each other, while in reality
they cross each other. To handle these problems, we additionally
store for each line segment the left and right outgoing angle of
the adjacent line segment as a lookahead. If the segment was the
last (or first) segment of a line (that is, its boundary), we use a
special placeholder value indicating "no adjacent segment". We can
then avoid false local reporting by comparing angles, as shown in
Figures 4.3 and 4.4. Note that the angles are stored as floating point
numbers and are compared without any tolerance.

3.4 Skipping Irrelevant Segments
The pre-sorting of line segments by their left 𝑥-coordinate enables
other speed up heuristics. Consider Figure 5. It is easy to see that
all line segments of 𝐵 that end to the left of 𝐴 are completely
irrelevant for the sweepline process - they will have left the active
set of 𝐵 before any segment of 𝐴 will become active. We may thus
skip them completely by iterating to the first segment which is
actually relevant for our process. If there are 𝑛 segments to the
left of 𝐴, this still requires iterating over 𝑛 segments. As the list of
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︸ ︷︷ ︸
Skipped via binary search

︸ ︷︷ ︸
Early stop

Figure 5: Comparing a large geometric 𝐵 object to a smaller
object 𝐴. In the list of sorted segments of 𝐵, we can skip all
segments with 𝑥𝑙 < 𝑥1 − 𝑑𝑥 using a simple binary search.
When we reach a segment of 𝐵 with 𝑥𝑙 > 𝑥2, we abort.
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Figure 6: Checking whether a single random point of 𝐴 is in
𝐵 using raycasting with a ray (𝑥,−∞) to (𝑥,𝑦). We can again
search for the first segment of 𝐵 with with 𝑥𝑙 >= 𝑥 − 𝑑𝑥

segments is sorted, we would like to apply a simple binary search
to get the number of iterations down to O(log𝑛). But we cannot
simply search for the first segment of 𝐵 which ends after the first
segment of 𝐴: the segments are sorted by the left 𝑥-coordinate. To
nevertheless apply a binary search, we store for each geometric
object the longest covered 𝑥-interval 𝑑𝑥 . Let 𝑥𝑎 be the leftmost 𝑥-
coordinate of 𝐴. Using binary search, we can then quickly search
for the first segment of 𝐵 with 𝑥𝑙 >= 𝑥𝑎 −𝑑𝐵𝑥 . We can also trivially
abort our sweep line process as soon as we are past the rightmost
segment of 𝐴, effectively restricting our sweep line process to a
narrow band around 𝐴.

Note that the same technique can be used to speed up the point-
in-polygon tests (Operation 2). Consider Figure 6. The standard
ray-casting algorithm iterates over all line segments and checks for
an intersection between a line going from infinity to 𝑃 = (𝑥,𝑦). If
we chose this line to go from (𝑥,−∞) to (𝑥,𝑦), we again can use a
binary search to find the first segment of 𝐵 with 𝑥𝑙 >= 𝑥−𝑑𝐵𝑥 . If we
then check the line segments for intersections with ((𝑥,−∞), (𝑥,𝑦))
in their sorted order, we can again abort as soon as the first segment
of 𝐵 with 𝑥𝑙 > 𝑥 appears.

3.5 Surface Area Precomputation
Recall that Operation 2 (Point-in-Polygon check) is required to
differentiate between two cases after we have established that the
segments of a geometry 𝐴 and a polygon 𝐵 do not intersect: (1) 𝐴
is completely contained in 𝐵, or (2) 𝐴 and 𝐵 are disjoint. If both
𝐴 and 𝐵 are polygons, we have to both check if 𝐴 is in 𝐵, and (if
not), if 𝐵 is in 𝐴. A simple preprocessing step to avoid one of these
checks is to compute the surface area of all input polygons. Then,
if the surface area of polygon 𝐴 is smaller than the surface area of
polygon 𝐵, we can already be certain that 𝐴 cannot contain 𝐵.
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Figure 7: Using inner and outer simplified geometries for
faster geometry comparison. If 𝐵 is contained in the inner
geometry, it is surely contained in 𝐴. If 𝐸 is not contained in
the outer geometry, it is surely disjoint with 𝐴.

3.6 Approximate Geometries
The techniques described so far aim to improve the performance
of raw geometry comparisons. The reminder of this section will
discuss heuristics to avoid such comparisons between full input
geometries. Our techniques can be broadly classified into two cate-
gories: (1) approximate geometries, which are then again geometri-
cally compared, and (2) a decomposition of input geometries using
a static cell grid, which can then be used to decide some geometric
relations without any geometric comparisons. We will first give a
list of the simplified geometries used in our evaluation.

3.6.1 Diagonal Bounding Box. A bounding box simplification is
already used in the geospatial index. This may be further refined by
also computing diagonal bounding boxes - that is, the axis-aligned
bounding box after the coordinate system has been rotated by 45◦.
The fixed orientation enables us to check for intersections using
standard intersection tests for axis-aligned rectangles. Additionally,
the boxes can be stored using only 2 coordinates. We store them
directly in the event list for the candidate retrieval described in
Section 3.1 (all other precomputations are stored in the cache). This
heuristic may thus completely bypass the geometry cache.

3.6.2 Oriented Bounding Box. To improve on the diagonal bound-
ing box, while still keeping the number of anchor points at only 4,
we additionally precompute the oriented bounding box (OBB) [27]
of each polygon in 𝑂 and use this OBB to quickly decide whether
two geometries are disjoint.

3.6.3 Inner and Outer Ramer-Douglas-Peucker. For better approx-
imation, and to enable fast positive containment or intersection
decisions based on simplified geometries, we also precompute for
each polygon 𝐴 two approximations: a simplified outer polygon
outer(𝐴), and a simplified inner polygon inner(𝐴). It is clear that
𝐵 ⊆ inner(𝐴) ⇒ 𝐵 ⊂ 𝐴 and 𝐵 ⊄ outer(𝐴) ⇒ 𝐵 ⊄ 𝐴, and also
𝐺∩ inner(𝐴) ≠ ∅ ⇒ 𝐺∩𝐴 ≠ ∅ and𝐺∩outer(𝐴) = ∅ ⇒ 𝐺∩𝐴 = ∅.

To compute outer(𝐴) and inner(𝐵), we modify the classic Ramer-
Douglas-Peucker (RDP) algorithm for line simplification [9, 24].
Given a line 𝐿 as an ordered list of anchor points, RDP takes an
anchor point pair (𝑝,𝑢) (starting with the first and last point of
𝐿) and finds the point 𝑞 between them with the largest distance
𝑑 = dist(𝑞, 𝑝,𝑢) to the line segment 𝑝𝑢. If 𝑑 is smaller than a sim-
plification threshold 𝜖 , all points between 𝑝 and 𝑢 are discarded.
If 𝑑 > 𝜖 , 𝑞 is kept, and the process recursively continues for (𝑝, 𝑞)
and (𝑞,𝑢).

Given a polygon 𝐴 as a closed list of anchor points (𝑝1, . . . , 𝑝𝑛),
we simplify the lines (𝑝1, . . . , 𝑝 ⌊𝑛/2⌋ ) and (𝑝 ⌊𝑛/2⌋+1, . . . , 𝑝𝑛) sepa-
rately and later join the resulting simplified lines again. As a sim-
plification criterion for RDP, we use the signed distance function

dist(𝑞, 𝑝,𝑢) =
(𝑥𝑢 − 𝑥𝑝 ) (𝑦𝑝 − 𝑦𝑞) − (𝑥𝑝 − 𝑥𝑞) (𝑦𝑢 − 𝑦𝑝 )√︃

(𝑥𝑢 − 𝑥𝑝 )2 + (𝑦𝑢 − 𝑦𝑝 )2
(1)

for a point𝑞 = (𝑥𝑞, 𝑦𝑞) and a line segment described by 𝑝 = (𝑥𝑝 , 𝑦𝑝 )
and 𝑞 = (𝑥𝑞, 𝑦𝑞).

For the inner polygon, we keep 𝑞 if 0 < dist(𝑞, 𝑝,𝑢) < 𝜖 . For the
outer polygon, we keep 𝑞 if 0 < −dist(𝑞, 𝑝,𝑢) < 𝜖 .

Note that for non-convex polygons, discarding a point to the
right of 𝑝𝑢 does not necessarilymean that the resulting line segment
is inside the original polygon. Similarly, discarding a point to the
left does not mean that the resulting line segment is outside of
the polygon. A simple mitigation strategy is to check a posteriori
whether 𝑖𝑛𝑛𝑒𝑟 (𝐴) is really contained in𝐴, and to give up computing
𝑖𝑛𝑛𝑒𝑟 (𝐴) otherwise. Similarly, if 𝐴 is not contained in 𝑜𝑢𝑡𝑒𝑟 (𝐴),
give up computing 𝑜𝑢𝑡𝑒𝑟 (𝐴).

During our experiments, we found that selecting a fixed 𝜖 for
the inner and outer simplified polygons is nontrivial. Small 𝜖 values
lead to little to no gains for large polygons. For smaller polygons, a
large 𝜖 will usually result in empty inner geometries, and an outer
geometry that is equivalent to the convex hull. We settled on the
following dynamic parameter: 𝜖 (𝐴) = 𝛼

√︁
area(𝐴)/𝜋 . This bases

𝜖 (𝐴) directly on the (weighted) radius of a hypothetical circle with
the same surface area as 𝐴, so that larger geometries are simplified
more. We set the weight 𝛼 = 1

20 .

3.7 Intersecting Cell IDs
So far, the speed-up techniques still relied on geometric compar-
isons. This section describes a technique which allows to quickly
decide whether a geometry 𝐺 is definitely contained in a polygon
𝑃 , whether it is definitely not contained in 𝑃 , or whether it might
be contained, without doing any geometric calculation (apart from
the preprocessing). This technique is based on a grid covering the
dataset. The grid cells are continuously numbered from east to west,
and north to south. We have found this approach to be more effi-
cient than the more sophisticated hierarchical cell-covering from
Google’s S2 library (see section 2.5), mostly because of the more
expensive precomputation of the covering in S2.

3.7.1 Collecting Cell IDs. In a preprocessing step, we first compute
for each polygon 𝑃 the set 𝐴+ of grid cells completely covered by
𝑃 and the set 𝐴− of grid cells only intersecting 𝑃 . We define 𝐴 =

𝐴+ ∪𝐴− . The cells are represented by their integer id. Second, we
compute for each line 𝐿 the set𝐴− which holds all cells intersecting
𝐿 (note that𝐴+ is naturally empty for lines). Note that𝐴− for points
can easily be determined on the fly (it contains a single cell ID).

3.7.2 Geometric Contains and Intersect via Efficient List Intersection.
Consider two polygons 𝑃1 and 𝑃2 and their cell ID sets 𝐴+

1 , 𝐴
−
1 , 𝐴

+
2 ,

and 𝐴−
2 . If |𝐴1 ∩𝐴+

2 | = |𝐴1 |, then 𝑃1 is surely completely contained
in 𝑃2, and the DE-9IMmatrix is trivially 2FF1FF212. If |𝐴1∩𝐴2 | = 0,
then 𝑃1 and 𝑃2 are surely disjoint. In all other cases, a full geometry
check is required. Similar decisions can be made for line/line pairs,
line/polygon, point/line and point/polygon pairs.
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Figure 8: A static grid covering the bounding box of the entire
dataset, with numbered cells. If a geometric object intersects
a cell, it is added with a negative sign to its list of cell IDs.
If a cell is completely contained in a polygon, the cell ID is
added with a positive sign.

To compute these measures in a single pass, we combine 𝐴+ and
𝐴− in a list 𝐿 = (𝑐1, . . . , 𝑐𝑛) in which cell IDs from 𝐴+ are stored
unchanged, and cell IDs from 𝐴− are stored with a negative sign.
𝐿 is then sorted by |𝑐𝑖 |. Computing both |𝐴1 ∩ 𝐴2 | and |𝐴1 ∩ 𝐴+

2 |
is then a list intersection problem between 𝐿1 and 𝐿2, sorted by
the (absolute!) values of their cell IDs. We compute this with an
exponential search approach.

3.7.3 Efficient Calculation and Storage of Cell ID Lists. A naive
computation of the cell ID sets (𝐴+, 𝐴−) for a polygon 𝑃 would first
collect all cells 𝑐 intersecting 𝑃 ’s bounding box, then determine
whether each 𝑐 is fully contained in 𝑃 or only intersects it. This
would require a number of box-in-polygon checks which depends
on the surface area of 𝑃 , and might thus be quadratic in the worst
case. To mitigate this, we scan 𝑃 in a quadtree-like fashion. Let𝑤
be the side length of a grid cell, and let𝑊 and 𝐻 be the width and
height of the bounding box of 𝑝 . We call grid cells of side length𝑤 a
base cell. For our experiments, we set𝑤 to 1 km. Instead of scanning
𝑃 with many small cells of width and height𝑤 , we begin with cells
of width ⌈𝑊 /𝑤⌉/4 ·𝑤 and height ⌈𝐻/𝑤⌉/4 ·𝑤 . These larger probe
cells are grid-aligned. Each of them contains ⌈𝑊 /𝑤⌉/4 · ⌈𝐻/𝑤⌉/4
base cells. Let 𝑑 be such a cell. Then, if 𝑑 is fully contained in 𝑃 , we
add all contained base cells to 𝐴+ and proceed to the next cell. If
𝑑 does not intersect with 𝑃 , we skip it completely. If 𝑑 intersects
with 𝑃 , but is not contained, we subdivide it into 4 smaller cells and
check 𝑃 against these cells. This process continues recursively. If 𝑑
is a base cell, the recursion stops, and we add the corresponding
base cell to 𝐴− .

To avoid excessive memory consumption of the cell ID lists, we
additionally use a simple run-length encoding. Note that if a fully
contained probe cell contains 𝑛 ·𝑚 base cells, it is then sufficient to
simply add the cell with the lowest 𝑥 value and a running length of
𝑛 for each of the𝑚 rows.

4 Experimental Evaluation
We have implemented the approach described in Section 3 as a
library and command-line tool. Our tool inputs two sets of geome-
tries 𝑂1 and 𝑂2 and outputs a set of triples with all the geometric

Table 1: The number of the different kinds of geometries in
each of our four datasets, the number of candidate pairs for
the self join, and the total number of result pairs.

points lines poly. coll. multi. #cands #res

FIN 1.6M 3.5M 4.6M 19.5 K 6.2 K 226M 178M
GER 20.0M 19.7M 47.9M 0.5M 17.8 K 3.1 B 1.5 B
OHM 5.4M 2.4M 1.4M 17.8 K 7.9 K 1.2 B 196M
OSM 264M 327M 777M 5M 0.4M 37.8 B 31.1 B

relations, as defined in Section 1.1. Specifically, the input is a single
TSV file with one line per geometry and three columns: a unique
ID for the geometry, an index indicating to which of the two input
sets the geometry belongs (0 for 𝑂1 and 1 for 𝑂2), and a WKT rep-
resentation of the geometry. The output is one line per intersecting
geometry pair, in the format <id1> <DE-9IM> <id2>. The code is
publicly available on https://github.com/ad-freiburg/spatialjoin.

Our evaluation focuses on two main aspects. First, the effect of
using different implementations for the full geometry comparisons,
namely our own implementation based on pre-sorted geometries as
described in Section 3.3.1 (Sorted), versus the implementation from
the GEOS library based on a conventional representation (Geos).
Second, the effect of our five heuristics on Sorted and Geos.

4.1 Setup
For each evaluation, we first parse the inputWKT strings into either
our pre-sorted representation or the GEOS representation. The code
for converting the WKT strings into lists of coordinates is the same
for both representations. Afterwards, any optional pre-processing
required for the heuristic is done, and the geometry (and all pre-
computed information) is stored in the geometry cache described
in Section 3.2 We then use the sweep line approach described in
Section 3.1 to generate a stream of candidate pairs, that is, pairs
of geometries with intersecting bounding boxes. For each of these
pairs, we then load the geometry from the geometry cache and
try to infer the DE-9IM matrix using any of the enabled heuris-
tics. If the DE-9IM matrix can not be determined by one of these
heuristics, we compute the exact geometric relations using either
the pre-sorted geometries as described in Section 3.3.1 (Sorted),
or using the GEOSRelate method provided by the GEOS library
(Geos). Note that apart from this last step, the setup is identical for
Sorted and Geos.

All our experiments were run on a commodity PC, with an AMD
Ryzen 9 9950X processor with 16 physical and 32 virtual cores, 186
GB of RAM (DDR5), and 29 TB of disk space (NVMe SSD), running
Ubuntu 24.04. For each evaluation, we used 28 cores.

4.2 Evaluation on Full Self Joins
We first evaluate on full self joins, the most expensive kind of spatial
joins. In a spatial self join, the two input sets from our definition in
Section 1.1 are the same.

We consider four datasets: all geometries from OpenStreetMap
(OSM), the subset that lies in Germany (GER), the subset that lies in
Finland (FIN), and all geometries from OpenHistoricalMap (OHM).
The dimensions of these datasets are shown in Table 1. FIN and

https://github.com/ad-freiburg/spatialjoin


Efficient Spatial Joins on Large Geometry Sets SIGSPATIAL ’25, November 3–6, 2025, Minneapolis, MN, USA

Table 2: Effects of our heuristics if the exact geometry relations are computed using our pre-sorted geometries (Sorted). Each
time is for computing the self join of the respective dataset for the respective setting of our heuristics, as described in Section
4.2. The speedup is relative to the setting shown in the last column (which is the same for each of the last three rows).

FIN GER OHM OSM

heuristics time speedup time speedup time speedup time speedup relative to

csdoi 0.8min 14.8min 88.9min 1055min
Csdoi 0.7min 1.26 × 10.0min 1.48 × 28.0min 3.17 × 181min 5.83 × csdoi
CSdoi 0.7min 1.00 × 9.9min 1.01 × 28.0min 1.00 × 188min 0.96 × Csdoi
CSDoi 0.6min 1.11 × 8.7min 1.15 × 30.3min 0.92 × 165min 1.14 × CSdoi
CSdOi 0.7min 0.99 × 10.0min 0.99 × 27.6min 1.01 × 186min 1.01 × CSdoi
CSdoI 0.7min 0.99 × 9.8min 1.01 × 27.5min 1.02 × 176min 1.07 × CSdoi

Table 3: Effects of our heuristics if the exact geometry relations are computed using the GEOS library (Geos). Each time is for
computing the self join of the respective dataset for the respective setting of our heuristics, as described in Section 4.2. The
speedup is relative to the setting shown in the last column (which is the same for each of the last three rows).

FIN GER OHM OSM

heuristics time speedup time speedup time speedup time speedup relative to

csdoi 465.9min > 10 h > 10 h >30 h
Csdoi 97.4min 4.79 × 101.0min – 310.6min – >30 h – csdoi
CSdoi 97.8min 1.00 × 103.7min 0.97 × 299.2min 1.04 × >30 h – Csdoi
CSDoi 98.3min 0.99 × 99.0min 1.05 × 311.7min 0.96 × >30 h – CSdoi
CSdOi 97.5min 1.00 × 100.2min 1.03 × 298.4min 1.00 × >30 h – CSdoi
CSdoI 97.6min 1.00 × 63.9min 1.62 × 268.8min 1.11 × >30 h – CSdoi

OHM are of roughly the same size, but have very different character-
istics: OHM has many similar large regions, which makes self-joins
significantly harder (because no heuristic we know of can filter out
a pair of very similar objects).

For each dataset, we evaluated the effect of each of our six heuris-
tics from Section 3:

C cell IDs (Section 3.7)
S precomputed surface area (Section 3.5)
D diagonal bounding box (Section 3.6.1)
O oriented bounding box (Section 3.6.2)
I inner/outer simplified geometries (Section 3.6.3)

Each of these six heuristics can be switched on or off. We evaluated
all of the resulting 64 combinations. We found that all significant
effects can be observed from the relative speed-ups of these six
combinations: csdoi, Csdoi, CSdoi, CSDoi, CSdOi, CSdoI. Each
combination is represented by a six-letter string: an uppercase
letter means that the heuristic is enabled, a lowercase letter means
that the heuristic is disabled. The first combination is the baseline,
with all heuristics disabled. The next two combinations successively
add the heuristics C and S. The last three combinations add either
of the three approximation heuristics D, O, or I from Section 3.6.

Tables 2 and 3 report the total running time of the self joins of
each of the four datasets and for each of the six combinations. The
only difference is that Table 2 shows the results when using the
pre-sorted geometries described in Section 3.3.2 (Sorted), while
Table 3 shows the results when using the conventional geometry
representation provided by the GEOS library (Geos) instead. The
tables provide five key insights.

First, computing the required full geometry comparisons based
on the pre-sorted geometries (Sorted) vastly outperforms com-
puting them using the conventional representation (Geos). For all
datasets, when at least C is active, Sorted is more than 10 times
faster thanGeos. For FIN, the factor is over 100 because of Finland’s
various lakes with extremely complex geometries. These are no
problem for Sorted, but very expensive when using Geos.

Second, C is themost effective heuristic for both Sorted andGeos
and crucial for good performance. The larger the dataset or the
more complex the geometries, the more important this heuristic
becomes. In particular, C is very effective for settling pairs that
consist of a large and complex geometry like a region boundary
and a small and simple geometry like a building not too close to
that boundary. With Sorted, exact comparisons are still feasible for
such pairs because the binary search over the sorted line segments
skips most of the boundary. For Geos, however, such comparisons
are very expensive.

Third, I is important for Geos but not so much for Sorted. The
reason is again pairs of a small and simple geometry, and a large
and complex geometry, but this time for the case where the simple
geometry is closer to the complex geometry. Such pairs can not
be settled by C, but can be settled by I when the inner or outer
geometry is a good enough approximation in the region relevant for
the comparison. For FIN, there is no improvement, again because
of the many complex lake boundaries (their approximate outer
geometries are usually very close to a combination of their bounding
box and their diagonal bounding box). For Sorted, the benefit is
smaller for the same reason explained in the previous paragraph;
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the additional cost of computing the inner-outer approximation is
therefore typically not worth it.

Fourth, the diagonal bounding boxes D provide some improve-
ment for Sorted for three of the four datasets. This is practically
relevant because the diagonal bounding boxes are stored directly
in the event list of the sweep and thus also avoid costly geometry
cache loads for false-positive candidates. However, this backfires
for OHM with its many large boundaries, where the cache is not
evicted as often as it should be, which leads to a RAM consumption
beyond the machine’s swapping threshold. This is an artifact of
our implementation, which can and should be fixed. For Geos, the
effect of D vanishes in comparison to the much larger cost for the
full geometry comparisons, and the performance drop for OHM is
less pronounced for the same reason.

Fifth, the other heuristics have little effect for both Sorted and
Geos and are therefore not relevant in practice. In particular, the
oriented bounding box O is not worth the additional effort of com-
putation and storage. And the very simple S has hardly any effect.

4.3 Evaluation on Other Spatial Joins
We also evaluated the following spatial joins, using the optimal
heuristic for Sorted (CSDoi) and for Geos (CSdoI). The geometries
are subsets of the same OSM dataset used in the evaluation above.
Apart from the queries, the setup was the same as in the previous
section. The results are shown in Table 4.

Q1 1 region (Germany) ⊲⊳ 66.4M residential streets
Q2 0.9M powerlines ⊲⊳ 66.4M residential streets
Q3 66.4M residential streets ⊲⊳ 66.4M residential streets
Q4 0.7M administrative regions ⊲⊳ 66.4M residential streets

Q1 is a spatial join between a single large polygon and many small
line segments. In that case, the C heuristic is able to quickly compute
the result for most candidate pairs. The remaining pairs are few,
so Sorted has only a slight advantage over Geos here. We note
that most of the time for this query is spent parsing of the input
geometries; the actual DE-9IM computation takes around two times
longer for Geos than for Sorted.

Q2 mainly involves candidate pairs with simple and short line
segments on one side of the spatial join, and simple but long line
segments on the other side. For such comparisons, the geometry
representation makes little difference. For both Sorted and Geos,
the C heuristic helps to avoid many full comparisons.

Q3 mainly involves candidate pairs with simple and short line
segments on both sides. In that case, the geometry representation
makes even less of a difference. Also, the C heuristic has hardly any
effect because the two geometries typically lie in the same cell.

Q4 is the hardest of the four queries. Is is comparable to Q1,
except that now many complex geometries are involved on the left
side of the spatial join. We therefore see the same effects as for Q1,
but more pronounced.

In summary, the pre-sorted geometriesmake only little difference
for these queries. The good news is that the additional effort (for
pre-sorting the geometries) does not make the spatial join more
expensive compared to using the conventional representation.

Table 4: Running times for the four spatial-join queries from
Section 4.3. The second column gives the number of pairs for
which the DE-9IM matrix was computed. The third column
gives the number of candidates generated by the sweep line
algorithm. The fourth column gives the number of pairs for
which a full comparison was computed, using either Sorted
or Geos.

Full comparison using

#results #cands #exact Sorted Geos

Q1 2.0 M 2.5 M 10 k 1.1min 1.2min
Q2 1.4 M 73 M 12 M 1.2min 1.2min
Q3 84 M 100 M 100 M 1.2min 1.4min
Q4 298 M 417 M 34 M 2.7min 6.4min

4.4 Comparison Against Other Systems
Our evaluation above has compared variants of itself, regarding
various heuristics and regarding the implementation of the full
comparison of two geometries. We also ran our queries on other
systems that compute spatial joins, notably PostgreSQL+PostGIS,
and a variety of other well-known databases.

As explained at the beginning of Section 1, PostgreSQL+PostGIS
uses a simple index nested-loop join for the candidate generation,
and then uses the Geos library for the full geometry comparisons.
The running times of PostgreSQL+PostGIS are therefore strictly
worse than reported in Tables 3 and 4 for Geos. Vice versa, our
Sorted approach would directly benefit PostgreSQL+PostGIS and
other systems of its kind. And, of course, for datasets and queries
like the above, these systems would benefit from using a sweep
line approach for the candidate generation (with the exception of
Q1, where the left side of the spatial join consists of only a single
object).

5 Conclusions and Future Work
We provide a complete, fully functional, and carefully engineered
implementation for the standard spatial-join problem. Our code
as well as all the reproducibility materials are publicly available
on https://github.com/ad-freiburg/spatialjoin. We investigate five
heuristics for reducing the set of candidate pairs, as well as two
variants for the exact geometry comparisons. The five key insights
from our evaluation are: (1) our pre-sorted representation is crucial
for spatial joins involving complex geometries, especially in combi-
nation with small geometries; (2) cell IDs are crucial for OSM-like
data; (3) inner-outer bounding boxes are crucial when using Geos,
while diagonal bounding boxes are better when using Sorted; (4)
the other heuristics we tried have little practical relevance.

Interesting directions for future work are: (1) low-level optimiza-
tions like a special handling of convex geometries (which intersect
the sweep line at most twice); (2) improve the handling of pairs of
large but similar geometries, as they occur frequently in OHM; (3)
re-run our experiments on synthetic datasets, e.g. generated by Spi-
der5; (4) provide our implementation as a library that can be directly
integrated into widely used systems like PostgreSQL+PostGIS.

5https://spider.cs.ucr.edu

https://github.com/ad-freiburg/spatialjoin
https://spider.cs.ucr.edu
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