
Semantic SPARQL Templates
Christina Davril

1

Structure

• What is KGQA?

• What are semantic SPARQL templates?

• Key characteristics of the templates

• Wikipedia Lists (benchmark)

• Results of frequency analyses

2

What is KGQA?

3

Knowledge Graphs
• Knowledge Bases

• Examples: Wikidata, PubChem, UniProt

• RDF: Resource Description Framework

• Triples:

<subject> <predicate> <object>

“The Hitchhiker's Guide to the Galaxy” “author” “Douglas Adams”

 Q3107329 P50 Q42

• SPARQL: SPARQL Protocol and RDF Query Language

4

Wikidata
example

page

5

Knowledge Graph Question Answering (KGQA)

Source: https://ad-blog.cs.uni-freiburg.de/post/semantic-sparql-templates-for-question-answering-over-wikidata/

QLever

What are semantic SPARQL templates?

7

Semantic SPARQL templates?

1. Politicians

2. Politicians are German

3. The most recent party for each politician

8

Semantic SPARQL templates?

1. Politicians → CONSTRAINT

2. Politicians are German → CONSTRAINT

3. The most recent party for each politician → ATTRIBUTE

Semantic Characteristic Semantic Category

9

QLever Output:

Semantic SPARQL templates?

1. Politicians → CONSTRAINT

?politician wdt:P106/wdt:P279* wd:Q82955 .

<variable1> <occupation>/<subclass-of> <politician>

“path”:

…

Semantic Template

10

Semantic SPARQL templates?

2. Politicians are German → CONSTRAINT

?politician wdt:P106/wdt:P279* wd:Q82955 .

?politician wdt:P27 wd:Q183 .

<variable1> <country-of-citizenship> <Germany>

QLever Output:

…

“add_path”:

11

Semantic SPARQL templates?

3. The most recent party for each politician → ATTRIBUTE

?politician wdt:P106/wdt:P279* wd:Q82955 .

?politician wdt:P27 wd:Q183 .

?politician ??? ?party .

<variable1> <current-political-party?> <variable2>

12

13

“the party with the
maximum start time value
(for each politician)”

14

3. The most recent party for each politician → ATTRIBUTE

?politician wdt:P106/wdt:P279* wd:Q82955 .

?politician wdt:P27 wd:Q183 .

?politician p:P102 ?p102 .

?p102 ps:P102 ?party .

?p102 pq:P580 ?start_time .

P102

<member_of_
political_party>

P580

<start_time>

“add_path”:

ATTRIBUTE

ATTRIBUTE

ATTRIBUTE

15

16

Template:

17

• no DISTINCT

• MAX

• ?party (the “arg“)

• ?start_time

• ?max_start_time

• ?politician

• no other variables to project

• ?politician wdt:P106/wdt:P279* wd:Q82955 .

…
?p102 pq:P580 ?start_time .

Arguments:

3. The most recent party for each

politician → ATTRIBUTE

QLever Output:

18

Human-readable output, duplicate-free, showing well-known entities first

4. Names of politicians and political parties → ATTRIBUTE

“add_name”:

?politician rdfs:label ?politician_name . FILTER(LANG(?politician_name)=“en”)

“add_path”:

?politician ^schema:about/wikibase:sitelinks ?sitelinks .

5. Number of Wikipedia site links per politician → ATTRIBUTE

19

7. Order by descending number of Wikipedia site links → OUTPUT

“order”:

DESC(?sitelinks)

6. Output politician names and party names (distinct pairs) → OUTPUT

“select”: SELECT DISTINCT ?politician_name
?party_name WHERE {

…
}

20

QLever Output:

https://qlever.cs.uni-freiburg.de/wikidata/nuT7zG

21

Key characteristics of the templates

22

Why does “arg_agg” contain code duplication / two subqueries?

23

→ To account for ties.

Why does “arg_agg” contain code duplication / two subqueries?

24

Question Answering over Linked Data: QALD-9-plus, ID 351, April 2022

“Who is the Formula 1 race driver with the most races?”

Gold query:

SELECT DISTINCT ?uri

WHERE {
 ?uri wdt:P106 wd:Q10841764 .
 ?uri wdt:P1350 ?num .
}
ORDER BY DESC(?num) LIMIT 1

“Correct result”: Michael Schumacher (Q9671)

Q10841764

<Formula-One-driver>

P1350

<number of matches played/races/starts

25

Question Answering over Linked Data: QALD-9-plus, ID 351, April 2022

“Who is the Formula 1 race driver with the most races?”

Gold query:

SELECT DISTINCT ?uri

WHERE {
 ?uri wdt:P106 wd:Q10841764 .
 ?uri wdt:P1350 ?num .
}
ORDER BY DESC(?num) LIMIT 1

“Correct result”: Michael Schumacher (Q9671)

Problems:

• Does not account for ties
→ Uses world knowledge

• Does not provide a source / verifiable
ground truth
→Why is the result not Kimi Räikkönen?

• Generic variables
Q10841764

<Formula-One-driver>

P1350

<number of matches played/races/starts

26

Source: Wayback Machine – Internet Archive:
https://web.archive.org/web/20220422083644/https://en.wikipedia.org/wiki/List_of_Formula_One_drivers 27

Inclusion of zero counts using the “agg” template

QALD-9-plus: 8 out of 412 examples
QALD-10: 3 out of 394 examples

Problems:

→ Indicates lack of variety regarding query structures

→ Counts of zero are only included in one example where an average count is required

Examples: “Film series and how many films they contain”, “Actors and their number of won awards”, …

QALD-10, ID 23: “How many spouses do heads of state have on average?”

1) “agg”: Count spouse statements for each head of state, incl. 0
2) “agg_all”: Take the mean

28

“agg” sub-type for COUNT:

Items for which counts are computed

Counted items

Pro:

• Includes (real) counts of zero

• One version of “agg“ for COUNT aggregation is enough.

Con:

• Includes missing values.

• More complicated to use.

Inclusion of zero counts using the “agg” template

29

Summary

• 18 templates

• Knowledge graph-independent

• For lower-level semantic purposes: e.g., “path”

• For higher-level semantic purposes: e.g., “arg_agg”

• Made to be generally applicable

• Use a basic set of SPARQL 1.1 constructs, e.g., no HAVING in addition

to FILTER

• Based on Wikidata-based benchmark/dataset: Wikipedia Lists

30

31

Wikipedia Lists (benchmark)

Wikipedia Lists

• 60 examples

• examples are based on (information in) Wikipedia lists

• re-creations of full Wikipedia lists → often tabular or table-like

• questions about aspects of Wikipedia lists

• Handwritten query version (sometimes created using templates as aid!)

• Generated, template-based query version

• The Wikidata output (QLever) was compared to the info in the Wikipedia list and

discrepancies resolved or documented

• The results of the handwritten and generated queries match

32

qlever.cs.uni-
freiburg.de/wikidata/fKDg2G

en.wikipedia.org/wiki/List_of_
country_calling_codes

Wikipedia list vs. QLever Output

33

34

Results of frequency analyses

The 60 examples had 1,130
instances of templates.

Template usage analysis

35

path
add_path

union
minus

bind
filter

optional
add_name

add_desc

36

Which (other) templates were
inserted into the templates?

“add_path”:

Example: “arg_agg_all” containing “agg”

“Which US president was played by the most actors in a movie? Also show the

actors”

“Which Formula One driver won the most championships and in which years?”

“Which movie has won the most Oscars?”

“Who composed the music for the most Pixar films (excluding short films)?”

“Which country borders the most other countries?”

→Clear pattern that may help recognize that this combination of templates is required

→ Same aggregators used every time:

COUNT in “agg”

MAX in “arg_agg_all”
37

Syntactic structure created with the help of the Stanford Lexicalized Parser v2.0.4.
Model: English PCFG; Tags: Penn Treebank syntactic and POS tagsets

38

Thank you for your attention and participation!

Questions?

39

40

Extra slides

Overview: Semantic Categories & Templates

CONSTRAINT: path, add_path, connect, filter, minus, arg_ranks_all, val_ranks_all

ATTRIBUTE: add_path, add_name, add_desc

AGGREGATE: agg, agg_all, arg_agg, arg_agg_all

COMBINE: union, bind

OUTPUT: select, order

41

42

{
 "id": 44,
 "aggregation": true,
 "question": "How many nuclear reactors operate in each country? Sort by descending number and only include
 countries that have operational reactors",
 "wikipedia_list": "https://en.wikipedia.org/wiki/Nuclear_power_by_country#Overview",
 "hm_qlever_link": "https://qlever.cs.uni-freiburg.de/wikidata/PeqCNw",
 "hm_query": "SELECT DISTINCT ?country_name (COUNT(DISTINCT ?nuclear_reactor) AS ?num_nuclear_reactors)
 WHERE { ?country wdt:P31/(wdt:P279)* wd:Q6256 OPTIONAL { ?nuclear_reactor wdt:P31/(wdt:P279)* wd:Q134447 .
 ?nuclear_reactor wdt:P5817 wd:Q55654238 ; wdt:P17 ?country } ?country @en@rdfs:label ?country_name } GROUP
 BY ?country ?country_name HAVING (?num_nuclear_reactors > 0) ORDER BY DESC(?num_nuclear_reactors)",
 "results_comparison": "Even though the Wikidata output contains much fewer entities, four out of the top 5 of the
 Wikipedia list are within the top 5 of the Wikidata output, suggesting that the query is adequate. Countries were
 retrieved using a simple triple as the filtering by the number of operational reactors already eliminated many
 undesirable result entities.",
 "tb_query": "SELECT DISTINCT ?country_name ?num_nuclear_reactors WHERE { { { SELECT (COUNT(DISTINCT
 ?nuclear_reactor) AS ?num_nuclear_reactors) ?country WHERE { ?country wdt:P31/wdt:P279* wd:Q6256 .
 OPTIONAL { ?country wdt:P31/wdt:P279* wd:Q6256 . ?nuclear_reactor wdt:P31/wdt:P279* wd:Q134447 .
 ?nuclear_reactor wdt:P5817 wd:Q55654238 . ?nuclear_reactor wdt:P17 ?country . } } GROUP BY ?country } }
 FILTER(?num_nuclear_reactors > 0) ?country rdfs:label ?country_name . FILTER(LANG(?country_name)='en') }
 ORDER BY DESC(?num_nuclear_reactors)"
 },

wikipedia_lists.json – example entry

43

"44": {
 "[1]": {
 "desc": "countries",
 "template": "path",
 "arguments": [
 "?country",
 "wdt:P31/wdt:P279*",
 "wd:Q6256“
]
 },
 "[2]": {
 "desc": “nuclear reactors per country",
 "template": "add_path",
 "arguments": [
 "?nuclear_reactor",
 "wdt:P17",
 "?country",
 "[1]"
]
 },
 "[3]": {
 "desc": " nuclear reactors are nuclear reactors",
 "template": "add_path",
 …

semantic_plans.json – example entry

Which (other) templates were
inserted into the templates?

“add_path”:

44

Missing functionality in SPARQL

Among the templates, there are “arg_ranks_all” and “val_ranks_all” …

arg_ranks_all e.g., needed for “Which are the top three electronegative chemical elements?”

→ ranks 1-3 overall

val_ranks_all e.g., needed for “How fast is the world’s second fastest man (100 m sprint)?”

→ rank 2 overall

… but there are no good templates for „arg_ranks “ and „val_ranks“ (with grouping)!

Example: “What is the second largest country on each continent?”

Attempts either require computationally expensive operations or pre-generation!
45

	Slide 1: Semantic SPARQL Templates
	Slide 2: Structure
	Slide 3: What is KGQA?
	Slide 4: Knowledge Graphs
	Slide 5
	Slide 7: What are semantic SPARQL templates?
	Slide 8: Semantic SPARQL templates?
	Slide 9: Semantic SPARQL templates?
	Slide 10: Semantic SPARQL templates?
	Slide 11: Semantic SPARQL templates?
	Slide 12: Semantic SPARQL templates?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

