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What is KGQA?
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Knowledge Graphs
• Knowledge Bases

• Examples: Wikidata, PubChem, UniProt

• RDF: Resource Description Framework

• Triples:

<subject> <predicate> <object>

“The Hitchhiker's Guide to the Galaxy” “author”  “Douglas Adams”

 Q3107329    P50   Q42

• SPARQL: SPARQL Protocol and RDF Query Language
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Wikidata
example

page
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Knowledge Graph Question Answering (KGQA)

Source: https://ad-blog.cs.uni-freiburg.de/post/semantic-sparql-templates-for-question-answering-over-wikidata/

QLever



What are semantic SPARQL templates?
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Semantic SPARQL templates?

1. Politicians 

2. Politicians are German 

3. The most recent party for each politician
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Semantic SPARQL templates?

1. Politicians → CONSTRAINT

2. Politicians are German → CONSTRAINT

3. The most recent party for each politician → ATTRIBUTE

Semantic Characteristic Semantic Category
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QLever Output:

Semantic SPARQL templates?

1. Politicians → CONSTRAINT

?politician wdt:P106/wdt:P279*          wd:Q82955 .

<variable1> <occupation>/<subclass-of> <politician>

“path”:

…

Semantic Template
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Semantic SPARQL templates?

2. Politicians are German → CONSTRAINT

?politician wdt:P106/wdt:P279*       wd:Q82955 .

?politician wdt:P27                  wd:Q183 .

<variable1> <country-of-citizenship> <Germany>

QLever Output:

…

“add_path”:
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Semantic SPARQL templates?

3.  The most recent party for each politician → ATTRIBUTE

?politician wdt:P106/wdt:P279*       wd:Q82955 .

?politician wdt:P27                  wd:Q183 .

?politician ??? ?party .

<variable1>  <current-political-party?>  <variable2>
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“the party with the 
maximum start time value
(for each politician)”
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3. The most recent party for each politician → ATTRIBUTE

?politician wdt:P106/wdt:P279*       wd:Q82955 .

?politician wdt:P27                  wd:Q183 .

?politician p:P102 ?p102 .

?p102      ps:P102 ?party .

?p102       pq:P580 ?start_time .

P102

<member_of_
political_party>

P580

<start_time>

“add_path”:

ATTRIBUTE

ATTRIBUTE

ATTRIBUTE
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Template:
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• no DISTINCT

• MAX

• ?party (the “arg“)

• ?start_time

• ?max_start_time

• ?politician

• no other variables to project

•   ?politician wdt:P106/wdt:P279* wd:Q82955 .

…
?p102 pq:P580 ?start_time .

Arguments:



3. The most recent party for each 

politician → ATTRIBUTE

QLever Output:
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Human-readable output, duplicate-free, showing well-known entities first

4.   Names of politicians and political parties  → ATTRIBUTE

“add_name”:

?politician rdfs:label ?politician_name . FILTER(LANG(?politician_name)=“en”)

“add_path”:

?politician ^schema:about/wikibase:sitelinks ?sitelinks .

5.   Number of Wikipedia site links per politician → ATTRIBUTE
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7.   Order by descending number of Wikipedia site links  → OUTPUT

“order”:

DESC(?sitelinks)

6.   Output politician names and party names  (distinct pairs) → OUTPUT

“select”: SELECT DISTINCT ?politician_name 
?party_name WHERE {

… 
}
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QLever Output:

https://qlever.cs.uni-freiburg.de/wikidata/nuT7zG
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Key characteristics of the templates
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Why does “arg_agg” contain code duplication / two subqueries?
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→ To account for ties.

Why does “arg_agg” contain code duplication / two subqueries?
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Question Answering over Linked Data:  QALD-9-plus, ID 351, April 2022

“Who is the Formula 1 race driver with the most races?”

Gold query:

SELECT DISTINCT ?uri 

WHERE { 
 ?uri wdt:P106 wd:Q10841764 .
 ?uri wdt:P1350 ?num . 
} 
ORDER BY DESC(?num) LIMIT 1

“Correct result”: Michael Schumacher (Q9671)

Q10841764

<Formula-One-driver>

P1350 

<number of matches played/races/starts
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Question Answering over Linked Data:  QALD-9-plus, ID 351, April 2022

“Who is the Formula 1 race driver with the most races?”

Gold query:

SELECT DISTINCT ?uri 

WHERE { 
 ?uri wdt:P106 wd:Q10841764 .
 ?uri wdt:P1350 ?num . 
} 
ORDER BY DESC(?num) LIMIT 1

“Correct result”: Michael Schumacher (Q9671)

Problems:

• Does not account for ties 
→ Uses world knowledge

• Does not provide a source / verifiable 
ground truth
→Why is the result not Kimi Räikkönen?

• Generic variables
Q10841764

<Formula-One-driver>

P1350 

<number of matches played/races/starts
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Source: Wayback Machine – Internet Archive: 
https://web.archive.org/web/20220422083644/https://en.wikipedia.org/wiki/List_of_Formula_One_drivers 27



Inclusion of zero counts using the “agg” template

QALD-9-plus:   8 out of 412 examples
QALD-10:         3 out of 394 examples

Problems:

→ Indicates lack of variety regarding query structures

→ Counts of zero are only included in one example where an average count is required

Examples: “Film series and how many films they contain”, “Actors and their number of won awards”, …

QALD-10, ID 23: “How many spouses do heads of state have on average?”

1) “agg”: Count spouse statements for each head of state, incl. 0
2) “agg_all”:   Take the mean
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“agg” sub-type for COUNT:

Items for which counts are computed

Counted items

Pro: 

• Includes (real) counts of zero

• One version of “agg“ for COUNT aggregation is enough.

Con: 

• Includes missing values.

• More complicated to use.

Inclusion of zero counts using the “agg” template
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Summary

• 18 templates

• Knowledge graph-independent

• For lower-level semantic purposes: e.g., “path”

• For higher-level semantic purposes: e.g., “arg_agg”

• Made to be generally applicable

• Use a basic set of SPARQL 1.1 constructs, e.g., no HAVING in addition 

to FILTER

• Based on Wikidata-based benchmark/dataset: Wikipedia Lists
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Wikipedia Lists (benchmark)



Wikipedia Lists

• 60 examples

• examples are based on (information in) Wikipedia lists

• re-creations of full Wikipedia lists → often tabular or table-like

• questions about aspects of Wikipedia lists

• Handwritten query version (sometimes created using templates as aid!)

• Generated, template-based query version

• The Wikidata output (QLever) was compared to the info in the Wikipedia list and 

discrepancies resolved or documented

• The results of the handwritten and generated queries match
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qlever.cs.uni-
freiburg.de/wikidata/fKDg2G

en.wikipedia.org/wiki/List_of_
country_calling_codes

Wikipedia list vs. QLever Output
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Results of frequency analyses



The 60 examples had 1,130 
instances of templates.

Template usage analysis
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path
add_path

union
minus

bind
filter

optional
add_name

add_desc
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Which (other) templates were 
inserted into the templates?

“add_path”:



Example: “arg_agg_all” containing “agg”

“Which US president was played by the most actors in a movie? Also show the 

actors”

“Which Formula One driver won the most championships and in which years?”

“Which movie has won the most Oscars?”

“Who composed the music for the most Pixar films (excluding short films)?”

“Which country borders the most other countries?”

→Clear pattern that may help recognize that this combination of templates is required

→ Same aggregators used every time: 

COUNT in “agg”

MAX in “arg_agg_all”
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Syntactic structure created with the help of the Stanford Lexicalized Parser v2.0.4.
Model: English PCFG; Tags: Penn Treebank syntactic and POS tagsets
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Thank you for your attention and participation!

Questions?
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Extra slides



Overview: Semantic Categories & Templates

CONSTRAINT:  path, add_path, connect, filter, minus, arg_ranks_all, val_ranks_all

ATTRIBUTE:     add_path, add_name, add_desc

AGGREGATE:  agg, agg_all, arg_agg, arg_agg_all

COMBINE:        union, bind

OUTPUT:           select, order
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{
            "id": 44,
            "aggregation": true,
            "question": "How many nuclear reactors operate in each country? Sort by descending number and only include 
            countries that have operational reactors",
            "wikipedia_list": "https://en.wikipedia.org/wiki/Nuclear_power_by_country#Overview",
            "hm_qlever_link": "https://qlever.cs.uni-freiburg.de/wikidata/PeqCNw",
            "hm_query": "SELECT DISTINCT ?country_name (COUNT(DISTINCT ?nuclear_reactor) AS ?num_nuclear_reactors) 
            WHERE { ?country wdt:P31/(wdt:P279)* wd:Q6256 OPTIONAL { ?nuclear_reactor wdt:P31/(wdt:P279)* wd:Q134447 . 
            ?nuclear_reactor wdt:P5817 wd:Q55654238 ; wdt:P17 ?country } ?country @en@rdfs:label ?country_name } GROUP 
            BY ?country ?country_name HAVING ( ?num_nuclear_reactors > 0 ) ORDER BY DESC(?num_nuclear_reactors)",
            "results_comparison": "Even though the Wikidata output contains much fewer entities, four out of the top 5 of the 
            Wikipedia list are within the top 5 of the Wikidata output, suggesting that the query is adequate. Countries were 
            retrieved using a simple triple as the filtering by the number of operational reactors already eliminated many 
            undesirable result entities.",
            "tb_query": "SELECT DISTINCT ?country_name ?num_nuclear_reactors WHERE { { { SELECT (COUNT(DISTINCT 
           ?nuclear_reactor) AS ?num_nuclear_reactors) ?country WHERE { ?country wdt:P31/wdt:P279* wd:Q6256 . 
           OPTIONAL { ?country wdt:P31/wdt:P279* wd:Q6256 . ?nuclear_reactor wdt:P31/wdt:P279* wd:Q134447 . 
           ?nuclear_reactor wdt:P5817 wd:Q55654238 . ?nuclear_reactor wdt:P17 ?country . } } GROUP BY ?country } } 
           FILTER(?num_nuclear_reactors > 0) ?country rdfs:label ?country_name . FILTER(LANG(?country_name)='en') } 
           ORDER BY DESC(?num_nuclear_reactors)"
 },

wikipedia_lists.json – example entry
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"44": {
    "[1]": {
        "desc": "countries",
        "template": "path",
        "arguments": [
            "?country",
            "wdt:P31/wdt:P279*",
            "wd:Q6256“
        ]
    },
    "[2]": {
        "desc": “nuclear reactors per country",
        "template": "add_path",
        "arguments": [
            "?nuclear_reactor",
            "wdt:P17",
            "?country",
            "[1]"
        ]
    },
    "[3]": {
        "desc": " nuclear reactors are nuclear reactors",
       "template": "add_path",
        …

semantic_plans.json – example entry



Which (other) templates were 
inserted into the templates?

“add_path”:
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Missing functionality in SPARQL

Among the templates, there are “arg_ranks_all” and “val_ranks_all” …

arg_ranks_all e.g., needed for  “Which are the top three electronegative chemical elements?”

→ ranks 1-3 overall

val_ranks_all e.g., needed for  “How fast is the world’s second fastest man (100 m sprint)?”

→ rank 2 overall

… but there are no good templates for „arg_ranks “ and „val_ranks“ (with grouping)!

Example: “What is the second largest country on each continent?”

Attempts either require computationally expensive operations or pre-generation!
45
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