
Bachelor of Science Thesis

Efficient Spatial Search for

the QLever SPARQL Engine

Christoph Ullinger

January 20th, 2025

Submitted to the University of Freiburg

Department of Computer Science

Chair for Algorithms and Data Structures

University of Freiburg
Department of Computer Science

Chair for Algorithms and Data Structures

Author Christoph Ullinger,
Matriculation Number: 5300285

Writing Period October 18th, 2024 – January 20th, 2025

Examiner Prof. Dr. Hannah Bast,
Department of Computer Science
Chair for Algorithms and Data Structures

Supervisor M.Sc. Johannes Kalmbach,
Department of Computer Science
Chair for Algorithms and Data Structures

Declaration I hereby declare, that I am the sole author and composer
of this thesis and that no other sources or learning aids,
other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others
by providing detailed references of said work.

I hereby also declare, that my thesis has not been pre-
pared for another examination or assignment, either
wholly or excerpts thereof.

Freiburg, January 20th, 2025

Place, Date Signature

Abstract
We present an end-to-end workflow for efficiently performing geographic searches
for nearest neighbors with the QLever SPARQL engine. Our solution significantly
reduces the time and the users’ effort required to combine and query spatial data
from multiple sources.

QLever allows working with points in the standardized Well-Known Text
format, which it now stores efficiently. Searching for geographically close points
in data sets containing hundreds of millions of points becomes a matter of seconds
using QLever’s new spatial search capabilities. A fast algorithm based on a spatial
index is presented as well as a proof of concept baseline algorithm. The spatial
search is carefully integrated into the SPARQL syntax.

We introduce programs for the conversion of data from multiple formats
(Keyhole Markup Language, Comma-Separated Values and General Transit Feed
Specification) to RDF. Additionally, a new program allows users to construct
complex spatial queries for QLever with a graphical user interface.

The retrieval of data, which would otherwise require working with many
different data sets individually, is now possible in a single SPARQL query. We
demonstrate the usability of our workflow using a current research question from
political science.

Furthermore, we show that our efficient spatial search implementation in
QLever surpasses the query performance of the popular PostgreSQL system by or-
ders of magnitude for large inputs. Regarding all benchmarks, our implementation
shows more stable running times.

I

Zusammenfassung
In dieser Arbeit wird ein Ende-zu-Ende-Workflow für die effiziente Suche nach
geographisch nächstgelegenen Punkten in der QLever SPARQL-Engine vorgestellt.
Die Zeit und der Aufwand die benötigt werden, um Daten aus verschiedenen
Quellen zusammenzuführen und räumlich zu durchsuchen, verringern sich durch
die Umsetzung deutlich.

QLever erlaubt die Verarbeitung von Punkten im standardisierten Well-Known
Text-Format, welches jetzt effizient gespeichert wird. In hunderten Millionen Punk-
ten können unter Verwendung der neuen räumlichen Suchfunktion geographisch
nächstgelegene Punkte in Sekundenschnelle gefunden werden. Vorgestellt werden
ein schneller Algorithmus auf der Grundlage eines räumlichen Index sowie ein
Basisalgorithmus zum Vergleich. Desweitern wird die räumliche Suche sorgfältig
in die SPARQL-Syntax integriert.

Die Arbeit präsentiert Programme, um die einfache Konvertierung von Daten aus
verschiedenen Formaten (Keyhole Markup Language, Comma-Separated Values
und General Transit Feed Specification) nach RDF zu ermöglichen. Außerdem
wird ein Programm inklusive graphischer Benutzer:innenoberfläche eingeführt, um
den Entwurf komplexer räumlicher Abfragen für QLever zu vereinfachen.

Die Gewinnung von Daten, für die sonst viele verschiedene Datensätze einzeln
bearbeitet werden müssten, ist jetzt mit einer einzigen SPARQL-Abfrage mög-
lich. Die Nutzbarkeit des dargestellten Workflows wird anhand einer aktuellen
Forschungsfrage aus der Politikwissenschaft demonstriert.

Darüber hinaus wird gezeigt, dass das implementierte Verfahren der effizienten
räumlichen Suche in QLever die Geschwindigkeit des weit verbreiteten PostgreSQL-
Systems bei großen Eingaben um Größenordnungen übertrifft. Bei Betrachtung
aller Vergleichstests zeigt das in QLever implementierte Verfahren stabilere Lauf-
zeiten.

II

Contents
1 Introduction . 1

1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contribution . 3

2 Background . 5
2.1 RDF . 5
2.2 SPARQL and GeoSPARQL . 7
2.3 QLever . 9
2.4 OpenStreetMap and osm2rdf . 10
2.5 S2Geometry . 11

3 Approach and Implementation . 14
3.1 Efficient Representation of Geographic Points 14
3.2 Nearest Neighbors Spatial Search 18

3.2.1 Nested-Loop Baseline Algorithm 23
3.2.2 Efficient Index-Based Algorithm 25
3.2.3 Integration into SPARQL Syntax 27

3.3 SPARQL Functions . 33
3.3.1 Precision Improvement of Geographic Distance Function . 33
3.3.2 Support for Exponentiation Math Function 33
3.3.3 Support for Standard Deviation Aggregation Function . . 34

3.4 Conversion of External Data Sets to RDF 36
3.4.1 Keyhole Markup Language (KML) 37
3.4.2 Comma-Separated Values (CSV) 39
3.4.3 General Transit Feed Specification (GTFS) 42
3.4.4 Election Data . 48

3.5 Generation of Large Spatial Queries 49
3.5.1 Interactive Graphical User Interface 51

III

Contents

4 Case Study: On Infrastructure and Political Polarization . . . 53
4.1 Background . 53
4.2 Data Set Generation using QLever 54
4.3 Real-World Results . 56

5 Evaluation . 61
5.1 Experimental Setup . 61
5.2 Results . 63

5.2.1 Data Generation and Import 64
5.2.2 Distance Measurement on Points 65
5.2.3 Nearest Neighbors Spatial Search 66
5.2.4 Maximum Distance Spatial Search 76
5.2.5 Large Combined Spatial Search 77

6 Conclusion . 78
6.1 Future Work . 78

7 Acknowledgments . 80

8 Bibliography . 81

9 Appendix . 89
9.1 Software and Documentation . 89
9.2 Reproduction of the Results . 89

IV

Acronyms

Acronym Description
API Application Programming Interface
CC-BY Creative Commons Attribution License, as published in [17]
CLI Command Line Interface
CSV Comma-Separated Values, as defined in [62]
DELFI Durchgängige elektronische Fahrgastinformation e.V.
EU European Union
GiST Generalized Search Tree
GPL GNU General Public License, as published in [29]
GTFS General Transit Feed Specification, as defined in [32]
GUI Graphical User Interface
IRI Internationalized Resource Identifier, as defined in [22]
JSON JavaScript Object Notation, as defined in [11]
KML Keyhole Markup Language, as defined in [50]
ODBL Open Database License, as published in [48]
OGC Open Geospatial Consortium
OSM OpenStreetMap
PBF Protocolbuffer Binary Format
PDF Portable Document Format
POI Point of Interest
RDF Resource Description Framework, as defined in [71]
SPARQL SPARQL Protocol and RDF Query Language, as defined in

[73]
SQL Structured Query Language, as defined in [41]
W3C World Wide Web Consortium
WKT Well-Known Text Representation of Geometry, as defined in

[51]
XML Extensible Markup Language, as defined in [70]

V

Figure Index
2.1 Visualization of an RDF knowledge graph 6
2.2 Visualization of a SPARQL query as a graph 7
2.3 Example how areas are addressed by cells in s2geometry 12
2.4 Visualization of the space-filling curve used for numbering of cells

in s2geometry . 12
3.1 Components of a 64-bit ValueId for a geographic point, example

“Freiburg (Breisgau) Hbf” . 15
3.2 Coordinate system as a fictional map with all points from the left

and right example tables, demonstrating the semantics of a nearest
neighbors search with maximum number of results 2 and maximum
distance 8.5 . 20

3.3 Fictional map used to illustrate the asymmetrical nature of nearest
neighbors search with maximum number of results 22

3.4 Diagram of GTFS tables supported by gtfs2rdf and their primary
keys, foreign key relations and relevant attributes 44

3.5 Map view using QLever Petrimaps with queries on different Linked
GTFS data sets from gtfs2rdf augmented by line geometries . . . 47

3.6 Interactive user interface with tree-like structure for the com-
pose_spatial program . 51

4.1 Map of Germany divided into the election districts for the 2021
Federal Election. Colored to visualize different variables 60

5.1 Plot of the running times for the nearest neighbors benchmark
using the index-based strategies 73

5.2 QLever: Query plan and running time analysis from QLever’s GUI
for a nearest neighbor join between all stations and supermarkets
on an ad hoc s2geometry index 75

VI

Table Index
3.1 A simple example of an equivalence join 19
3.2 Input tables for the nearest neighbors search example 20
3.3 Result table for the nearest neighbors search example 20
4.1 Right-left score (RILE) based on parliamentary seating for the

successfully elected parties . 56
4.2 Correlation matrix between all distance variables, the average num-

ber of public transport trips, the population density and the po-
larization for German Federal Election 2021 58

4.3 Multivariate linear regression models to explain political polariza-
tion in two German elections using infrastructural and socioeco-
nomic indicators . 59

5.1 Technical specifications of the machine used for evaluation 61
5.2 Running times and disk usage for data set preparation and index

build on OSM Germany . 64
5.3 Running times and disk usage for data set preparation and index

build on election and GTFS data sets 65
5.4 Evaluation results for efficient point representation 66
5.5 OSM tags used for evaluation and their size in OSM Germany . . 66
5.6 Evaluation results for nearest neighbor searches on OSM Germany

with sizes where a cartesian product is feasible 71
5.7 Evaluation results for nearest neighbor searches on OSM Germany

with sizes where a cartesian product is not feasible 72
5.8 Evaluation results for a nearest neighbors search between stops

from GTFS data sets with a maximum distance of 100 meters . . 76
5.9 Running times for the OSM part of the case study: Distance be-

tween residential buildings and 13 types of POIs on OSM Germany.
Comparison of QLever with PostgreSQL. 77

5.10 Running times for the case study SPARQL query using QLever . 77

VII

Code Index
2.1 Example RDF knowledge graph as triples in RDF turtle format . 6
2.2 Example prefix declaration in RDF turtle format 6
2.3 Simple SPARQL example query 7
2.4 Example WKT point literal for “Freiburg (Breisgau) Hbf” 8
2.5 Example query using GeoSPARQL to find all restaurants in the

city of Freiburg . 9
2.6 Example statements, where indices over differently permuted triples

are beneficial . 10
2.7 S2PointIndex: Type declaration of the used index data structure . 13
3.1 GeoSPARQL functions supported by QLever 14
3.2 GeoPoint: Definition of attributes in the new GeoPoint class . . . 15
3.3 SPARQL query to find the minimum distance from every public

transport stop in Freiburg to a supermarket using a cartesian product 18
3.4 Pseudocode for the baseline algorithm for nearest neighbors search 24
3.5 Pseudocode for the index-based algorithm for nearest neighbors

search . 26
3.6 Example of a spatial search showcasing all supported configuration

parameters: “Get all pairs of public transport stops and their
nearest restaurant with names and distance, where the restaurant
is at most 500 meters away.” . 28

3.7 SpatialJoin: Type declaration of the spatial join task 29
3.8 Example of a spatial search using the abbreviated special predicate

syntax: “Get all pairs of public transport stops and restaurants
with names and distance, which are at most 500 meters away from
each other.” . 32

3.9 GeoSPARQL query to compute the distance between Berlin and
Tokyo . 33

3.10 Example usage of the new exponentiation function, where it returns
a more precise result than the previous method 34

VIII

Code Index

3.11 Example usage of the query code previously required for the com-
putation of the standard deviation 35

3.12 Example usage of the new standard deviation aggregation function 35
3.13 Example KML document containing a single point 37
3.14 Example kml2rdf output for the point from the example KML

document . 39
3.15 Example CSV data set containing all railway stops in Freiburg . . 40
3.16 Example csv2rdf output for a single row from the example CSV

data set . 41
3.17 SPARQL query for places reachable without change from “Freiburg

Hauptbahnhof” in Linked GTFS 45
3.18 SPARQL query for average number of daily trips per stop in Linked

GTFS . 46
3.19 Example of the first lines of output from election2rdf 48
3.20 Example SPARQL shard for selecting restaurants with their names 49
5.1 QLever: Average distance in kilometers of any centroid in the data

set to Berlin . 65
5.2 QLever: Nearest neighbor join between all stations and supermar-

kets with choice of algorithm . 67
5.3 PostgreSQL: Cartesian product between all stations and super-

markets aggregated to the minimum per station 67
5.4 PostgreSQL: Nearest neighbor join between all stations and super-

markets on a full GiST index using the official syntax 68
5.5 PostgreSQL: Nearest neighbor join between all stations and super-

markets using an ad hoc GiST index on a temporary table 68
5.6 PostgreSQL: Query plan for a nearest neighbor join between all

stations and supermarkets on a full GiST index 74
5.7 PostgreSQL: Query plan for a nearest neighbor join between all

stations and supermarkets on an ad hoc GiST index 74
9.1 Commands to download and run the presented software 89
9.2 Commands for reproduction of the results 89

IX

1 Introduction
In this thesis we introduce an end-to-end workflow for efficiently performing spatial
searches with the QLever SPARQL engine1. More specifically, QLever is enabled
to support a fast search for geographically close points that can originate from
arbitrary other query operations. In order to realize this feature, an efficient point
representation, baseline and index-based nearest neighbors search algorithms and
an integration into SPARQL syntax are introduced.

To facilitate the workflow from data to query result, we present converters
for the Keyhole Markup Language (KML), Comma-Separated Values (CSV) and
General Transit Feed Specification (GTFS) formats to transform data into RDF
as understood by QLever. Additionally, we introduce a program and graphical
user interface to automatically generate large SPARQL queries for spatial search
using an uncluttered configuration.

1.1 Motivation

Typically, when researching a more complex empirical question, data from multiple
third-party sources is required. A very common scenario in this case is manually
arranging data in a spreadsheet program, writing small helper scripts, importing
some parts of the data into a database system and spending much time plugging
all parts together.

A concrete example is the current research question in political science, how
the availability of public infrastructure influences political polarization. In order
to produce a full data set for this question for two German elections, ten different
data sets from multiple sources have to be combined. Especially, there are multiple
spatial data sets: the OpenStreetMap (OSM) data to provide residential buildings
and points of interest (POIs), files in GTFS format to provide information on
public transport and in KML format to provide electoral districts not present in
OSM. Then multiple spatial searches have to be performed to measure the distance

1Detailed explanations follow in chapter 2 on background.

1

1 Introduction

from residential buildings to different public services and infrastructure. Finally
this information needs to be aggregated spatially using the electoral districts and
brought together with the computation of a polarization index and socioeconomic
structural data. Using existing tools one can easily spend weeks on building the
dataset and hours for computation of the spatial search. Assuming we want to
apply the analysis for another election again, the effortful process would have to
be repeated.

Using the software presented in this thesis, the process is streamlined to
running a program for each data set to convert it to RDF, constructing a single
complete SPARQL query and running QLever to perform the spatial searches and
assemble all required data. With the fast implementation, the individual spatial
searches on millions of buildings and hundreds of thousands of POIs complete in
seconds, the entire complex query in a few minutes.

1.2 Related Work

In the following, we discuss already existing works and implementations.

The popular Blazegraph SPARQL engine implements a spatial search opera-
tion [65]. It uses a special SPARQL SERVICE query, similar to what we propose
in our approach. However, Blazegraph can only collect all points limited by a
range and cannot perform a search for an exact amount of nearest neighbors
with arbitrary distance. Also it requires using its own literal data type not the
standardized WKT format.

Another popular SPARQL engine, Apache Jena Fuseki supports many fea-
tures from the GeoSPARQL standard as well as custom functions, for example
spatialF:nearby(?geometry1, ?geometry2, ?distance, ?unit) for nearby
points with a maximum distance [1]. A nearest neighbors search is not available.

While not being a SPARQL engine but a relational database management
system built on SQL, PostgreSQL and its spatial extension PostGIS are widely
used. PostGIS provides a very large set of spatial features including a nearest
neighbors search as required for the queries we intend to be able to run [60].
Furthermore, PostgreSQL implements a generalized search tree as an index data
structure [37, 42], which can be used for spatial indices.

2

1 Introduction

Another approach to spatial indexing is implemented as part of the s2geome-
try library [35]. It operates on a three-dimensional unit sphere and provides a fast
index data structure. The index is based on a mapping of the sphere’s surface
to one-dimensional identifiers, locality-preservingly allocated with a space-filling
curve. Since s2geometry is a library, it cannot be used directly to query data but
will be integrated into QLever in this thesis.

Similar to our approach, the embedding of spatial information in integer
identifiers and the use of a space-filling curve have already been discussed [67] for
the RDF-3X system [47]. The authors have also implemented a nearest neighbors
search. However the software and source code of this spatial extension to the
RDF-3X system is not publicly available.

Besides the mentioned programs, QLever is another SPARQL engine, which
is faster than RDF-3X or Blazegraph in general query evaluation benchmarks [9]
and publicly available as free software. Up until now QLever does not support a
nearest neighbors search yet.

The remaining subtask of this thesis’ topic, converting spatial data to RDF,
has also been addressed previously. For the conversion of OSM data to RDF, the
osm2rdf [6] tool is available. The program also precomputes spatial relations such
as intersections between geometries on the map using the spatialjoin library [8].

A program called GeoTriples is available for the conversion of KML data
among many other formats [43]. However it is large and complex and thus not well-
suited for our intention of a simple workflow. For converting GTFS data to RDF,
the Open Transport Working Group has provided a reference implementation,
which is unfortunately no longer maintained and therefore currently unusable due
to dependency errors.

1.3 Contribution

Considering the existing work, our contributions in this thesis include the follow-
ing:

• We present an efficient representation of geographic points in QLever that
speeds up all operations on points.

• We implement a proof of concept baseline algorithm for nearest neighbors
search for reference and correctness testing.

3

1 Introduction

• We implement a fast index-based algorithm for nearest neighbors search
using the s2geometry library.

• We integrate the nearest neighbors search into QLever’s query parsing and
query planning using a special SERVICE in SPARQL syntax. Therefore
a nearest neighbors search becomes possible for the first time in QLever.
Additionally, we implement further configuration and optimization function-
alities for this integration.

• We extend QLever to support further useful SPARQL functions for expo-
nentiation and standard deviation.

• We introduce new programs for the conversion of data in various formats
(KML, CSV, GTFS) to RDF. Unlike existing solutions, the programs are
free software and have no external dependencies. They can be easily used
in a workflow with QLever.

• We also introduce a new program and user interface to simplify the process
of creating SPARQL queries for QLever that contain many spatial searches.

• We demonstrate the use of all implemented software with a current use case
from political science.

• We evaluate the implementations extensively and compare them to the
widely-used PostgreSQL system.

4

2 Background
In this chapter we present the concepts that are relevant to understand the
approach and implementation.

2.1 RDF

The Resource Description Framework (RDF) standardizes a terminology and a
data model for knowledge graphs [71, 72]. An RDF dataset is an edge-labeled,
directed graph.

Definition 2.1 (Edge-labeled graph). An edge-labeled graph G is defined as
G = (V, Lab, E). V is a finite set of vertices. Lab is a finite set of labels.
E ⊆ V × Lab× V is a finite set of triples representing directed, labeled edges [2].

In practice, an RDF graph is usually stored as a sequence of triples. Each
triple corresponds to an element of the edge set of the graph. The triples are
structurally inspired by simple human sentences of the form subject – predicate –
object. In addition to the Definition 2.1 of edge-labeled graphs, RDF differentiates
three kinds of vertices, also called nodes. Nodes can be blank, Internationalized
Resource Identifiers (IRIs) [22] or literals. Literals may carry a data type or, only
for strings, a language tag. In RDF, both IRIs and Literals are described with
the terms resources and entities. They represent “something in the world […]
including physical things, documents, abstract concepts, numbers and strings”
[71]. Outgoing edges of a node are called properties of a node. The entire triple
representing an edge is a statement.

A simple example of an RDF knowledge graph is given as triples in a text
representation in Code 2.1. The same data is visualized as an edge-labeled graph
in Figure 2.1.

5

2 Background

1 <bear> <is-a> <family> .
2 <brown-bear> <is-a> <species> .
3 <brown-bear> <subclass-of> <bear> .
4 <polar-bear> <is-a> <species> .
5 <polar-bear> <subclass-of> <bear> .
6 <giant-panda> <is-a> <species> .
7 <giant-panda> <subclass-of> <bear> .
8 <jiao-qing> <is-a> <giant-panda> .

Code 2.1: Example RDF knowledge graph as triples in RDF turtle format

bear

brown-bear polar-beargiant-panda

family

species

jiao-qing

is-a

is-a

is-a
is-a

is-a

subclass-of

subclass-of

subclass-of

Figure 2.1: Visualization of the RDF knowledge graph from Code 2.1

RDF knowledge graphs are commonly stored in turtle format, which is just a
text file containing the triples separated by space and ended by a dot, like Code 2.1.
In practice however, many IRIs contain long string prefixes. For example all enti-
ties from the Wikidata project begin with http://www.wikidata.org/entity/.
To avoid repeating these strings RDF allows for prefix declarations that abbreviate
prefixes by a user-defined shorthand as shown in Code 2.2.

1 @prefix wd: <http://www.wikidata.org/entity/> .

Code 2.2: Example prefix declaration in RDF turtle format

6

2 Background

2.2 SPARQL and GeoSPARQL

The World Wide Web Consortium (W3C) standardizes the “SPARQL Protocol
and RDF Query Language”, SPARQL for short [73]. It is a declarative query
language for RDF knowledge graphs. While the SPARQL syntax is roughly
inspired by the Structured Query Language (SQL) for relational databases, the
semantics and features of both languages differ largely.

A SPARQL query in its simplest form is a SELECT … WHERE { … } state-
ment containing a list of triples. The user can replace any part of a triple by a
variable prefixed with ?. Multiple occurrences of the same variable constitute a
conjunction: one value of the variable must satisfy each statement. An example
for the knowledge graph from 2.1 is shown in Code 2.3.

1 SELECT * WHERE {
2 ?a <is-a> ?s .
3 ?s <is-a> <species> .
4 ?s <subclass-of> <bear> .
5 }

Code 2.3: Simple SPARQL example query

A simple SPARQL query, as described, is equivalent to a directed, edge-
labeled query graph. Each variable and literal in the SPARQL query corresponds
to one vertex. Additionally, for each individual triple in the SPARQL query there
is an edge in the query graph. For the query in Code 2.3, the query graph is
visualized in Figure 2.2.

bear

?s

species

?a

is-asubclass-of

is-a

Figure 2.2: Visualization of the SPARQL query from Code 2.3 as a query graph

7

2 Background

The task of a SPARQL engine is to answer a query. For this purpose, it is
necessary to find all mappings of variable vertices in the query graph to vertices
in the knowledge graph that constitute a homomorphism (Definition 2.2) between
both graphs. Of course, literals in the query must be mapped to the equivalent
literal in the knowledge graph. All combinations of values for the variables in the
query that satisfy these criteria are part of the answer.

Definition 2.2 (Graph-homomorphism). Let G1 = (V1, Lab1, E1) and G2 =

(V2, Lab2, E2) be edge-labeled graphs. A function f : V1 → V2 is called a graph-
homomorphism between G1 and G2 if and only if (u, l, v) ∈ E1 ⇒ (f(u), l, f(v)) ∈
E2 [2].

It is important to note that SPARQL works on bag semantics. The sets in
the mathematical definitions are therefore in practice lists or multisets.

Furthermore, SPARQL supports many additional features such as aggrega-
tion, path queries (recursion), filters, applying functions, subqueries, set union,
set minus and more.

Beyond the SPARQL standard’s features, there is a standardization for pro-
cessing geographic information with SPARQL: GeoSPARQL [49]. It is main-
tained by the Open Geospatial Consortium (OGC) together with the standard for
Well-Known Text [51] (WKT). A string representation of geometries like points,
polygons or lines in this standard format is called a WKT literal. An example
point literal is shown in Code 2.4.

1 "POINT(7.84129473 47.9977308)"
^^<http://www.opengis.net/ont/geosparql#wktLiteral>↪→

Code 2.4: Example WKT point literal for “Freiburg (Breisgau) Hbf”

GeoSPARQL allows for queries like the following (Code 2.5), which searches
for all restaurants in Freiburg. This query uses OSM data, which is described in
2.4.

8

2 Background

1 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
2 PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
3 PREFIX ogc: <http://www.opengis.net/rdf#>
4 PREFIX osmrel: <https://www.openstreetmap.org/relation/>
5 SELECT ?restaurant ?geometry WHERE {
6 ?restaurant osmkey:amenity "restaurant" .
7 ?restaurant geo:hasGeometry/geo:asWKT ?geometry .
8 osmrel:62768 ogc:sfContains ?restaurant .
9 }

Code 2.5: Example query using GeoSPARQL to find all restaurants in the city of
Freiburg

2.3 QLever

QLever1 [9] is a very fast implementation of a SPARQL engine in the C++
programming language. It is being developed at the Chair for Algorithms and
Data Structures at the University of Freiburg. Unlike other SPARQL engines,
QLever can handle very large RDF knowledge graphs with tens of billions of
triples on a consumer computer. QLever is free software2 available to the public
under the permissive Apache License 2.0 [3].

One factor, that speeds up QLever’s query evaluation speed is the usage of
carefully crafted integer identifiers instead of strings. These ValueIds preserve
the natural order of the values they encode. As much of the query processing as
possible is performed only on ValueIds without reading the full strings from disk.
Since each ValueId is only a 64-bit integer, even large intermediate results can
be materialized in memory. A closely related important optimization of QLever
is folding literals into ValueIds where possible: integers, doubles and dates are
embedded directly in the ValueId. Thus literals of these datatypes never require
loading and parsing strings from disk during query processing. The index data
structures used by QLever also operate on ValueIds. Strings are stored separately
in a vocabulary.

A second fundamental idea is building indices for permutations of the input
data’s triples. For each triple consisting of subject (S), predicate (P) and object

1GitHub repository: https://github.com/ad-freiburg/qlever
2For an overview on the term “free software”, see: https://www.gnu.org/philosophy/

free-sw.html

9

https://github.com/ad-freiburg/qlever
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html

2 Background

(O), QLever can build an index containing the triples in SPO, SOP, POS, PSO,
OSP and OPS order. The benefit of such indices is that for each possible position
of variables in the query statement, there is an index where the appropriate
constants are first in the index’ search keys. Thus the set of candidate triples for
the result can be narrowed down faster. Examples are shown in Code 2.6.

1 ?var1 <predicate> <object> . # POS or OPS
2 ?var1 <predicate> ?var2 . # POS or PSO
3 <subject> ?var1 ?var2 . # SPO or SOP
4 <subject> ?var1 <object> . # SOP or OSP

Code 2.6: Example statements, where indices over differently permuted triples
are beneficial

Additionally, QLever supports full-text indexing and combined search in
natural language annotated by knowledge graph entities. However these features
are beyond the scope of the topic of this thesis. In this thesis we present additions
to QLever that extend its spatial querying capabilities.

2.4 OpenStreetMap and osm2rdf

OpenStreetMap3 is a crowd-sourced effort to build a map of the world as an
entirely free and open database. The data is publicly available under the Open
Database License [48] (ODBL).

The basics of the OSM data model [53] follow a simple concept. The map
data consists of three types of elements. Each element is identified by an integer.
Nodes are simple points consisting of the longitude and latitude coordinates. Ways
are collections of nodes that represent lines on the map like roads or railway tracks.
Relations can combine ways to more complex geometries like polygons or sets
thereof. For example, they are used to represent shapes of buildings. All three
types of elements can be associated with an arbitrary number of tags. Tags are
key — value pairs that represent features of the geographic element, for example
amenity=restaurant or railway=station.

In order to query OSM data with SPARQL, it needs to be transformed to an
RDF knowledge graph. This task can be accomplished using osm2rdf4 [6, 8], a free

3https://www.openstreetmap.org
4GitHub repository: https://github.com/ad-freiburg/osm2rdf

10

https://www.openstreetmap.org
https://github.com/ad-freiburg/osm2rdf

2 Background

and open-source tool developed at the Chair for Algorithms and Data Structures
of the University of Freiburg. It is available under the GNU General Public
License version 3 [29] (GPL). The tool reads data in OSM’s own Protocolbuffer
Binary Format [55] (PBF) and outputs RDF turtle.

Differing from other similar-purposed programs like osm2pgsql [39], osm2rdf’s
output contains all OSM geometries and tags by default. This is possible due
to the flexibility of the RDF data model. The target format of osm2pgsql is
PostgreSQL, which limits the number of columns in a table. That limitation can
be circumvented in newer versions using hstore columns at a performance loss
[4, 38]. In contrast, RDF natively does not have restrictions on the number of
predicates.

A second important advantage of osm2rdf is its precalculation of geometric
relations. For all geometries from OSM the program outputs GeoSPARQL triples
ogc:sfContains, ogc:sfIntersects and more. Such triples can be calculated
efficiently for the entire planet on a conventional computer [8]. Using precomputed
geometric relations instead of computing them ad hoc can speed up spatial queries
on OSM by orders of magnitude.

2.5 S2Geometry

In this thesis we take advantage of the s2geometry5 [35] library developed by
Google. It provides efficient indexing features for geographic data on a special
data model. Unlike other geometric libraries, s2geometry does not operate on
two-dimensional projections but on the surface of a three-dimensional unit sphere.
This way, the varying distortion of a two-dimensional projection and special cases
for poles can be avoided.

For fast access, s2geometry divides the sphere’s surface into rectangles, called
cells [33]. They can be used similarly to a bounding box. A hierarchy of 31 different
sizes of cells from large to small is used: from dividing the surface into 6 cells to
dividing it into 7 ∗ 1018 cells [34]. Cells of the smallest size are called leaf cells
and represent approximately 0.74 cm2 on the earth’s surface. An example with
cells on different levels that contain each other is shown in Figure 2.3.

5GitHub repository: https://github.com/google/s2geometry

11

https://github.com/google/s2geometry

2 Background

Figure 2.3: Areas addressed by cells are rectangles on the sphere’s surface, but
not in a two-dimensional projection, Source: [33]

Figure 2.4: Visualization of the space-filling curve used for numbering of cells,
Source: [33]

12

2 Background

The key to efficient queries on s2’s cells is the S2CellId. The library makes use
of a space-filling curve for assigning one-dimensional 64-bit integers to each cell on
the sphere’s surface. The use of a fractal curve, as shown in Figure 2.4, preserves
the locality. This means that geometrically close cells have numerically close
identifiers. The mapping of cells to cell IDs reduces the dimension for addressing
the cells, which allows the use of fast index data structures for one-dimensional
data.

The s2geometry library provides support for various geometries, like points,
lines and polygons. In this thesis, however, we only consider points, which suffice
for many applications. For points, s2geometry offers a specific index data structure
called S2PointIndex based on a balanced search tree, also called B-tree [10]:

164 using Map = s2internal::BTreeMultimap<S2CellId, PointData>;

Code 2.7: s2point_index.h: Type declaration of the used index data structure

For each point in an S2PointIndex, the corresponding tree stores the S2CellId
of the leaf cell containing the point as a search key. Additionally the original
point and a user-defined payload is stored. A multimap is used because one cell
could contain multiple points. The balanced search tree is especially favorable
here, because it allows fast range queries and access to sibling nodes.

13

3 Approach and Implementation
Multiple subproblems need to be solved to allow users to perform efficient spatial
searches using the QLever SPARQL engine. While a fast implementation of the
search algorithm itself might be scientifically interesting, the algorithm is only
practically useful if the users’ workflow is thought through from beginning to end.

For this reason, we do not only consider the efficient internal data representa-
tion and search for nearest neighbors as a part of the problem to be solved. Users
should be able to quickly retrieve the data they wish in its entirety using a single
SPARQL query. To accomplish this, it is equally as important to have the ability
for import of all required data. Further subproblems for a maximum in usability
are an assistive tool to construct complex queries and utility functions to use in
these queries.

The approaches to each of these subproblems are discussed in the following
sections.

3.1 Efficient Representation of Geographic
Points

Currently, QLever supports the three GeoSPARQL functions given in Code 3.1.

1 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
2 geof:latitude(?point)
3 geof:longitude(?point)
4 geof:distance(?point1, ?point2)

Code 3.1: GeoSPARQL functions supported by QLever

Each of the functions expects point geometries as WKT literals. When one of
these functions is called, the ValueId of each literal is resolved into a string using
the vocabulary. Then a precompiled regular expression is applied to extract the
latitude and longitude coordinates from the literal string. Each of the substrings

14

3 Approach and Implementation

representing coordinates is then parsed as a double precision floating point number
(double).

The described procedure of loading strings from the hard disk and parsing
the points from these strings repeatedly for every query is not efficient. Thus, we
implement a faster procedure for computing query results containing calculations
on geographic points. As mentioned in section 2.3, QLever already stores boolean,
integer, double and date-time literals directly within the 64 bits of the ValueId.
The same will now happen for geographic points from WKT literals. The literals
will only be parsed from strings during the precomputation of QLever’s index and
if the query contains a point literal directly. The parser decides for each WKT
literal it encounters if it can be folded into the ValueId. This is the case for all
valid geographic points on earth, but not for other types of geometries. If the
literal cannot be folded, it remains stored as a string.

With this new strategy, ValueIds containing points’ coordinates are now avail-
able directly during every query processing step without any additional overhead
for loading or parsing. To make this possible, we implement a new class GeoP-
oint for the internal representation of points during query processing. Similarly
to the previous implementation, it stores points as two doubles.

35 class GeoPoint {
36 private:
37 double lat_;
38 double lng_;

Code 3.2: GeoPoint.h: Definition of attributes in the new GeoPoint class

The new implementation enforces an invariant: the new exception type str-
uct CoordinateOutOfRangeException : public std::exception {...}
is thrown for invalid latitude or longitude values that do not exist on earth. Aside
parsing from string literals, GeoPoint now also allows converting points from and
to the binary representation for folding in a ValueId.

Since each ValueId has a size of 64 bits, but requires 4 bits to determine the
data type, 30 bits remain for storing each of the two coordinates.

1000 110001000100001101110000110000 100001011001001101110110110100

Figure 3.1: Example 64-bit ValueId for “Freiburg (Breisgau) Hbf” with
Datatype::GeoPoint, latitude 47.9977308 and longitude 7.84129473

15

3 Approach and Implementation

In order to convert a point given by two doubles to a ValueId it is therefore
necessary to reduce the coordinates’ precision to 30 bits. This should be done with
the minimal possible loss of information. For this reason we scale the coordinates
linearly from their range of [-90, 90] and [-180, 180] respectively to a range of [0,
230 − 1]. To obtain the new latitude value lat′ from a standard-scaled value lat,
we apply

lat′ = lat+ 90

180
∗ (230 − 1).

Analogously to obtain the new longitude value lng′, we apply

lng′ = lng+ 180

360
∗ (230 − 1).

The resulting value of lat′ and lng′ has to be rounded to nearest integer to
avoid unnecessary precision loss by flooring. To obtain the binary representation,
the new 30 bit latitude coordinate is shifted 30 bits to the left and the new
longitude coordinate is then embedded using a bitwise or operation. The data
type in the 4 highest-order bits is then embedded with another or operation.

The inverse operation for decoding a geographic point from the binary rep-
resentation is similar. First, the latitude coordinate is retrieved using a bitwise
and operation with a bit mask which has the bits 5-34 set to 1 and all others
set to 0. The result is shifted 30 bits to the right, resulting in the 30 bit integer
representation lat′, as described above. The scaling is reversed using:

lat = lat′

230 − 1
∗ 180− 90.

The longitude coordinate can be obtained using a bitwise and operation with
a bit mask which has bits 35-64 set to 1 and the remaining set to 0. As we have
selected the lowest-order bits, shifting is not required in this case. Therefore we
can directly reverse the scaling:

lng =
lng′

230 − 1
∗ 360− 180.

The question, whether the precision of this approach suffices for exact results,
can be answered positively. The earth’s equatorial radius measures 6378.137
kilometers [69]. Therefore the maximum circumference in east-west direction

16

3 Approach and Implementation

(longitude) under the simplifying assumption of earth being a perfect ellipsoid is

Clng = 2π ∗ 6378.137 km ≈ 40075 km.

With earth’s polar radius of 6356.752 kilometers [69] the maximum circum-
ference in north-south (latitude) direction is

Clat = 2π ∗ 6356.752 km ≈ 39941 km.

Using the range of [0, 230 − 1], each coordinate in our representation can
hold 230 = 1073741824 different integer values. Therefore, in combination with
the linear scaling, the range of coordinates in the standard scaling addressed by
the same integer in our representation has in the worst case a size of:

Plng =
Clng

230
≈ 40075 ∗ 105 cm

230
≈ 3.7323 cm,

Plat =
Clat

230
≈ 39941 ∗ 105 cm

230
≈ 3.7198 cm.

This means, since earth curvature can be ignored in the range of centimeters,
we can approximate the precision that we can address on the earth’s surface with
points folded into ValueIds by a grid of cells with a maximum size of

Plat ∗ Plng ≈ 13.8833 cm2.

It can be assumed that this precision is sufficient for all civilian applications.

In accordance with the folding of points into ValueIds, we also update the
implementation of the supported GeoSPARQL functions (see Code 3.1) to work
with GeoPoint objects. While the optimization of folding points into ValueIds does
not change the asymptotic runtime behavior or asymptotic memory consumption
of any algorithm used in QLever, it creates a practically relevant and measurable
speed-up. This is analyzed in the evaluation chapter.

17

3 Approach and Implementation

3.2 Nearest Neighbors Spatial Search

The core problem addressed in this thesis is the efficient spatial search for ge-
ographic points close to other geographic points. In plain SPARQL and with
only the geof:distance(?point1, ?point2) function available, this requires a
cartesian product. An example for this is given in Code 3.3.

1 PREFIX ogc: <http://www.opengis.net/rdf#>
2 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
3 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
4 PREFIX osmrel: <https://www.openstreetmap.org/relation/>
5 PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
6

7 SELECT ?stop_name ?stop_geo
8 (MIN(?dist) * 1000 AS ?min_dist_meters)
9 WHERE {

10 # All supermarkets with location and name
11 ?shop osmkey:shop "supermarket" ;
12 osmkey:name ?shop_name ;
13 geo:hasCentroid/geo:asWKT ?shop_geo .
14 # All public transport stops with location and name
15 ?stop osmkey:public_transport "platform" ;
16 osmkey:name ?stop_name ;
17 geo:hasCentroid/geo:asWKT ?stop_geo .
18 # They must be within the city of Freiburg
19 osmrel:62768 ogc:sfContains ?shop , ?stop .
20 # Calculate distance
21 BIND (geof:distance(?shop_geo, ?stop_geo) AS ?dist)
22 }
23 GROUP BY ?stop ?stop_name ?stop_geo

Code 3.3: SPARQL query to find the minimum distance from every public trans-
port stop in Freiburg to a supermarket using a cartesian product

With larger inputs the quadratic runtime of the cartesian product quickly
exceeds feasible dimensions. The example query can be answered in a fair amount
of time for the city of Freiburg, it is slow but possible for the state of Baden-
Württemberg, but impossible within reasonable time for Germany as a whole.
Running times in detail are discussed in the evaluation chapter (5). Still, nearest
neighbors searches like the one shown in the example should be efficiently possible
not only for Freiburg but also for entire Germany or even the planet.

18

3 Approach and Implementation

In general we understand a nearest neighbors search as a type of join operation
between the join column of a left table and the join column of a right table. Join
operations are an important concept in databases and information systems. In
a join, the rows from the two given tables are combined into rows in a single
result table holding the columns of both tables according to a given criteria. The
simplest example is a join on the equivalence of a left and right join column. This
is demonstrated in Table 3.1.

User First Name Last Name
105 Alice Example
235 Bob Demo
300 Carol Reader

(a) Left join table

Post User Text
1 235 Hello World
2 105 Good Morning
3 235 How’s it going?

(b) Right join table

User First Name Last Name Post Text
105 Alice Example 2 Good Morning
235 Bob Demo 1 Hello World
235 Bob Demo 3 How’s it going?

(c) Corresponding result table
Table 3.1: A simple example of an equivalence join. Join column: User

In a nearest neighbors search, the join columns of both tables are required to
have a geographic point as a value in each row. The result of the search operation
contains rows with the columns from both tables, a subset of the cartesian product.
To determine which rows are included, the user may choose two search parameters:
the maximum number of results and the maximum distance. The search algorithm
should then find the geographically closest points from the right join column for
each point from the left join column such that the parameters are satisfied. For
each of these point pairs, a result row containing the column values from both
input tables should be added. For better understanding of the upcoming in-depth
explanations, an example is provided. Considering the input tables in Table 3.2, a
nearest neighbors search for a maximum of 2 results and with a maximum distance
of 8.5 is performed. The search is visualized in Figure 3.2. Here the colored points
represent the points from the left join table. The black points represent the points
from the right join table. The colored areas include the result points for their
respective point from the left table. Finally the result table corresponding to the
depicted search is given in Table 3.3.

19

3 Approach and Implementation

Name Point
1 Alice’ House (-4,-2)
2 Bob’s House (-2, -3)
3 Carol’s House (4, 6)

(a) Fictional left join table

Type Name Point
1 Station R (1,-5)
2 Supermarket S (1,-2)
3 Supermarket S ′ (2,-4)
4 Bakery B (-4,2)

(b) Fictional right join table
Table 3.2: Input tables for the nearest neighbors search example

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

station R

bakery B

supermarket S

supermarket S ′

Alice’
Bob’s

Carol’s

longitude

latitude

Figure 3.2: Coordinate system as a fictional map with all points from the left
and right example tables, demonstrating the semantics of a nearest
neighbors search with maximum number of results 2 and maximum
distance 8.5

#L NameL PointL #R TypeR NameR PointR
1 Alice’ House (-4,-2) 2 Supermarket S (1,-2)
1 Alice’ House (-4,-2) 4 Bakery B (-4,2)
2 Bob’s House (-2, -3) 2 Supermarket S (1,-2)
2 Bob’s House (-2, -3) 3 Supermarket S ′ (2,-4)
3 Carol’s House (4, 6) 1 Station R (1,-5)

Table 3.3: Result table for the nearest neighbors search example. Columns from
the left table as “columnL” and columns from the right table as
“columnR”

20

3 Approach and Implementation

Depending on whether or not the maximum number of results is limited,
the properties of the join operation are different. If the user specifies only the
maximum distance, all pairs of rows from the left and right tables are returned
where the distance between the points in their join columns is at most the given
maximum distance. If a maximum number of results is given, for every row from
the left table, a pair with each of the rows from the right table with the closest
points in their join column will be returned. At most the maximum number of
such pairs is returned, no matter their distance, unless the distance is also limited.
If no row from the right table meets the criteria, the row from the left table will
appear nowhere in the result. This corresponds to the normal join semantics
between tables, if no join partner is found.

The distinction made here – between a nearest neighbors search with or
without a maximum number of results – is important. To visualize this, Figure 3.3
provides a very small, hypothetical map. We assume for our example, that the
distance n is larger than the distance between any two points on the map. The
maximum distance criteria is always fulfilled. It is easy to see, that a search using
only a maximum distance is symmetrical: all supermarkets and stations, whose
distance is at most n meters is equivalent to all stations and supermarkets, whose
distance is at most n meters. In the example, both searches return one pair with
station R and supermarket S and one pair with station R and supermarket S ′.
However using a maximum number of results, this is no longer the case: for each
supermarket the one closest station will return supermarket S and station R as a
pair and supermarket S ′ and station R as a second pair. But for each station the
one closest supermarket will return only station R and supermarket S.

Also note that for the maximum distance, like with a normal equivalence join,
we can decide if a pair of rows from the left and right table is part of the result
by only looking at the pair in question. With a maximum number of results this
can not be decided without checking if other rows have an even smaller distance.

The difference between a nearest neighbors search with or without a maximum
number of results also applies to further restrictions to the join tables. It makes a
difference, whether we search for the nearest neighbors first and apply restrictions
afterwards or the other way round. Considering our example: if we search for
the station R’s nearest neighbor first, we get only the pair station R and bakery
B as a result. Filtered for supermarkets, the result is empty. However filtering
all points for supermarkets gets supermarket S and S ′. Searching for the station

21

3 Approach and Implementation

−4 −2 2 4

−4

−2

2

4station R

bakery B

supermarket S

supermarket S ′

longitude

latitude

Figure 3.3: Fictional map used to illustrate the asymmetrical nature of nearest
neighbors search with maximum number of results

R’s nearest neighbor within the filtered points returns a non-empty result with
supermarket S. The explained difference needs to be taken into consideration,
while thinking about the implementation as well as possible optimizations.

In the worst case the number of result rows of a nearest neighbors search with
maximum distance as a parameter is equivalent to the cartesian product. That is,
for the left table A and the right table B with |A| and |B| rows respectively, the
result could have up to |A| ∗ |B| rows. This is the case if and only if the pairwise
distance between all points in the join columns of A and B is below or equal to
the given maximum distance. Since this worst case scenario is presumably rare
in practice, the implementation will divide the estimate for the result table size
by a damping factor of 1 000 to improve query planning in the average case. In
the scenario, where a maximum number of results k is given, the result size may
only be up to |A| ∗ k. In this case, no damping factor is used, because the worst
case always occurs if no maximum distance is given and there are at least k rows
in B.

In the following, we present a baseline algorithm as well as an index-based
algorithm. The baseline algorithm using a nested loop, effectively a cartesian
product, is implemented as a target for comparison and as a proof of concept.
The efficient index-based algorithm is implemented using the index data structure
for points from the s2geometry library. Both algorithms return the same results
but their computation has different runtime characteristics. Additionally, we
present the integration of the spatial search into the SPARQL syntax understood

22

3 Approach and Implementation

by QLever.

Both algorithms currently operate on GeoPoint objects. To make the spatial
search more useful we suggested to add centroids to the output of osm2rdf, which
the project thankfully adopted. In newer versions of osm2rdf, centroids can now be
accessed via geo:hasCentroid/geo:asWKT. For example, this allows performing
spatial searches between buildings, which are often represented as polygons.

3.2.1 Nested-Loop Baseline Algorithm

As intended the baseline algorithm is kept fairly simple. In addition to the natural
language explanation, a pseudocode version is given in Code 3.4.

The algorithm iterates over the left join table and for each row, iterates
over the right join table. Thus the algorithm calculates the distance for every
pairwise combination of rows from the left and right tables. Results are filtered
according to the search parameters. If only a maximum distance is given, rows
can be omitted or added to the result immediately. In the case of a search with
the maximum number of results parameter k, for every row from the left table,
a priority queue ordered largest-first is initialized. It holds the k closest points
processed so far. If a new point is processed it is added to the priority queue. If
the priority queue exceeds k in size, the first (largest) element is removed. Once
all rows from the right table have been processed, the rows stored in the priority
queue correspond precisely to the k rows with the closest points and can be added
to the result.

In the case of the baseline algorithm it is not necessary to consider optimiza-
tions regarding which table is larger, because the full cartesian product is iterated
in any case.

Using the tables A and B, the running time of the baseline algorithm is in
O(|A| ∗ |B|) due to the algorithm’s nested loop. The priority queue being used
has no impact on the asymptotic running time with regard to the size of the input
tables. Since the size of the priority queue is capped at the constant k+ 1 during
any step of the processing, its operations are in O(1) regarding the input’s size.
The priority queue also has a constant running time characteristic in the real
world because k is typically a very small constant, often even 1.

23

3 Approach and Implementation

Baseline Algorithm
Input: left join table A with join column a, right join table B with join column
b, maximum number of results or none, maximum distance or none
Output: result table

1: for all rowA ∈ A do
2: Q← new PriorityQueue(Sort=LargestFirst)
3: for all rowB ∈ B do
4: if rowA[a] or rowB[b] are not instance of GeoPoint then
5: continue
6: end if
7: d← dist(rowA[a], rowB[b])
8: if d > maximum distance then
9: continue

10: end if
11: if maximum number of results is not set then
12: addResultRow(rowA, rowB, d)
13: else
14: Q.add(SortKey=d, Data=&rowB)
15: if |Q| > maximum number of results then
16: Q.removeFirstElement()
17: end if
18: end if
19: end for
20: if maximum number of results is set then
21: for all q ∈ Q do
22: addResultRow(rowA, *q.Data, q.SortKey)
23: end for
24: end if
25: end for

Code 3.4: Pseudocode for the baseline algorithm for nearest neighbors search

24

3 Approach and Implementation

The current memory consumption excluding the result table is O(|A|+ |B|),
because the left and right tables are fully materialized. In the future, the left
table could be iterated and would not need to be stored. Since the right table
needs to be iterated multiple times and should not need to be recalculated, it will
still need to be materialized.

3.2.2 Efficient Index-Based Algorithm

The efficient index-based algorithm makes use of the S2PointIndex. A pseudocode
version is given in Code 3.5. The basic idea is as follows: for each query (ad hoc)
a new S2PointIndex is constructed in memory. All points from the right table
together with the index of their row as payload are inserted into the S2PointIndex.
Then for each row from the left table, the index is queried for the nearest neighbors
according to the search parameters. For each result, the row from the right table
is fetched using its index and the pair is added to the result.

In case of a search with only a maximum distance, the tables can be switched
for optimization if the right table is larger.

The point index cannot be precomputed because the user may specify arbi-
trary criteria to construct the join tables. An algorithm which searches for nearest
neighbors in a precomputed index containing all points and omits the results until
the current one matches the other query requirements would lead to a cartesian
product of the left table with all points in the worst case.

Recalling the background on the s2geometry library (2.5), the S2PointIndex
is a B-tree containing the S2CellIds of the points in the index as search keys.
Insert as well as search operations in a B-tree have a running time of O(logn)
for a tree with n nodes [10]. The nearest neighbors algorithm therefore requires
a running time of O(|B| ∗ log |B|) to build the index, because for every row the
point needs to be inserted. Then O(|A| ∗ log |B|) is required to lookup the result
from the index. The total running time for building and querying the index is
O((|A|+ |B|) ∗ log |B|).

The current memory consumption excluding the result table is O(|A|+ |B|),
because the left and right tables are fully materialized. Since the index needs to
be built, only the left table could be iterated without being fully materialized.
The memory consumption could thus be O(|B|) after a possible implementation
of lazy evaluation for the spatial search in the future.

25

3 Approach and Implementation

Index-Based Algorithm
Input: left join table A with join column a, right join table B with join column
b, maximum number of results or none, maximum distance or none
Output: result table

1: if maximum number of results is not set and |B| > |A| then
2: A, B = B, A
3: end if
4: I ← new S2PointIndex
5: for all rowB ∈ B do
6: if rowB[b] is instance of GeoPoint then
7: p← ConvertToS2Point(rowB[b])
8: I.insert(Point=p, Data=&rowB)
9: end if

10: end for
11: Q← new S2ClosestPointQuery(I, maximum distance, maximum results)
12: for all rowA ∈ A do
13: if rowA[a] is instance of GeoPoint then
14: p← PointTarget(ConvertToS2Point(rowA[a]))
15: for all r ∈ Q.FindClosestPoints(p) do
16: d← ToKilometers(r.Distance)
17: addResultRow(rowA, *r.Data, d)
18: end for
19: end if
20: end for

Code 3.5: Pseudocode for the index-based algorithm for nearest neighbors search

26

3 Approach and Implementation

3.2.3 Integration into SPARQL Syntax

In order to make the nearest neighbors spatial search available to users of the
QLever SPARQL engine, it needs to be integrated into the SPARQL syntax. This
is primarily achieved by leveraging the generally available federated querying
syntax SERVICE <IRI> { … } with a special IRI. This IRI is never actually con-
tacted via network and there is no API actually hosted at this address. The IRI
only serves as an identifier to activate the spatial querying feature in QLever. The
SERVICE subquery is used to provide the spatial search with the required configu-
ration parameters. Additionally it includes a SPARQL group graph pattern { … }
defining the right join table. In case of a nearest neighbors search using only a
maximum distance, since it is symmetrical, its right table may also be defined
outside of the SERVICE subquery. In this case the group graph pattern must be
omitted. The left join table is always defined outside of the SERVICE subquery
and is automatically selected as a join table by the query planning implementation
in QLever.

A complete example showcasing all configuration parameters is given in
Code 3.6. Only the left and right variables indicating the join columns and at
least one of spatialSearch:numNearestNeighbors and spatialSearch:maxD-
istance, given in meters, are mandatory.

The selected algorithm spatialSearch:s2 refers to the index-based algo-
rithm from 3.2.2. The baseline algorithm from 3.2.1 can be activated with spati-
alSearch:baseline. Additionally spatialSearch:bindDistance may be used
to add a column with the given variable name containing the distance between
the left and right points. Because the distance has to be computed during the
search itself, this avoids redundantly recomputing the distance using a BIND(ge-
of:distance(?left, ?right) AS ?dist) statement.

Unlike the theoretical example for a nearest neighbors search in Figure 3.2,
the implementation in QLever will not automatically add all columns of the right
join table to the result: by default it includes only the join column. This is done
as an optimization to remove columns necessary only for obtaining the right join
table from further query processing steps. Instead the user may explicitly select
columns from the right join table to include in the result using the spatialSear-
ch:payload configuration parameter. It can be repeated once for every variable
to be included or can be set to spatialSearch:all to achieve the same behavior

27

3 Approach and Implementation

as the theoretical example. Details on the query syntax can now be found on the
QLever Wiki1.

1 PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
2 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
3 PREFIX spatialSearch:

<https://qlever.cs.uni-freiburg.de/spatialSearch/>↪→

4

5 SELECT ?transport_name ?restaurant_name ?distance WHERE {
6 ?transport osmkey:public_transport "platform" ;
7 osmkey:name ?transport_name ;
8 geo:hasCentroid/geo:asWKT ?transport_geo .
9

10 SERVICE spatialSearch: {
11 _:config spatialSearch:algorithm spatialSearch:s2 ;
12 spatialSearch:left ?transport_geo ;
13 spatialSearch:right ?restaurant_geo ;
14 spatialSearch:numNearestNeighbors 1 ;
15 spatialSearch:maxDistance 500 ;
16 spatialSearch:bindDistance ?distance ;
17 spatialSearch:payload ?restaurant_name .
18 {
19 ?restaurant osmkey:amenity "restaurant" ;
20 osmkey:name ?restaurant_name ;
21 geo:hasCentroid/geo:asWKT ?restaurant_geo .
22 }
23 }
24 }

Code 3.6: Example of a spatial search showcasing all supported configuration
parameters: “Get all pairs of public transport stops and their nearest
restaurant with names and distance, where the restaurant is at most
500 meters away.”

During QLever’s query parsing the special SERVICE needs to be detected.
This is done simply by comparing the IRI of SERVICE operations against the
special IRI for the internal feature. If the special IRI is detected, the SERVICE
operation is no longer treated as such. Instead, another function is called for
translating the parsed query into QLever’s internal representation. The function
builds a struct SpatialQuery, which holds the configuration parsed so far
and std::nullopt for all other parameters. This struct inherits from a newly

1https://github.com/ad-freiburg/qlever/wiki/GeoSPARQL-support-in-QLever

28

https://github.com/ad-freiburg/qlever/wiki/GeoSPARQL-support-in-QLever

3 Approach and Implementation

introduced struct MagicServiceQuery, which generalizes a special SERVICE so
it can be used for other features as well.

For every parsed triple contained directly inside the SERVICE a method is
called to treat the triple as a configuration parameter. The method removes the
special IRI if applicable. This allows defining configuration parameters in two
forms: spatialSearch:parameter or <parameter>. The method also checks
that the value in the object of the triple is allowed for the configuration parameter
given by the predicate. Then the configuration is added to the SpatialQuery
object.

If a group graph pattern is found, it is parsed using the regular implementa-
tion and then added as a child to the SpatialQuery object.

As soon as all query code inside the SERVICE has been parsed, the Spatial-
Query object is converted to a struct SpatialJoinConfiguration. Unlike the
SpatialQuery it must be a complete and valid configuration. Therefore all invari-
ants are checked during the conversion and an exception is thrown if they are
violated. The SpatialJoinConfiguration is required as an input for constructing an
object of the class SpatialJoin, which implements the actual query processing
operation.

In order to differentiate between the symmetrical nearest neighbors search
with a maximum distance and the asymmetrical nearest neighbors search with a
maximum number of results and optionally a maximum distance, the task of the
spatial join is defined as:

29 using SpatialJoinTask = std::variant<NearestNeighborsConfig,
MaxDistanceConfig>;↪→

Code 3.7: SpatialJoin.h: Type declaration of the spatial join task

The internal representation of the payload configuration parameters is a cla-
ss PayloadVariables. It holds either a std::vector<Variable> or an instance
of a struct PayloadAllVariables : std::monostate. The latter results in
an empty one-byte object representing the selection of all variables.

The implementation of payload variables in the spatial join operation requires
attention to detail. In order to conform with the SPARQL standard, undefined
variables only result in a warning and are ignored. Requesting all variables and
additionally stating explicit payload variables is allowed, but ignored. Variables

29

3 Approach and Implementation

may be requested as payload multiple times but are included only once. The
variable corresponding to the join column may or may not be selected, but is
always included in the result.

The number of result columns is thus computed using a hash set of the given
payload variables. If the join variable is not included one is added and if a distance
variable was requested one more column is counted.

Up until now, operations removing columns from the result (like a SELECT
subquery) simply declared the columns to be removed as invisible – they were
no longer exported to the user in the final result. All of the columns had to
be passed around during query processing anyway. This approach would have
rendered the payload option useless, since its main intention is removing columns
to save memory and computational resources. Therefore the spatial join operation
truly removes the columns from the result.

In order to implement payload variables in the spatial join algorithms, a
std::vector<ColumnIndex> rightSelectedCols is passed to the SpatialJoi-
nAlgorithms object with the sanitized column indices to include in the result
rows. The method addResultTableEntry then filters the columns of each row to
be included in the result.

QLever stores intermediate tables as a sequence of ValueIds. Each row con-
sists of exactly 64 bits per column. The individual rows are stored directly after
each other. For this implementation the column names and indices are kept sepa-
rately in a VariableToColumnMap. Like the name suggests, it maps column names
to indices. Each operation implements its own computeVariableToColumnMap
method. For the spatial join operation, this method needs to copy the variable
to column map of the left table. For the following columns the method needs
to filter the variable to column map of the right table according to the payload
variables and close gaps between the indices to ensure consecutive column indices.
Additionally the method needs to ensure that the join column is always included
and, if requested, the distance variable is added as a last column.

A few details regarding query planning have to be considered when imple-
menting the spatial join. In general the query planner builds different candidate
query plans. A query plan is an order of applying operations to compute the query
result and is mainly built from index scans for specific triples and join operations.
The query planner calculates the result size and running time estimates for each
of the operations and uses them to decide on an optimal query plan.

30

3 Approach and Implementation

Since the spatial join can have left and right child tables which are computed
using arbitrary subqueries, they have individual query plans. The query planner
needs to combine the two query plans for the child tables in question only using
a nearest neighbors search as a join operation. Any other join would destroy
the intended semantics. Therefore, when building query plan candidates for any
type of join, a spatial join needs to have priority. If operations to be combined
into a query plan are tables of a spatial join, all other query plan candidates are
omitted. However if the query plans for the child tables are already part of a
spatial join’s query plan, the spatial join query plan is treated atomically like any
other operation. This is due to the fact that a regular join which uses the spatial
join’s result could be necessary.

To abbreviate the SERVICE syntax for spatial searches using only a maximum
distance, a special predicate <max-distance-in-meters:m> is also supported.
Due to the symmetrical properties of the maximum distance spatial search, it
may be used along other triples that would otherwise invoke the computation of
a cartesian product. Therefore this syntax can be used to easily migrate from
a cartesian product with a FILTER statement. FILTER(geof:distance(?lef-
t, ?right) <= 0.5) simply becomes ?left <max-distance-in-meters:500>
?right. An example is given in Code 3.8.

The special predicate syntax is implemented using the same configuration
objects as the SERVICE syntax. During query planning every literal IRI contained
in a predicate in the SPARQL query is processed. If it begins with the special
predicate’s prefix, it is parsed using a regular expression. The subject of the triple
in question becomes the left variable, the object the right variable. The maximum
distance parameter is set and just like a SERVICE query with the right join table
defined outside of the SERVICE, the payload parameter is set to all implicitly. The
remaining query processing is identical to the SERVICE syntax.

A special predicate syntax for nearest neighbors search with a maximum
number of results is not favorable. This special predicate would have unstable
semantics, because of the previously explained difference depending on the order
of operations. With this syntax the order of operations would be determined by
the query planner’s result size and time estimates for the individual operations
which depend on the input data. Therefore the exact same query using such a
special predicate would have different semantics on different input data.

31

3 Approach and Implementation

1 PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
2 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
3 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
4 PREFIX spatialSearch:

<https://qlever.cs.uni-freiburg.de/spatialSearch/>↪→

5

6 SELECT ?transport_name ?restaurant_name ?distance WHERE {
7 ?transport osmkey:public_transport "platform" ;
8 osmkey:name ?transport_name ;
9 geo:hasCentroid/geo:asWKT ?transport_geo .

10

11 ?restaurant osmkey:amenity "restaurant" ;
12 osmkey:name ?restaurant_name ;
13 geo:hasCentroid/geo:asWKT ?restaurant_geo .
14

15 ?transport <max-distance-in-meters:500> ?restaurant .
16

17 BIND(geof:distance(?transport_geo, ?restaurant_geo)
18 AS ?distance)
19 }

Code 3.8: Example of a spatial search using the abbreviated special predicate
syntax: “Get all pairs of public transport stops and restaurants with
names and distance, which are at most 500 meters away from each
other.”

32

3 Approach and Implementation

3.3 SPARQL Functions

In this section we present improvements and additions of useful SPARQL functions
to the QLever engine.

3.3.1 Precision Improvement of Geographic Distance
Function

We migrate the calculation of distances between points using the GeoSPARQL
function geof:distance(?point1, ?point2) to use the distance computation
provided by the s2geometry library. The previously used formula worked with
a planar projection of an ellipsoidal approximation of earth published by the
United States Federal Communications Commission [25]. The old formula is
only sufficiently exact up to distances of 475 kilometers. In contrast, s2geometry
has low distortion for the entire planet due to the approximation using a three-
dimensional sphere instead of a two-dimensional projection.

The following example calculates the distance between Berlin and Tokyo.
The new implementation returns 8 915.55 kilometers, the old implementation
10 282.2 kilometers. With most online sources stating values of about 8 900 to
9 000 kilometers, the old implementation has a distortion of more than 1 300
kilometers.

1 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
2 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
3 SELECT (geof:distance(
4 "POINT(13.411400 52.523403)"^^geo:wktLiteral,
5 "POINT(139.691711 35.689487)"^^geo:wktLiteral)
6 AS ?berlin_tokyo) WHERE {}

Code 3.9: GeoSPARQL query to compute the distance between Berlin and Tokyo

3.3.2 Support for Exponentiation Math Function

Many mathematical functions from the XPath standard [74] by the W3C were
already implemented in QLever. However math:pow(?base, ?exp) was still
missing. Raising a number to a power could only be accomplished by applying

33

3 Approach and Implementation

math:exp(?x) together with math:log(?x) according to mathematical power
laws:

ax = ex ln(a).

The new implementation directly makes use of the C++ standard library’s
double std::pow(double base, double exp) function. It produces more pre-
cise results compared to the previous method, which required the chaining of
multiple numerical techniques with precision loss. An example to demonstrate
the improved precision is given in Code 3.10. While the new implementation
calculates 250 correctly, the previous method misses the correct result by 152.

1 PREFIX math: <http://www.w3.org/2005/xpath-functions/math#>
2 SELECT (math:exp(?exp * math:log(?base)) AS ?old)
3 (math:pow(?base, ?exp) AS ?new)
4 WHERE {
5 BIND(2 AS ?base)
6 BIND(50 AS ?exp)
7 }

Code 3.10: Example usage of the new exponentiation function, where it returns
a more precise result than the previous method

3.3.3 Support for Standard Deviation Aggregation
Function

QLever, aiming for complete compliance with the SPARQL standard, has support
for the standard aggregation functions for numerical values: min(?numbers), m-
ax(?numbers), avg(?numbers), sum(?numbers) and count(?numbers). It also
supports the XPath function for the square root math:sqrt(?number). The stan-
dard deviation can be calculated using these functions according to its formula:

σ(x) =

√∑
xi∈x(xi − x)2

|x| − 1
.

However the corresponding lengthy function call is inconvenient to the user,
Code 3.11 shows an example. Additionally, if the expression of which the standard
deviation is to be calculated requires further computation it would be calculated
multiple times. Both can now be avoided using the new stdev(?numbers) aggre-
gation function. For an example, see Code 3.12.

34

3 Approach and Implementation

1 # Query for standard deviation previously
2 PREFIX math: <http://www.w3.org/2005/xpath-functions/math#>
3 SELECT (math:sqrt(
4 sum(
5 (?var - avg(?var)) * (?var - avg(?var))
6) / (count(?var) - 1)
7) AS ?old)
8 WHERE {
9 VALUES ?var { 1 2 3 4 5 6 7 8 9 }

10 }

Code 3.11: Example usage of the query code previously required for the compu-
tation of the standard deviation

1 # Query for standard deviation now
2 SELECT (stdev(?var) AS ?new) WHERE {
3 VALUES ?var { 1 2 3 4 5 6 7 8 9 }
4 }

Code 3.12: Example usage of the new standard deviation aggregation function

Because the new function is an aggregation function, the implementation
requires more steps. QLever parses its queries using the Antlr [56] library. The
SPARQL syntax understood by QLever is given as a Antlr grammar. Since
implementation details in QLever require that the parser can differentiate between
aggregate and non-aggregate functions, the new stdev(?numbers) function needs
to be added to the grammar.

In QLever an aggregate expression consists of an aggregate operation, which
implements how the results are reduced and an optional aggregate final operation,
which can modify the single reduced value from the aggregate operation. For
example to implement avg(?numbers), the aggregate operation is addition and
the aggregate final operation divides by the number of rows.

To implement the standard deviation using this scheme, a helper non-aggregate
DeviationExpression is defined. This is due to the standard deviation requiring
two passes over the data: one to calculate the data’s arithmetic mean and one to
calculate the squared deviation using the arithmetic mean. In order to prevent
having to calculate the child expression inside the standard deviation expression
twice, the results of the child expression are buffered. During the buffering, the

35

3 Approach and Implementation

data is summed to calculate the mean. Then the individual rows are replaced by
the corresponding squared deviation.

With the helper DeviationExpression, we can define an aggregation expression
which replaces its child expression with a DeviationExpression containing its
former child and then calculates the sum as an aggregation operation. The
aggregation final operation receives the sum of squares, divides by the degrees
of freedom and finally applies the square root. The implementation has a linear
running time and memory requirement in relation to the number of input rows.

Additionally, it is ensured that a single undefined value in the child expression
makes the entire result undefined. As a convenience feature, an empty or one-
element child expression has a standard deviation of 0 in this implementation.

3.4 Conversion of External Data Sets to RDF

In order to take advantage of QLever’s new spatial search features, the users must
be able to import the data they want to work with into QLever. The data must
thus be converted to RDF. One of the biggest benefits of RDF and SPARQL is
the ease with which different data sets can be combined and queried as one using
a single user query. For this reason, along with formats for spatial data, also some
non-spatial data formats and sources are considered here.

We introduce four new free and open-source tools2, licensed under GPL, for
the conversion of different data formats to RDF knowledge graphs in turtle format:
csv2rdf, kml2rdf, gtfs2rdf and election2rdf. The programs are implemented in
Python and are self-sufficient: they have no dependencies and only require modules
from Python’s standard library. Each of the programs can be used as a CLI or
be imported as a library for further implementations. Detailed documentation
on implementation details is not covered by this thesis but can be found in the
docstrings and readmes provided in and with the source code.

In the following, the most important aspects of each of the programs are
described.

2Source code and documentation available at https://ullinger.info/bachelor-thesis

36

https://ullinger.info/bachelor-thesis

3 Approach and Implementation

3.4.1 Keyhole Markup Language (KML)

KML [50] is a data format for storing geographic information, usually named
shapes like points, lines or polygons. It is based on the XML standard. We present
kml2rdf, a program that is able to convert the most important information from
a KML document to an RDF turtle file. Most importantly, the geometries from
KML are converted to geo:wktLiteral.

In Code 3.13 an example KML file containing a point for the main building
of the Technical Faculty of the University of Freiburg is given.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <kml xmlns="http://www.opengis.net/kml/2.2">
3 <Document>
4 <Folder>
5 <Placemark id="example_placemark_101">
6 <name>Building 101</name>
7 <description>
8 Main Building of the Technical Faculty of Uni Freiburg
9 </description>

10 <Point>
11 <coordinates>
12 7.8350223,48.012647,0
13 </coordinates>
14 </Point>
15 </Placemark>
16 </Folder>
17 </Document>
18 </kml>

Code 3.13: Example KML document containing a single point

As shown in the example, a <Placemark> element is used as a container for
a geometry together with its associated metadata. The most important metadata
fields are the Placemark’s identifier in <Placemark id="..."> as well as the
<name> and <description>. Common geometries are <Point>, <LineString>,
<Polygon> and <MultiGeometry>. A polygon always consists of an outer line
using <outerBoundaryIs>. Optionally it can have holes using <innerBoundar-
yIs>. A multi geometry is a collection of multiple geometry elements.

The kml2rdf program parses its input file using xml.etree.ElementTre-
e from the Python standard library. Since there are multiple possible XML

37

3 Approach and Implementation

namespaces for the KML format – like <kml xmlns="http://www.opengis.ne-
t/kml/2.2"> in this example – we extract and validate the namespace first. In
the following steps the parsed KML file will be queried using XPath to extract
all placemarks with their geometries and metadata.

The program models the entire KML file to be converted using a class KML-
Dataset(Dataset). This class creates an object of the class KMLXPathHelper,
which generates the appropriate XPath queries to execute on subtrees of the KML
file. Using the XPath helper object, all <Placemark> elements are extracted and
represented internally as objects of a class KMLPlacemark. The object holds the
optional identifier, name and description. Furthermore it initiates the extraction
of the geometries and stores them as an intermediate representation in an object
model.

The intermediate object model for geometries is based on an abstract base
class class Geometry(ABC). Its subclasses

• class Point(Geometry),
• class LineString(Geometry),
• class Polygon(Geometry) and
• class GeometryCollection(Geometry)

implement the different geometry types stated previously. Each class supports
the extraction from a parsed KML <Placemark> subtree as well as the export
as a WKT literal. An advantage of this intermediate representation is that it
could be extended easily to support further formats, like GPS Exchange Format
(.gpx files), Geography Markup Language (.gml files) or Scalable Vector Graphics
(.svg files).

In addition to <LineString> elements, line strings can also be read from
geometries using an extension syntax’ <gx:Track> element.

In WKT, homogeneous collections of multiple geometries, consisting only of
elements of the same type, have different names: MULTIPOINT, MULTILINESTRING,
MULTIPOLYGON. Otherwise collections are called GEOMETRYCOLLECTION. While KML
does not have this differentiation and stores every collection as a <MultiGeomet-
ry> element, kml2rdf automatically detects homogeneous collections and selects
the geometry type for its output WKT accordingly.

KML files can be stored as plain text XML (.kml) or can be stored as a
compressed ZIP file (.kmz), which may contain arbitrary files including exactly

38

3 Approach and Implementation

one .kml file. kml2rdf supports both formats by extracting compressed files on
user request.

With the user-defined prefix userprefix: and data set name my_places,
the triples for our example point from Code 3.13 are:

1 userprefix:1 a userprefix:my_places .
2 userprefix:1 rdfs:label "Building 101" .
3 userprefix:1 rdfs:comment "Main Building of the Technical Faculty

of Uni Freiburg" .↪→

4 userprefix:1 dct:identifier "example_placemark_101" .
5 userprefix:1 geo:hasGeometry userprefix:1_geo .
6 userprefix:1_geo geo:asWKT "POINT(7.8350223

48.012647)"^^geo:wktLiteral .↪→

Code 3.14: Example kml2rdf output for the point from the example KML docu-
ment in Code 3.13

To allow the precomputation of spatial relations, like containment or inter-
section, also between geometries from KML and from OSM, we suggested to the
osm2rdf maintainers to allow reading further auxiliary geometries from a text file
containing WKT literals. This was implemented and therefore we also implement
the export of such auxiliary geometry files for osm2rdf in kml2rdf using an aux
geo callback.

Because the entire XML is parsed as a tree and each entry is processed once,
the time and space complexity of the program is O(n) for input size n.

3.4.2 Comma-Separated Values (CSV)

Presumably the most universal data exchange format for strings and numbers
organized in tables is CSV [62]. In general the format simply is a plain text
file containing rows as lines with the first row stating the column names. The
columns in each row are separated by a comma. There are multiple variations
of this format with different separator characters – for example TSV which uses
a tabulator character. Occurrences of the separator character in the data are
usually escaped by a quote character (") and the quote character by two quote
characters.

39

3 Approach and Implementation

1 id,name,ref,geo
2 21769883,Freiburg (Breisgau) Hauptbahnhof,RF,lat=47.9977;lng=7.84129
3 27666887,Freiburg Messe/Universität,RFMU,lat=48.0129;lng=7.83277
4 2870211785,Freiburg-Zähringen,RFZ,lat=48.0245;lng=7.86389
5 2870227214,Freiburg-Herdern,RFHE,lat=48.0085;lng=7.85126
6 2870258631,Freiburg-Sankt Georgen,RFSG,lat=47.9755;lng=7.80292
7 4597125464,Freiburg-Littenweiler,RFLT,lat=47.9817;lng=7.89557
8 673462134,Freiburg-Wiehre,RFWI,lat=47.9825;lng=7.85471
9 7296418724,Freiburg-Landwasser,RFLW,lat=48.0282;lng=7.81166

10 8434675930,Freiburg Klinikum,RFK,lat=48.0059;lng=7.84237

Code 3.15: Example CSV data set containing all railway stops in Freiburg, Data
Source: [54]

We introduce the csv2rdf program for conveniently transforming tables in
CSV format to RDF turtle. The program implements a class CSVDataset(D-
ataset), which uses the Python standard library csv.DictReader. Thanks to
Python’s iterable objects, the CSV file does not need to be loaded into memory
as a whole. The input is processed line by line, allowing the processing of very
large CSV files with limited memory. Because each row is processed once, but not
stored, the time complexity is in O(n) for input size n, but the space complexity
is in O(1).

By default, each row is treated as one entity. Each cell, a column value for
the given row, will result in one output triple. The subject and predicate are
prefixed with a prefix defined by the user. The result will then have the form
userprefix:row_entity userprefix:column_name "cell_value".

Since the CSV format stores no data types and encodes everything as strings,
the RDF output would contain all literals as strings. To avoid this behavior, the
common datatypes xsd:integer, xsd:decimal, xsd:date, xsd:dateTime and
geo:wktLiteral are detected and added by csv2rdf using regular expressions.

The row entity is an IRI derived from an internal counter of the program by
default. If the CSV data contains a unique column to be used as the row entity,
the user may specify a primary column. In our example in Code 3.15, this could
be the ref (or id) column. A triple stating a user configured rdf:type (shortcut
a) for this entity is automatically emitted.

Not all column names from CSV are suitable as predicates. For example, IRIs
should not contain whitespace characters, but CSV allows them. Furthermore
the user may want to select predicates and their prefixes for certain columns.

40

3 Approach and Implementation

These issues are addressed in csv2rdf by the user configuration option column
mapping. It is a JSON object map from CSV column names to RDF predicates
or null. If the value null is given, the column will be omitted. If a string
value without a colon (:) is given, the generally configured user prefix is added,
otherwise the column mapping’s prefix takes priority. Consider {"id": null,
"name": "rdfs:label"} in our example.

Not only the modification of column names is possible, but also the modifica-
tion of cell values. For each of the predicates after applying the column mapping,
the user may specify a list of arbitrary regular expression search and replace pat-
terns using the values mapping configuration. The replacements will be applied
to the object of the output triple. The configuration also takes a flag, whether
the result after applying replacements should be treated as a literal or an IRI. In
the example, this could be {"geo": [[["lat=(\\d+\\.\\d+);lng=(\\d+\\.\-
\d+)", "POINT(\\2 \\1)"]], "lit"]}.

Additionally, when using csv2rdf as a library, an extra triple callback may be
registered for each data set. This function will be called once for each row from
the CSV file. The function’s arguments contain the the current row as a Python
dictionary dict[str, str], as well as the row’s subject. The program expects
the extra triple callback to return an iterable object which produces additional
triples for this row. The triples are forwarded to the output.

With the example data set and configuration, assuming the user-chosen prefix
is userprefix:, the result for the first row is shown in Code 3.15:

1 userprefix:RF a userprefix:station .
2 userprefix:RF rdfs:label "Freiburg (Breisgau) Hauptbahnhof" .
3 userprefix:RF userprefix:ref "RF" .
4 userprefix:RF userprefix:geo "POINT(7.84129

47.9977)"^^geo:wktLiteral .↪→

Code 3.16: Example csv2rdf output for a single row from the example CSV data
set in Code 3.15, Data Source: [54]

Of course the csv2rdf program allows for the conversion of any spatial or
non-spatial data in CSV format. Example use cases for spatial data (3.4.3) and
for non-spatial data are discussed in the following (3.4.4).

41

3 Approach and Implementation

3.4.3 General Transit Feed Specification (GTFS)

GTFS [32] is a standardized data model and format to store public transport
information. The format includes for example stops with their locations and
names, timetables when services are operated, geometries of the routes taken by
vehicles and much more.

A GTFS Feed is transmitted as a ZIP archive file. It contains the tables of
a relational database with a standardized schema stored as individual CSV files.
Linked GTFS [52] is an additional standard for representing public transport
information in an RDF knowledge graph.

We introduce gtfs2rdf, a program to translate GTFS to Linked GTFS. It
supports a superset of all mandatory tables from the GTFS standard. The
supported tables, as well as their primary keys (underlined) and foreign keys
(dashed underlined) are shown in Figure 3.4. The arrows in the diagram represent
the foreign key relations. A few attributes relevant for the further explanations
are also included. Since the GTFS format is directly based on CSV, the program’s
implementation reuses the implementation of csv2rdf presented in 3.4.2. Unlike
the no longer maintained Node.js reference implementation by the Open Transport
Working Group, gtfs2rdf automatically adds GeoSPARQL triples to support ge-
o:hasGeometry/geo:asWKT. At user request, the program can also convert the
routes taken by vehicles to WKT LINESTRING literals. They are aggregated from
the individual coordinates stored in the shapes table. The coordinates in this table
are annotated by a sequence number as a sort key. gtfs2rdf sorts and combines
the coordinates into a WKT literal.

The Linked GTFS standard does not directly correspond to the columns
from the GTFS CSV files being translated into triples. Therefore gtfs2rdf’s class
GTFSFeed builds objects for each table from the class CSVDataset that make
extensive use of the column mapping, values mapping and extra triple callback.
The latter is responsible for adding the geometries of points from stops and shapes.
If line strings were requested the extra triple callback is also used to collect the
points in a dictionary. The dictionary holds for each shape, the point coordinates
and sequence numbers. In the end, the points of each shape are sorted according
to their sequence numbers. This is necessary as any points of any shape may
occur in arbitrary order in the CSV file. This procedure requires all shapes to fit
into memory, thus a space complexity of O(n) for input size n. Since sorting is

42

3 Approach and Implementation

required the worst case time complexity is O(n ∗ logn). The worst case would
apply if there is only one route to which all shape points belong. Otherwise, if
line strings are not requested, gtfs2rdf can process all files line by line and does
not require them to fit into memory. The space complexity in this case is O(1)
and the time complexity is O(n).

Examples showcasing the useful querying possibilities of GTFS data in
QLever are given in Code 3.17 and Code 3.18. The queries demonstrate a search
for the names and distances of all places reachable from “Freiburg (Breisgau) Hbf”
without change and a search for all stops with their average number of daily depar-
tures throughout the week. Two further examples are shown in Figure 3.5. The
line geometries produced by gtfs2rdf in combination with QLever’s fast map view
feature, QLever Petrimaps3 [7], allow easily viewing routes from query results.

Because GTFS is a standardized format, easily importing GTFS data into
QLever also opens many further possibilities. Tools working with GTFS data
can now be used with QLever. For example, the pfaedle4 [5] program from the
Chair for Algorithms and Data Structures of the University of Freiburg, which
improves the quality of GTFS shapes. Another example is the pdf2gtfs5 [36] tool
introduced in a fellow student’s thesis for the extraction of timetables from PDF
files.

3GitHub repository: https://github.com/ad-freiburg/qlever-petrimaps
4GitHub repository: https://github.com/ad-freiburg/pfaedle
5GitHub repository: https://github.com/heijul/pdf2gtfs

43

https://github.com/ad-freiburg/qlever-petrimaps
https://github.com/ad-freiburg/pfaedle
https://github.com/heijul/pdf2gtfs

3 Approach and Implementation

frequencies
trip_id
…

agency
agency_id
…

feed_info
…

routes
route_id
agency_id
…

transfers
from_stop_id
to_stop_id
from_route_id
to_route_id
from_trip_id
to_trip_id
…

trips
route_id
service_id
trip_id
shape_id
…

stops
stop_id
stop_name
stop_lat
stop_lon
…

stop_times
trip_id
stop_id
…

calendar
service_id
…

calendar_dates
service_id
…

shapes
shape_id
shape_pt_lat
shape_pt_lon
shape_pt_se-
quence

Figure 3.4: Diagram of GTFS tables supported by gtfs2rdf and their primary
keys, foreign key relations (arrows) and attributes relevant for further
explanations

44

3 Approach and Implementation

1 PREFIX gtfs: <http://vocab.gtfs.org/terms#>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
4 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
5

6 SELECT ?stop_name (MIN(?dist) AS ?dist_freiburg_hbf) WHERE {
7 ?stoptime1 a gtfs:StopTime ;
8 gtfs:trip ?trip ;
9 gtfs:stop ?stop1 ;

10 gtfs:stopSequence ?seq1 .
11 ?stop1 foaf:name "Freiburg Hauptbahnhof" ;
12 geo:hasGeometry/geo:asWKT ?geo1 .
13 ?stoptime2 a gtfs:StopTime ;
14 gtfs:trip ?trip ;
15 gtfs:stop ?stop2 ;
16 gtfs:stopSequence ?seq2 .
17 ?stop2 foaf:name ?stop_name ;
18 geo:hasGeometry/geo:asWKT ?geo2 .
19 FILTER(?seq1 < ?seq2)
20 BIND(geof:distance(?geo1, ?geo2) AS ?dist)
21 }
22 GROUP BY ?stop_name
23 ORDER BY ?dist_freiburg_hbf

Code 3.17: SPARQL query for places reachable without change from “Freiburg
Hauptbahnhof” in Linked GTFS

45

3 Approach and Implementation

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4 PREFIX gtfs: <http://vocab.gtfs.org/terms#>
5 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
6

7 SELECT ?stop ?stop_name ?stop_geo
8 (COUNT(*) / 7 AS ?n_trips)
9 WHERE {

10 ?stoptime a gtfs:StopTime ;
11 gtfs:trip ?trip ;
12 gtfs:stop ?stop .
13 ?stop a gtfs:Stop ;
14 foaf:name ?stop_name ;
15 geo:hasGeometry/geo:asWKT ?stop_geo .
16 ?trip a gtfs:Trip ;
17 gtfs:service ?service .
18

19 # On which weekdays is this journey in service
20 VALUES ?weekday {
21 gtfs:monday gtfs:tuesday gtfs:wednesday gtfs:thursday
22 gtfs:friday gtfs:saturday gtfs:sunday
23 }
24 ?calendar_rule a gtfs:CalendarRule ;
25 gtfs:service ?service ;
26 ?weekday "true"^^xsd:boolean .
27 }
28 GROUP BY ?stop ?stop_name ?stop_geo

Code 3.18: SPARQL query to find the average number of daily trips per stop,
together with each stop’s location, from a Linked GTFS [52] dataset

46

3 Approach and Implementation

(a) Routes of all busses and trams of VAG Freiburg with destination “Lit-
tenweiler”. Data: [30, 54]

(b) Routes of all regional express trains in Germany. Data: [19, 54]

Figure 3.5: Map view using QLever Petrimaps with queries on different Linked
GTFS data sets from gtfs2rdf augmented by line geometries

47

3 Approach and Implementation

3.4.4 Election Data

The case study (4) discussing the impact of infrastructure on political polarization
requires election data. The relevant data is published in multiple files in CSV
format. Additionally, the geometries of the election districts are published in
KML format. They are not part of the OSM data set and cannot be imported
because the OSM project explicitly asks users to refrain from entering election
districts6.

Having implemented csv2rdf and kml2rdf, we can now combine these pro-
grams into a new election2rdf program. It reads a single configuration JSON file
holding election metadata, shell commands to download the external data sets
and the configuration for csv2rdf and kml2rdf. The program then outputs a single
RDF turtle file containing the combined data from all input data sets plus meta-
data. In addition, rdfs:member triples are added to connect the data sets. The
IRIs of entities produced by the conversion of child data sets are modified using
an election identifier such that multiple election2rdf outputs can be combined into
a single knowledge graph without conflicting entities. This way, data for many
elections can form a single knowledge graph.

An example for the metadata triples emitted is shown in Code 3.19. More
details on the included data are explained in the case study chapter (4).

1 @prefix election: <https://www.bundeswahlleiterin.de/#> .
2 @prefix geo: <http://www.opengis.net/ont/geosparql#> .
3 @prefix manifesto: <https://manifesto-project.wzb.eu/#> .
4 @prefix osmrel: <https://www.openstreetmap.org/relation/> .
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
6 @prefix wd: <http://www.wikidata.org/entity/> .
7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
8 election:ew24_1 a election:election .
9 election:ew24_1 rdfs:label "Europawahl 2024" .

10 election:ew24_1 election:wikidata wd:Q112585123 .
11 election:ew24_1 election:osm osmrel:51477 .
12 election:ew24_1 election:countryname "Germany" .
13 election:ew24_1 election:date "2024/06/09"^^xsd:date .
14 election:ew24_1 election:year "2024"^^xsd:integer .

Code 3.19: Example of the first lines of output from election2rdf

6See the discussion on the OSM forum for more details: https://community.openstreetmap.
org/t/shapes-mappen-wahlbezirke/81073/11

48

https://community.openstreetmap.org/t/shapes-mappen-wahlbezirke/81073/11
https://community.openstreetmap.org/t/shapes-mappen-wahlbezirke/81073/11

3 Approach and Implementation

3.5 Generation of Large Spatial Queries

Using the new spatial search capabilities in QLever, we may want to run various
spatial searches between different types of POIs like buildings, supermarkets,
stations, etc. and get the results as a single output table. However, writing
thousand-line queries can become error-prone and incomprehensible. This problem
is addressed by the new free and open source compose_spatial program. It can
combine shards of SPARQL queries into a combined query according to template
queries and a manageably-sized user-provided configuration. A shard is a simple
SPARQL graph pattern or subquery, which selects all POIs of a certain category,
optionally along with further metadata. Code 3.20 shows an example.

1 # All restaurants with names
2 ?restaurant osmkey:amenity "restaurant" ;
3 osmkey:name ?restaurant_name .

Code 3.20: Example SPARQL shard for selecting restaurants with their names

The configuration must be given as a file system directory or as a ZIP file,
which contains the main configuration given as a JSON file as well as the template
and shard files. The program loads or extracts the required files in-memory and
parses the configuration JSON using an internal object representation using the
following classes:

• class QueryConfig,
• class Template,
• class ReplaceRule,
• class SpatialSearch,
• class RightShard,
• class PayloadVariables,
• class SpatialSearchConfig,
• class GroupTemplate and
• class ProvidedValues.

The generation of a query starting from the user configuration consists of
multiple steps. The query as a whole is sourced from a template. The code for the
spatial searches is inserted into the template using a replace pattern. Afterwards,
the user-supplied regular expression replace rules are applied as long as there are

49

3 Approach and Implementation

still occurrences of the search patterns left. These replace rules can be recursively
nested up to a recursion limit of currently 100.

The query code for the spatial searches is obtained from each of the objects
for the possibly many spatial searches given. The objects hold spatial search con-
figuration, which defines the algorithm and search parameters. Additionally, the
spatial search contains a list of left and right query shards. They are combined as
a cartesian product: exemplarily assuming we have configured buildings, stations
as left and supermarkets, restaurants as right, the resulting query will perform
the spatial search operations buildings – supermarkets, buildings – restaurants,
stations – supermarkets and stations – restaurants.

The spatial search operations are grouped according to their left shard and
optionally the groups can be split to form smaller queries. These groups of spatial
search operations are then inserted into a group template, which is inserted as a
subquery into the main template.

Right shards for the spatial searches have the option to include payload
variables, as introduced in 3.2.3. Furthermore the entire spatial search has the
option to declare provided values: a VALUES ?variable { … } statement that
will be included automatically inside the group graph patterns in each of the
spatial search SERVICE subqueries to avoid redundancy in the query shards. Of
course, the VALUES statement is not included, if ?variable is not used in the
respective query shard.

The program automatically adds geo:hasCentroid/geo:asWKT triples to
select the points to be used for search. The spatialSearch:bindDistance
configuration parameter and BIND(COUNT(*) AS ?count_variable) statements
for right shards are also added where necessary.

Information on the program’s usage and implementation details are provided
along with the source code7.

7https://ullinger.info/bachelor-thesis

50

https://ullinger.info/bachelor-thesis

3 Approach and Implementation

3.5.1 Interactive Graphical User Interface

While writing a 50-line configuration is much more user-friendly than manually
writing a thousand-line SPARQL query, the usability can be improved even further.
This is done by implementing a GUI. The user interface is realized as a lightweight
30 kilobyte standalone web app which does not depend on any frameworks and is
included with the compose_spatial program. A screenshot is given in Figure 3.6.

Figure 3.6: Interactive GUI with tree-like structure for the compose_spatial pro-
gram

The user interface can be used by starting the compose_spatial program with
an appropriate option and configuration. The configuration directory includes
a JSON file for configuring the web app and the SPARQL templates, shards
and JSON configuration files as described previously. After creating the required
shards and templates once or reusing the provided ones, users can easily construct
many different queries.

The backend of the web app included with the compose_spatial program, con-
sists of a class ComposeSpatialHTTPServer(http.server.HTTPServer) along
with a customized request handler class ComposeSpatialHTTPRequestHandl-

51

3 Approach and Implementation

er(http.server.BaseHTTPRequestHandler). Since SPARQL shards and tem-
plates are usually only a few kilobytes in size, the implementation caches all files
required for composing queries using the given configurations in memory. This
is helpful for speed and security, since no escaping the web server directory is
possible due to the server only answering queries from its in-memory cache of
allowed files.

In addition to the cached configuration and SPARQL files, the server also
provides the web interface with required internal information as JSON objects,
partially dynamically computed based on input.

The core idea of the web app is that it is fully agnostic to the concrete
structure of the compose_spatial configuration. A change to the configuration
would not require a change in the web app’s code. The tree-like structure of
the web app directly represents the structure of the configuration file and no
structure is hard-coded. The web app retrieves a structure.json file from the
server which has the server’s expected structure but contains dummy values. By
traversing this template and using the types of the values in it, the web app
recursively builds the appropriate user interface objects. During this process, the
paths to each configuration value from the root of the configuration object are
constructed. Using these paths, the web app retrieves additional information not
present in the structure.json file: default values for configuration parameters
from defaults.json, lists of options to chose from, for example for the selection
of shards, from selects.json and explanations of configuration options to dis-
play from descriptions.json. Descriptions of shards are provided as part of
selects.json and are obtained dynamically from the individual shard files: if
the first line of a shard contains a comment, it is used as a description.

For convenient use, the web app supports previewing SPARQL shards and
templates. The user interface adapts to the user’s preference for a light or dark
color scheme.

When a user requests to convert their configuration to a SPARQL query, the
web app traverses the tree representation of its user interface (Document Object
Model) and recursively assembles a configuration JSON object directly from it.
The JSON object is sent to the server, which returns the SPARQL query. Both
files, the configuration JSON and the SPARQL query are displayed to the user
with an option to save them locally.

52

4 Case Study: On Infrastructure
and Political Polarization

In this chapter the presented approach is applied to a real-world use case. Based
on the current research question from political science, whether the availability of
public infrastructure influences political polarization, the implemented workflow
is tested. This case study makes use of every single implemented functionality.
It requires the conversion of ten input data sets to RDF: six CSV data sets,
one KML data set, two GTFS data sets and one OSM data set using auxiliary
geometries from KML. For each of two German elections, 13 nearest neighbors
searches using a maximum number of results are performed on OSM and one
nearest neighbors search using a maximum distance with payload is run on a
large GTFS data set. For each election, the entire data set is generated without
intermediate steps for the user by querying QLever using a single complex query.
The query is constructed using the compose_spatial program and uses both of
the implemented new SPARQL functions. Finally, we also present the real-world
results for the two elections.

4.1 Background

The indicator polarization “belongs to the standard repertoire for the analysis of
party systems” [68] and was introduced in the 1970s [63, 66]. It “is based on the
ideological distance between the individual parties of a party system” [68].

The formula [68] used to quantify polarization measures the divide of voters
along a one-dimensional right-left scale of ideological position. Polarization is
calculated as a variance of the parties’ election results weighted by position: let
Ai be the share of votes of party i and Pi be the right-left score of the party i, we
compute the party system average (“the middle”) as

PASYSAV =
n∑

i=1

(Pi ∗ Ai).

53

4 Case Study: On Infrastructure and Political Polarization

Using the party system average, polarization is defined as

POLARIZATION =
n∑

i=1

(Pi ∗ (Ai − PASYSAV)2).

There are many hypotheses about the reasons for increasing polarization. One
of them, based on the urban – rural line of conflict from the theory of “cleavages”
[45], is the marginalization or modernization loser hypothesis. In essence it states
that where the basic supply of public infrastructure is insufficient, people are
radicalized from feeling left behind. There are various studies on related topics
[46, 27, 64, 20] but none of them are based on analyzing large geographic data
sets to verify the hypothesis. Such an approach is now demonstrated using the
software implemented in this thesis. The approach operationalizes the availability
of public infrastructure by measuring the distance of residential housing to various
places of basic services, like supermarkets and hospitals. Additionally, to measure
the access to public transport, the average number of daily journeys reachable
within 300 meters from the respective residential building is also considered.

As control variables a few more important indicators are used. A common
hypothesis suggests that older people have different political views, therefore the
share of citizens over 60 years of age is included. Furthermore, the fraction of
foreigners in the district and the average income are used as indicators. Specifically
for Germany, there is another important aspect to be considered: The citizens of
the states of the former German Democratic Republic have significantly different
political views due to historical circumstances and their consequences today. Of
course the population density is also taken into consideration in the analysis.

4.2 Data Set Generation using QLever

Since the RDF data model is very flexible it can easily combine multiple datasets.
This is taken advantage of here.

We obtain the official election results [14, 12], socioeconomic structural data
for each of the election districts [16, 13] as well as the geometries of election
districts [15] from the German Federal Returning Officer (Bundeswahlleiterin).
These data sets are downloaded and converted to RDF using the election2rdf
program based on the csv2rdf and kml2rdf implementations.

54

4 Case Study: On Infrastructure and Political Polarization

The map dataset used to obtain infrastructure information is an OSM
database export for Germany [54], which is converted and merged with the elec-
tion districts using osm2rdf. The spatial searches are performed on the centroids
precomputed by osm2rdf.

Furthermore information on public transport is extracted from the data [18,
19] provided by “Durchgängige elektronische Fahrgastinformation e.V.” (DELFI).
These data sets contain the entire country’s timetables in GTFS format, licensed
under CC-BY. Germany as an EU member state must provide the timetables
freely in accordance with an EU regulation [23]. DELFI forms the national access
point to comply with this regulation. The GTFS data sets are converted to RDF
using the gtfs2rdf program.

The formula to be used to determine polarization requires a political right-
left score for each party. A renowned source of data on political positioning of
parties is the Manifesto Project Dataset [44]. Unfortunately the Manifesto Project
Dataset’s non-free license is incompatible with the ODBL used by OSM. Therefore
we approximate the right-left score using the parliamentary seating arrangement
[21, 24] as shown in Table 4.1.

We perform a plausibility check using the data for the German federal
election 2021. The Pearson correlation coefficient between the right-left score
from the Manifesto Project and the seating-arrangement-based alternative yields
r = 0.9692. Thus both are very strongly correlated and the alternative can
be used. For the European parliament election 2024 a plausibility check is not
possible, because the Manifesto Project has not yet released an updated dataset.

The right-left scores are saved in CSV format and are also included in the
input to the election2rdf program. The output turtle files of election2rdf for both
elections are indexed and form one QLever instance. A second instance is set up
using the combination of both GTFS data sets from DELFI for 2021 and 2024.
The third instance is built upon the osm2rdf output. Using the compose_spatial
program, one SPARQL query for each election is generated. It can access the data
from all three QLever instances using SPARQL’s federated querying syntax SER-
VICE <IRI> { … }. Along with the spatial search, also invoked using a SERVICE,
the query uses the math:pow(?base, ?exp) function to compute the polarization
formula. The avg(?numbers) function and the new stdev(?numbers) function
are used as aggregates for the distances from the spatial search. The query uses
the spatial relations between OSM data and the election districts from KML to

55

4 Case Study: On Infrastructure and Political Polarization

Party RILE
LINKE 1
SPD 2
90/Greens 3
SSW 3
FDP 4
CDU/CSU 5
AfD 6

(a) German federal election (Bun-
destagswahl) 2021 [21]. Both
christian-democratic parties (CDU
and CSU) had individual candida-
cies but a shared election program,
thus they are considered together.

Party RILE
LINKE 1
BSW 1.5
Die PARTEI 2
SPD 2
90/Greens 3
Volt 3
Tierschutzpartei 3
FDP 4
FREIE WÄHLER 4
PdF 4
CDU/CSU 5
FAMILIE 5
ÖDP 5
AfD 8

(b) European parliament election (Eu-
ropawahl) 2024 in Germany [24].
The value for parties whose Mem-
bers of Parliament are non-attached
to a parliamentary group were man-
ually estimated.

Table 4.1: Right-left score (RILE) based on parliamentary seating for the success-
fully elected parties

group the buildings for aggregation.

The complete query for each election is evaluated by QLever and returns the
complete data set for analysis as a single CSV or TSV file within approximately
ten minutes. One possible scenario for the further use of the query result is
demonstrated in 4.3: The query result can be loaded directly into the R software
for statistical computations [59, 28].

4.3 Real-World Results

In general, it is important to note that polarization is a very complex phenomenon
influenced by many factors. Thus polarization, of course, cannot be explained only
by the distance to a certain type of basic service. Following from this, correlations
are not very strong. Unsurprisingly, the density of public basic services is corre-
lated with the population density (Table 4.2). However, the correlation between

56

4 Case Study: On Infrastructure and Political Polarization

supermarkets or the number of public transport trips and polarization is higher
than between population density and polarization. Additionally, the exemplary
three indicators (average distance to the nearest hospital and supermarket, aver-
age number of reachable daily public transport trips) show significance in some
of the linear regression models given by Table 4.3. All of the control variables
prove to be relevant indicators, especially the differentiation for the former states
of the German Democratic Republic.

While an extensive further analysis and discussion of the data at hand is
beyond the scope of this thesis, a few interesting evaluations are given on the next
pages (Table 4.2, Table 4.3 and Figure 4.1). It seems clear that polarization is a
complex topic, but the data indicate at least some influence of the availability of
public infrastructure on polarization for the two elections.

More importantly, the case study demonstrates how all of the implemented
software can work together to build a real-world data set using the new efficient
spatial search in QLever. The task, which previously required manually dealing
with ten different datasets, is significantly simplified. Unlike before, all data set
construction can now be done in a single step using only one SPARQL query.

The implemented software is not limited to this use case, but can be applied
to countless questions. Another use case could be, for example, the measurement
of poorly served neighborhoods for cities’ public transport planning.

57

4
C

ase
Study:

O
n

Infrastructure
and

PoliticalPolarization

Av
g.

di
st

.
tr

an
sp

or
t

Av
g.

di
st

.
su

pe
rm

ar
ke

t

Av
g.

di
st

.
bu

tc
he

r

Av
g.

di
st

.
m

ot
or

w
ay

Av
g.

di
st

.
ho

sp
ita

l

Av
g.

di
st

.
un

iv
er

sit
y

Av
g.

di
st

.
fu

el

Av
g.

di
st

.
ga

st
ro

no
m

y

Av
g.

di
st

.
ki

nd
er

ga
rt

en

Av
g.

di
st

.
ha

ird
re

ss
er

Av
g.

di
st

.
sc

ho
ol

Av
g.

di
st

.
ba

ke
ry

Av
g.

di
st

.
ph

ar
m

ac
y

Pu
bl

.
Tr

an
sp

.
Tr

ip
s

Po
pu

la
tio

n
de

ns
ity

Po
la

riz
at

io
n

Avg. dist. transport 1 0.66 0.6 0.54 0.61 0.65 0.62 0.64 0.65 0.66 0.64 0.64 0.65 -0.48 -0.39 0.4

Avg. dist. supermarket 0.66 1 0.75 0.66 0.87 0.84 0.94 0.92 0.91 0.94 0.96 0.94 0.97 -0.7 -0.63 0.49

Avg. dist. butcher 0.6 0.75 1 0.52 0.72 0.67 0.71 0.85 0.76 0.77 0.78 0.82 0.76 -0.5 -0.45 0.35

Avg. dist. motorway 0.54 0.66 0.52 1 0.65 0.62 0.66 0.66 0.67 0.68 0.64 0.65 0.68 -0.5 -0.43 0.28

Avg. dist. hospital 0.61 0.87 0.72 0.65 1 0.78 0.81 0.83 0.79 0.84 0.83 0.82 0.87 -0.69 -0.66 0.32

Avg. dist. university 0.65 0.84 0.67 0.62 0.78 1 0.81 0.8 0.82 0.85 0.82 0.84 0.84 -0.65 -0.58 0.39

Avg. dist. fuel 0.62 0.94 0.71 0.66 0.81 0.81 1 0.88 0.89 0.91 0.94 0.92 0.95 -0.64 -0.57 0.57

Avg. dist. gastronomy 0.64 0.92 0.85 0.66 0.83 0.8 0.88 1 0.92 0.91 0.95 0.95 0.92 -0.61 -0.54 0.5

Avg. dist. kindergarten 0.65 0.91 0.76 0.67 0.79 0.82 0.89 0.92 1 0.93 0.94 0.93 0.93 -0.64 -0.55 0.52

Avg. dist. hairdresser 0.66 0.94 0.77 0.68 0.84 0.85 0.91 0.91 0.93 1 0.93 0.94 0.95 -0.65 -0.58 0.43

Avg. dist. school 0.64 0.96 0.78 0.64 0.83 0.82 0.94 0.95 0.94 0.93 1 0.96 0.96 -0.63 -0.56 0.54

Avg. dist. bakery 0.64 0.94 0.82 0.65 0.82 0.84 0.92 0.95 0.93 0.94 0.96 1 0.95 -0.61 -0.54 0.51

Avg. dist. pharmacy 0.65 0.97 0.76 0.68 0.87 0.84 0.95 0.92 0.93 0.95 0.96 0.95 1 -0.68 -0.6 0.48

Publ. Transp. Trips -0.48 -0.7 -0.5 -0.5 -0.69 -0.65 -0.64 -0.61 -0.64 -0.65 -0.63 -0.61 -0.68 1 0.83 -0.39

Population density -0.39 -0.63 -0.45 -0.43 -0.66 -0.58 -0.57 -0.54 -0.55 -0.58 -0.56 -0.54 -0.6 0.83 1 -0.24

Polarization 0.4 0.49 0.35 0.28 0.32 0.39 0.57 0.5 0.52 0.43 0.54 0.51 0.48 -0.39 -0.24 1

Table 4.2: Correlation matrix between all distance variables, the average number of public transport trips, the population
density and the polarization for German Federal Election 202158

4
C

ase
Study:

O
n

Infrastructure
and

PoliticalPolarization

Federal Election 2021 European Election 2024
Variable Germany Only East Only West Germany Only East Only West

Average distance to nearest
hospital in km

-0.02221∗
(0.01002)

-0.0587∗
(0.02897)

-0.02204∗
(0.011)

0.05752∗∗
(0.01762)

0.01813
(0.04037)

0.06137∗∗
(0.01924)

Average distance to nearest
supermarket in km

0.10637∗∗
(0.03635)

0.17599∗
(0.07551)

0.09072∗
(0.04342)

-0.13864∗
(0.06188)

0.12558
(0.11278)

-0.27713∗∗∗
(0.07263)

Average reachable daily public
transport trips

-0.00038∗∗
(0.00011)

-0.00068
(0.00054)

-0.00044∗∗∗
(0.00013)

-0.00021
(0.00027)

-0.00145.
(0.00082)

-0.00035
(0.00029)

Population over 60 years of age
in percent

0.02976∗∗∗
(0.00442)

0.03861∗∗∗
(0.00871)

0.02177∗∗∗
(0.00566)

0.13257∗∗∗
(0.00864)

0.11791∗∗∗
(0.01423)

0.13078∗∗∗
(0.01054)

Location in East German state 0.63613∗∗∗
(0.03618)

2.08804∗∗∗
(0.07193)

Foreign population in percent 0.01228∗∗∗
(0.00334)

-0.00548
(0.0173)

0.01053∗∗
(0.0036)

0.05705∗∗∗
(0.00665)

0.05314∗
(0.02194)

0.05135∗∗∗
(0.00731)

Average yearly income in Euro -0.00003∗∗∗
(0)

-0.00008∗
(0.00003)

-0.00003∗∗∗
(0)

-0.00011∗∗∗
(0.00001)

-0.00003
(0.00004)

-0.00012∗∗∗
(0.00001)

Constant 1.85612∗∗∗
(0.18294)

3.23759∗∗∗
(0.797)

2.14877∗∗∗
(0.22723)

1.65035∗∗∗
(0.40814)

2.38433∗
(1.16198)

2.06633∗∗∗
(0.47683)

Adjusted R2 0.8368 0.61408 0.35474 0.89622 0.64165 0.51436
F Statistic 219.28598 13.72947 23.81492 493.23283 23.08363 58.1938

Number of districts N 299 49 250 400 75 325

Table 4.3: Multivariate linear regression models to explain political polarization in two German elections using infrastructural
and socioeconomic indicators, given as Coefficient (Standard error), probability of confidence: *** >99,9%; ** >99%;
* >95%; · >90%59

4 Case Study: On Infrastructure and Political Polarization

(a) Polarization (min: �, max: �) (b) Average distance to the nearest su-
permarket (less is better, min: �,
max: �)

(c) Average distance to the nearest hos-
pital (less is better, min: �, max:
�)

(d) Average number of daily public
transport trips reachable within 300
meters (more is better, min: �,
max: �)

Figure 4.1: Map of Germany divided into the election districts for the 2021 Federal
Election. Colored to visualize different variables

60

5 Evaluation
In this chapter we present how the implemented code can be evaluated as well
as the results of this evaluation for various data sets. In addition to the bench-
marks and comparisons in this chapter, all implemented software’s correctness is
extensively tested by unit tests with high code coverage (> 95%).

5.1 Experimental Setup

All running times that will be discussed in the following refer to benchmarks
run on a powerful, recent consumer computer. Its specifications are given by
Table 5.1.

Operating System Ubuntu Server 24.04.1 LTS
Processor AMD Ryzen 9 7950X (32 threads, 4.5 GHz)
Memory 128 GB DDR5
Disk Storage 8TB on WD BLACK SN850X NVMe SSDs

Table 5.1: Technical specifications of the machine used for evaluation

The software used for evaluation is run in a containerized manner using the
podman system. We implement a large purpose-built program reproduction.py
in the Python programming language to automatically perform all parts of the
evaluation from compiling the software, downloading data sets to running the
benchmarks. The program is split into 58 individual steps, which each have
dependencies on other steps. Since the full evaluation takes approximately 80–85
hours to complete, individual evaluation parts can be reproduced by selecting
specific steps. The program checks that the steps’ dependencies are met. Details
on how to run the reproduction can be found in the appendix (chapter 9).

In the evaluation we compare QLever with PostgreSQL and its geospatial
extension PostGIS. For both programs we also compare different types of queries:
baseline approaches and index-based approaches. Where appropriate we also
compare QLever with a previous version of itself. Since we care about fast

61

5 Evaluation

response times not in theory but for the user, all benchmarks are measured as
end-to-end times for the respective query engine to produce the result. The only
exception to this is the exclusion of data download times since internet connection
speed varies and is not under the influence of the query engines’ implementations.

PostgreSQL [58] is a widely used relational database management system
queried using SQL, which has been in development for over 35 years. It supports
a vast variety of spatial functions through the PostGIS extension [61], which is
built on the libGEOS library [31]. OSM data can be imported into a PostgreSQL
database using the osm2pgsql tool [39]. The workflow using PostgreSQL, PostGIS
and osm2pgsql is chosen as a competitor method for comparison against QLever
because it is the most widely used solution. The OSM project itself uses this
workflow for map rendering and search features in its web application [40].

PostgreSQL takes advantage of a generalized search tree (GiST) [37, 42] which
is able to index multi-dimensional data. The index stores the two dimensional
coordinates of points in the case of our PostGIS evaluation. This is a different
approach to the one-dimensional S2CellIds (see 2.5) used by s2geometry and
therefore QLever.

The evaluation queries explained in the following are run on various subsets
selected from OSM Germany data [54] and multiple different GTFS data sets [18,
19, 30, 26]. The case study additionally uses official election data [16, 14, 21, 15,
12, 13, 24].

First, we analyze the time taken to import the respective data and build the
required indices. For fairness to QLever, which indexes everything, PostgreSQL
is instructed to build indices on all columns. Additionally, just like osm2rdf, we
precompute and index centroids of all geometries in PostgreSQL. Furthermore
we employ the spatialjoin1 [8] program by the Chair of Algorithms and Data
Structures of the University of Freiburg to also precompute all spatial relations
for OSM Germany for PostgreSQL. The program is based on the same code base
used by osm2rdf.

Second, we compare the running times for QLever with and without the
implementation of efficient representation of geographic points (3.1) using a mini-
malistic query.

Third, we run a nearest neighbors spatial search between differently sized
1GitHub repository: https://github.com/ad-freiburg/spatialjoin

62

https://github.com/ad-freiburg/spatialjoin

5 Evaluation

types of POIs from OSM. In total 150 benchmarks on 42 different pairs of input
tables are evaluated. For the pairs of tables, where the cartesian product does
not exceed 250 million rows, we compare

• the cartesian product aggregated to minimum distance in PostgreSQL using
a CROSS JOIN,

• the index-based nearest neighbors search in PostgreSQL using a precom-
puted GiST index for all centroids and CROSS JOIN LATERAL [57, 60],

• the index-based nearest neighbors search in PostgreSQL using a temporary
table with the required subset of points and an ad hoc GiST index, queried
with CROSS JOIN LATERAL,

• the baseline algorithm in QLever using the nearest neighbors search SERVICE
syntax (3.2.1),

• the ad hoc s2geometry index-based algorithm in QLever using the nearest
neighbors search SERVICE syntax (3.2.2).

For larger tables, the cartesian product in PostgreSQL and the baseline algorithm
in QLever are not computed.

Fourth, we compare QLever’s baseline and index-based nearest neighbors
search on different GTFS data sets. A search using a maximum distance is
applied to find public transport stops that are within 100 meters of each other.

Fifth, we compare the running times of an ad hoc GiST index in PostgreSQL
with the ad hoc s2geometry index algorithm in QLever for a very large spatial
search computing the average distance between each building in Germany and
the nearest POI for 13 different types of POIs. This corresponds to the OSM part
of the case study query.

5.2 Results

In the following we present and discuss the results for the aforementioned evalua-
tion benchmarks. Running times in tables are indicated in the format [hours:][min-
utes:]seconds. If the running time is below one minute, two decimal places for
fractions of a second are also indicated.

Aside from the data set generation and import, benchmarks were usually run
10 times. The times are indicated as the arithmetic mean ± standard deviation
of the running time after 10 iterations. Results over 10 minutes are marked with

63

5 Evaluation

a star (∗) and were only run once. If cells are marked with a green background,
the average time indicated is the minimum for the respective benchmark. If cells
are marked with a red background, it highlights a running time over one minute.

5.2.1 Data Generation and Import

Table 5.2 displays the running times and resulting size of the data and index for
the import of OSM Germany. It compares osm2pgsql and PostgreSQL with and
without the precomputation of spatial relations using the spatialjoin program
with QLever and osm2rdf. It can be seen that PostgreSQL is much faster, but
after many queries the import time is amortized. Also the restriction must be
made that the osm2pgsql configuration only imports the 64 most important OSM
keys, but osm2rdf imports every tag from OSM. The remaining factors were kept
as similar as possible. All benchmarks were run on the exact same PBF file.

PostgreSQL QLever

osm2pgsql osm2pgsql +
spatialjoin osm2rdf

Convert PBF 8:24 42:58 2:11:54
Build Index 27:26 1:16:07 9:52:14

Disk Size 70 GiB 375 GiB 344 GiB

Table 5.2: Running times and disk usage for data set preparation and index build
on OSM Germany

The remaining evaluation data sets were generated using the new programs
introduced in 3.4. Their running times and output file sizes are depicted in
Table 5.3. The table also shows the running time and size for a QLever index
build on the concatenation of all triples of the election and GTFS data sets
respectively. The observations correspond roughly to a linear runtime behavior
regarding the input size and are overall acceptable. The successful inclusion of
the Finnish railway traffic as a GTFS feed demonstrates the universality of the
implemented software as well as the advantages of standardized formats.

64

5 Evaluation

Election GTFS
election2rdf Time Disk gtfs2rdf Time Disk

EW 2024 1.37 909 KiB DELFI 2024 43:18 1.1 GiB
BTW 2021 1.69 4.1 MiB2 DELFI 2021 35:15 877 MiB

Fintraffic 2024 1:54 61 MiB
VAG FR 2024 33.59 17 MiB

QLever Index 1.75 13 MiB QLever Index 14:25 11 GiB

Table 5.3: Running times and disk usage for data set preparation and index
build on election and GTFS data sets. Additional GTFS data sets
for Freiburg (VAG FR) [30] and Finland (Fintraffic) [26] are included
for later use in the evaluation. BTW refers to Bundestagswahl (Ger-
man Federal Election), EW refers to Europawahl (European Parliament
Election in Germany).

5.2.2 Distance Measurement on Points

We use the minimal query in Code 5.1 to reduce the noise of other parts of the
query while measuring the speed improvement of the new efficient representation
of geographic points. This way the effect of folding points into ValueIds is isolated
as much as possible. In Table 5.4, the improvement shows a more than three
times faster query evaluation. The result of the “distance to Berlin” query on
our combined GTFS data set is 422.305 kilometers for the new implementation
and 423.554 kilometers for the old implementation. The difference is most likely
influenced more by the implemented improvement of distance precision (3.3.1)
than by the precision loss due to the ValueId representation of points.

1 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
2 PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
3 SELECT (AVG(?dist) AS ?avg_dist) WHERE {
4 ?osm_entity geo:hasCentroid/geo:asWKT ?geometry .
5 BIND(geof:distance(
6 ?geometry, "POINT(13.369661 52.524945)"^^geo:wktLiteral
7) AS ?dist)
8 FILTER(BOUND(?dist))
9 }

Code 5.1: QLever: Average distance in kilometers of any centroid in the data set
to Berlin

2Includes auxiliary geometries for osm2rdf.

65

5 Evaluation

System Time
QLever without GeoPoint 8.70 ± 0.09
QLever with GeoPoint 2.85 ± 0.02

Speed-up 305.37%

Table 5.4: Evaluation results for efficient point representation for “Distance to
Berlin” (Code 5.1) on the combined index of all GTFS data sets (Ta-
ble 5.3)

5.2.3 Nearest Neighbors Spatial Search

In this part of the evaluation we compare the running times of a nearest neighbors
search with a maximum of one result. With the goal of testing the nearest
neighbors search on various inputs with different characteristics, we choose seven
OSM tags with differing frequency in OSM Germany. The tags and the number
of entities tagged are shown in Table 5.5.

Key Value Entities
leisure = sauna 1 354
railway = station 4 315
tourism = viewpoint 29 556
shop = supermarket 33 815
amenity = restaurant 101 840
amenity = bench 703 479
building = all values 37 536 278

Table 5.5: The OSM tags used to get differently sized join tables. For each tag
the number of tagged entities in OSM Germany is given.

We consider a cartesian product of these OSM tags with themselves to be
used for the left and right join tables. We remove only the pairs where both
tags are equal because the one nearest neighbor in a self-join is always the left
point itself. In each benchmark, the two tags are used directly without further
restrictions to generate a left or right join table respectively. The queries used
are given for the example of railway stations as a left table and supermarkets
as a right table. All other queries are carried out analogously, only the tags are
changed. The QLever query is given in Code 5.2, the PostgreSQL query with a
cartesian product in Code 5.3, with a full precomputed GiST index in Code 5.4
and using an ad hoc GiST index in Code 5.5.

66

5 Evaluation

1 PREFIX geo: <http://www.opengis.net/ont/geosparql#>
2 PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
3 PREFIX spatialSearch:

<https://qlever.cs.uni-freiburg.de/spatialSearch/>↪→

4

5 SELECT (AVG(?min_dist) AS ?avg_min_dist) WHERE {
6 ?left osmkey:railway "station" ;
7 geo:hasCentroid/geo:asWKT ?left_geometry .
8 SERVICE spatialSearch: {
9 _:config spatialSearch:algorithm spatialSearch: s2 ;

10 spatialSearch:numNearestNeighbors 1 ;
11 spatialSearch:left ?left_geometry ;
12 spatialSearch:right ?right_geometry ;
13 spatialSearch:bindDistance ?min_dist .
14 {
15 ?right osmkey:shop "supermarket" ;
16 geo:hasCentroid/geo:asWKT ?right_geometry .
17 }
18 }
19 }

Code 5.2: Example evaluation query on QLever: Nearest neighbor join between
all stations and supermarkets. This query can be run with different
algorithms: s2 and baseline .

1 SELECT AVG(min_dist) AS avg_min_dist FROM (
2 SELECT MIN(
3 ST_Distance(ST_Transform(left_.centroid, 4326)::geography,
4 ST_Transform(right_.centroid, 4326)::geography)
5) / 1000 AS min_dist
6 FROM (
7 SELECT left_.osm_id, left_.centroid
8 FROM osm_centroids AS left_
9 WHERE left_.railway = 'station'

10) AS left_ CROSS JOIN (
11 SELECT right_.centroid
12 FROM osm_centroids AS right_
13 WHERE right_.shop = 'supermarket'
14) AS right_
15 GROUP BY left_.osm_id
16);

Code 5.3: Example evaluation query on PostgreSQL: Cartesian product between
all stations and supermarkets aggregated to the minimum per station

67

5 Evaluation

1 SELECT AVG(left_.centroid::geography
2 <-> right_.centroid::geography) / 1000 AS avg_min_dist
3 FROM (
4 SELECT osm_id, centroid
5 FROM osm_centroids
6 WHERE railway = 'station'
7) AS left_ CROSS JOIN LATERAL (
8 SELECT right_.centroid,
9 right_.centroid <-> left_.centroid AS dist

10 FROM osm_centroids AS right_
11 WHERE right_.shop = 'supermarket'
12 ORDER BY dist
13 LIMIT 1
14) AS right_;

Code 5.4: Example evaluation query on PostgreSQL: Nearest neighbor join be-
tween all stations and supermarkets on a full GiST index using the
official syntax [60]

1 -- Create ad-hoc table and compute index on the selected subset
2 CREATE TEMPORARY TABLE right_cache (centroid geometry);
3 INSERT INTO right_cache
4 SELECT centroid FROM osm_centroids WHERE shop = 'supermarket';
5 CREATE INDEX idx_right_cache ON right_cache
6 USING GIST (centroid);
7 -- Query the new index
8 SELECT AVG(left_.centroid::geography
9 <-> right_.centroid::geography) / 1000 AS avg_min_dist

10 FROM (
11 SELECT osm_id, centroid
12 FROM osm_centroids
13 WHERE railway = 'station'
14) AS left_ CROSS JOIN LATERAL (
15 SELECT right_.centroid,
16 right_.centroid <-> left_.centroid AS dist
17 FROM right_cache AS right_
18 ORDER BY dist
19 LIMIT 1
20) AS right_;

Code 5.5: Example evaluation query on PostgreSQL: Nearest neighbor join be-
tween all stations and supermarkets using an ad hoc GiST index on a
temporary table

68

5 Evaluation

Where the cartesian product is at most 250 million rows in size it was
computed. The results for this benchmark between five strategies are given in
Table 5.6. The remaining benchmarks computed only with the three index-based
strategies can be found in Table 5.7. Both tables are ordered by ascending size
of the left join table, then the right join table.

We can observe a few interesting results here. Between the two cartesian
product strategies, the one in PostgreSQL and our baseline algorithm in QLever,
our algorithm is much faster in all cases, 991% on average.

The remaining benchmark results require further background information to
understand. We can see that in a few cases, mostly when the right join table is all
buildings, the full GiST index is fastest but otherwise it is very slow. When looking
at the query plan for this strategy using SQL’s EXPLAIN statement (Code 5.6) the
reason becomes clear. What PostgreSQL does when it is queried using the full
GiST index is search for nearest neighbors of any kind first and filter the results
afterwards until enough nearest neighbors have been found. Since buildings are
very frequent unlike other tags in all parts of Germany, a search for all nearest
neighbors will quickly return a building. Because the index build is not counted
towards the query time, this strategy is very fast in these cases. However for
other queries it is often unusably slow because the search for nearest neighbors
of any kind has a similar behavior to a cartesian product with all points if the
points of the right join table are rare in the full index.

At the same time the described scenario of a very frequent tag for the right
join table and a relatively small left join table is the ad hoc strategies’ weak point.
The ad hoc index for all of the many rows in the right table has to be built once
no matter how often it is queried. This explains the comparably slow running
times of the ad hoc index strategies in these cases.

Additionally, we can observe that QLever, while still only taking 1–2 seconds,
for the smaller queries is slower than an ad hoc index in PostgreSQL. However,
QLever does not spend the time for the nearest neighbors search but for building
the left and right join tables. This can be seen for the station – supermarket
example in QLever’s query analysis tree depicted in Figure 5.2. In this example
building the join tables takes 1727 ms, but the nearest neighbors search takes only
9 ms. QLever’s disadvantage in this case is that it has to work with very large
indices containing all triples. Due to principle, QLever has to select the required
centroids with a join from all centroids. The table in PostgreSQL on the other

69

5 Evaluation

hand does not contain all geometries, only centroids. Furthermore PostgreSQL
has individual indices for each OSM key due to them being stored in individual
columns. These indices are thus much smaller and faster to query. Because of its
data organization in a table, PostgreSQL can immediately retrieve the required
centroids from the table row after applying the search condition.

Another observation of interest is the disproportionate decline in query speed
of the ad hoc GiST index in PostgreSQL for a large right join table with all
buildings. When looking at the query plan for the ad hoc GiST index (Code 5.7)
this characteristic is not immediately clear. The query plan suggests an analogous
query approach with QLever. However, the suboptimal performance can be
partially explained by different design decisions of the query engines. PostgreSQL
prioritizes wide hardware compatibility and being able to run on low-resource
machines. Therefore it will not store the temporary table in memory once it
exceeds a threshold but write it to disk. By default this threshold is configured
at 8 MiB. The larger right join tables exceed this limit and are written to disk.
Querying the table then requires many random access read operations on the hard
disk. The read operations on a disk are of course much slower than in random
access memory intended for this purpose.

In the scenario where the left join table contains all buildings and is thus very
large, the query on QLever’s ad hoc s2geometry index is on average 3442% faster
than on PostgreSQL’s ad hoc GiST index. This applies to cases with small as well
as large right join tables used for the ad hoc indices. Therefore this performance
difference can be attributed to the time for querying the index 37.5 million times
instead of the time for writing a temporary table to disk.

Overall, our index-based algorithm in QLever has the most stable running
times. QLever is reasonably fast or fastest in all benchmarks as can be seen
in Figure 5.1. QLever performs especially well for queries involving very large
join tables. Unlike PostgreSQL, there are no outliers in any of the running time
benchmarks for our index-based algorithm. Additionally the SPARQL query
(Code 5.2) is much less complex and easier to understand and write than the
equivalent SQL query (Code 5.5).

70

5
Evaluation

PostgreSQL QLever

Left Right Rows
Left×Right

Cartesian
Product

Complete
GiST Index

Ad hoc
GiST Index

Baseline
Algorithm

Ad hoc
S2 Index

sauna station 5 842 510 7.89 ± 0.08 22.16 ± 1.01 0.18 ± 0.03 1.06 ± 0.01 0.55 ± 0.13
sauna viewpoint 40 018 824 53.85 ± 0.51 11.93 ± 0.15 0.28 ± 0.02 5.40 ± 0.06 1.62 ± 0.03
sauna supermarket 45 785 510 1:01 ± 0.22 3.53 ± 0.03 0.34 ± 0.03 5.93 ± 0.05 1.57 ± 0.02
sauna restaurant 137 891 360 2:34 ± 1.78 1.37 ± 0.02 0.52 ± 0.02 15.38 ± 0.14 2.35 ± 0.04
station sauna 5 842 510 7.64 ± 0.03 3.02 ± 0.03 0.22 ± 0.02 1.06 ± 0.01 0.52 ± 0.02
station viewpoint 127 534 140 2:54 ± 1.00 46.01 ± 0.72 0.37 ± 0.02 13.96 ± 0.14 1.85 ± 0.06
station supermarket 145 911 725 2:36 ± 1.27 9.19 ± 0.05 0.43 ± 0.02 15.59 ± 0.12 1.78 ± 0.03

viewpoint sauna 40 018 824 52.51 ± 0.44 17.71 ± 0.10 0.82 ± 0.02 5.39 ± 0.06 1.64 ± 0.05
viewpoint station 127 534 140 2:49 ± 1.18 9:04 ± 16.66 0.72 ± 0.02 13.94 ± 0.14 1.86 ± 0.04

supermarket sauna 45 785 510 59.37 ± 0.40 20.05 ± 0.50 0.98 ± 0.02 5.93 ± 0.04 1.61 ± 0.05
supermarket station 145 911 725 2:37 ± 1.19 9:56 ± 31.23 0.85 ± 0.03 15.60 ± 0.11 1.78 ± 0.02
restaurant sauna 137 891 360 2:28 ± 1.02 57.86 ± 0.57 2.62 ± 0.03 15.40 ± 0.16 2.37 ± 0.05

Table 5.6: Evaluation results for nearest neighbor searches on OSM Germany with sizes where a cartesian product is feasible

71

5 Evaluation

PostgreSQL QLever

Left Right Complete
GiST Index

Ad hoc
GiST Index

Ad hoc
S2 Index

sauna bench 1.14 ± 0.03 1.88 ± 0.02 2.53 ± 0.03
sauna building 0.27 ± 0.02 46.35 ± 0.56 14.82 ± 0.11
station restaurant 4.53 ± 0.02 0.63 ± 0.03 2.54 ± 0.04
station bench 2.67 ± 0.02 2.03 ± 0.02 2.73 ± 0.04
station building 0.67 ± 0.02 46.37 ± 0.55 14.96 ± 0.11

viewpoint supermarket 2:52 ± 1:10 1.07 ± 0.02 2.91 ± 0.06
viewpoint restaurant 31.96 ± 0.82 1.48 ± 0.02 3.70 ± 0.05
viewpoint bench 7.30 ± 0.19 3.22 ± 0.04 3.88 ± 0.05
viewpoint building 4.78 ± 0.12 47.68 ± 0.50 16.10 ± 0.13

supermarket viewpoint 6:50 ± 2.14 1.26 ± 0.03 2.88 ± 0.03
supermarket restaurant 29.16 ± 0.13 1.71 ± 0.03 3.57 ± 0.04
supermarket bench 24.42 ± 0.52 3.64 ± 0.05 3.81 ± 0.05
supermarket building 3.56 ± 0.05 47.78 ± 0.50 15.95 ± 0.14
restaurant station 27:38∗ 2.26 ± 0.02 2.56 ± 0.05
restaurant viewpoint 16:33∗ 3.16 ± 0.04 3.68 ± 0.06
restaurant supermarket 3:47 ± 11.62 3.09 ± 0.03 3.64 ± 0.05
restaurant bench 53.78 ± 0.94 7.11 ± 0.04 4.72 ± 0.08
restaurant building 10.96 ± 0.18 50.31 ± 0.57 16.84 ± 0.14
bench sauna 6:44 ± 8.27 15.09 ± 0.19 2.82 ± 0.08
bench station 3:00:11∗ 12.38 ± 0.15 2.96 ± 0.04
bench viewpoint 1:14:53∗ 18.17 ± 0.20 4.16 ± 0.08
bench supermarket 29:25∗ 17.41 ± 0.19 4.15 ± 0.05
bench restaurant 10:03∗ 23.68 ± 0.27 4.95 ± 0.09
bench building 1:29 ± 0.59 1:21 ± 0.88 18.71 ± 0.15
building sauna 6:03:44∗ 12:42∗ 28.07 ± 0.30
building station > 24:00:00 10:36∗ 24.82 ± 0.11
building viewpoint > 24:00:00 16:36∗ 31.26 ± 0.15
building supermarket 21:32:31∗ 14:54∗ 27.97 ± 0.24
building restaurant 9:41:47∗ 20:31∗ 28.99 ± 0.30
building bench 5:22:03∗ 29:01∗ 36.73 ± 0.28

Table 5.7: Evaluation results for nearest neighbor searches on OSM Germany with
sizes where a cartesian product is not feasible

72

5 Evaluation

0 5 10 15 20 25 30 35 40

0

5:00

10:00

15:00

20:00

25:00

30:00

Benchmark
(sorted by ascending input size, left table first, right table second)

Q
ue
ry

ru
nn

in
g
tim

e
as

[m
in
ut
es
:]s
ec
on

ds

PostgreSQL: Full GiST index
PostgreSQL: Ad hoc GiST index

QLever: Ad hoc S2 index

Figure 5.1: Plot of the running times for the nearest neighbors benchmark using
the index-based strategies. For PostgreSQL’s full GiST index, times
over 30 minutes are not depicted.

73

5 Evaluation

1 QUERY PLAN
2 Aggregate (cost=45523221.09..45523221.11 rows=1 width=8)
3 -> Nested Loop (cost=99.93..45520996.81 rows=8638 width=64)
4 -> Bitmap Heap Scan on osm_centroids

(cost=99.51..32079.29 rows=8638 width=32)↪→

5 Recheck Cond: (railway = 'station'::text)
6 -> Bitmap Index Scan on idx_railway

(cost=0.00..97.35 rows=8638 width=0)↪→

7 Index Cond: (railway = 'station'::text)
8 -> Limit (cost=0.42..5266.12 rows=1 width=40)
9 -> Index Scan using idx_centroids on osm_centroids

right_ (cost=0.42..202618775.40 rows=38479
width=40)

↪→

↪→

10 Order By: (centroid <->
osm_centroids.centroid)↪→

11 Filter: (shop = 'supermarket'::text)
12 JIT:
13 Functions: 13
14 " Options: Inlining true, Optimization true, Expressions true,

Deforming true"↪→

Code 5.6: PostgreSQL EXPLAIN output (query plan) for the nearest neighbor
join between all stations and supermarkets on a full GiST index from
Code 5.4

1 QUERY PLAN
2 Aggregate (cost=42854.23..42854.24 rows=1 width=8)
3 -> Nested Loop (cost=99.79..40629.94 rows=8638 width=64)
4 -> Bitmap Heap Scan on osm_centroids

(cost=99.51..32079.29 rows=8638 width=32)↪→

5 Recheck Cond: (railway = 'station'::text)
6 -> Bitmap Index Scan on idx_railway

(cost=0.00..97.35 rows=8638 width=0)↪→

7 Index Cond: (railway = 'station'::text)
8 -> Limit (cost=0.28..0.97 rows=1 width=40)
9 -> Index Scan using idx_right_cache on right_cache

right_ (cost=0.28..23483.31 rows=33916
width=40)

↪→

↪→

10 Order By: (centroid <->
osm_centroids.centroid)↪→

Code 5.7: PostgreSQL EXPLAIN output (query plan) for the nearest neighbor join
between all stations and supermarkets on an ad hoc GiST index from
Code 5.5

74

5
Evaluation

INDEX	SCAN	?_qlever_internal_variable_qp_3	<as…
Cols:	?_qlever_internal_variable_qp_3,	?right_geometry
Size:	316,156,250	x	2	 [~	949,687,250]	
Time:	8ms	 [~	949,687,250]

INDEX	SCAN	?right	<has-Centroid>	?_qlever_inte…
Cols:	?right,	?_qlever_internal_variable_qp_3
Size:	336,656,125	x	2	 [~	474,843,625]	
Time:	20ms	 [~	474,843,625]

INDEX	SCAN	?right	<Key:shop>	"supermarket"
Cols:	?right
Size:	33,918	x	1	 [~	33,918]	
Time:	2ms	 [~	33,918]

JOIN	on	?right
Cols:	?right,	?_qlever_internal_variable_qp_3
Size:	33,918	x	2	 [~	23,742]	
Time:	686ms	 [~	474,901,285]

SORT	(internal	order)	on	?_qlever_internal_varia…
Cols:	?right,	?_qlever_internal_variable_qp_3
Size:	33,918	x	2	 [~	23,742]	
Time:	0ms	 [~	332,388]

JOIN	on	?_qlever_internal_variable_qp_3
Cols:	?right,	?_qlever_internal_variable_qp_3,	?right_ge…
Size:	33,918	x	3	 [~	16,618]	
Time:	645ms	 [~	949,727,610]

INDEX	SCAN	?_qlever_internal_variable_qp_0	<as…
Cols:	?_qlever_internal_variable_qp_0,	?left_geometry
Size:	81,562,500	x	2	 [~	949,687,250]	
Time:	9ms	 [~	949,687,250]

INDEX	SCAN	?left	<has-Centroid>	?_qlever_inter…
Cols:	?left,	?_qlever_internal_variable_qp_0
Size:	81,781,250	x	2	 [~	474,843,625]	
Time:	42ms	 [~	474,843,625]

INDEX	SCAN	?left	<Key:railway>	"station"
Cols:	?left
Size:	4,353	x	1	 [~	4,353]	
Time:	1ms	 [~	4,353]

JOIN	on	?left
Cols:	?left,	?_qlever_internal_variable_qp_0
Size:	4,352	x	2	 [~	3,047]	
Time:	153ms	 [~	474,851,025]

SORT	(internal	order)	on	?_qlever_internal_varia…
Cols:	?left,	?_qlever_internal_variable_qp_0
Size:	4,352	x	2	 [~	3,047]	
Time:	0ms	 [~	33,517]

JOIN	on	?_qlever_internal_variable_qp_0
Cols:	?left,	?_qlever_internal_variable_qp_0,	?left_geom…
Size:	4,352	x	3	 [~	2,132]	
Time:	161ms	 [~	949,692,429]

NEAREST	NEIGHBORS	JOIN	?left_geometry	to	?rig…
Cols:	?left,	?_qlever_internal_variable_qp_0,	?left_geom…
Size:	4,352	x	5	 [~	2,132]	
Time:	9ms	 [~	168,750]

GROUP	BY	(implicit)
Cols:	?avg_min_dist	(U)
Size:	1	x	1	 [~	1]	
Time:	1ms	 [~	0]

Figure 5.2: QLever: Query plan and running time analysis from QLever’s GUI for a nearest neighbor join between all stations
and supermarkets on an ad hoc s2geometry index

75

5 Evaluation

5.2.4 Maximum Distance Spatial Search

In this benchmark we perform a nearest neighbors search restricted only by a
maximum distance. For four different GTFS feeds, we search for the average
number of stops that are within 100 meters of any given stop. Such a maximum
distance query could for example be relevant to routing applications which want
to use departures from all nearby stops for transfers. This is practically relevant
because each platform of a stop is usually stored as a separate stop entity in
GTFS.

The GTFS feeds used for the comparison have different characteristics. We
use the network of VAG Freiburg [30], a small GTFS feed with points that are
geographically very close together. The maximum pairwise distance between
points in the VAG Freiburg feed is 26 kilometers. As second feed is obtained
from Finland’s traffic authority [26]. It contains all railway traffic and stations.
Due to the very low population density in Finland, the feed is small but the
geographic stretch is very large. The maximum pairwise distance between points
is 838 kilometers. Additionally, we use two very large GTFS feeds that contain
all public transport in Germany from DELFI [18, 19].

The number of stops as well as the running times for the described query are
shown in Table 5.8. The baseline algorithm is not feasible for the large GTFS feeds
as it would require the comparison of 228 billion and 287 billion combinations of
rows respectively.

GTFS Feed Data
Source

Number of
Stops

Baseline
Algorithm

Ad hoc
S2 Index

VAG FR 2024 [30] 1 002 17.89 ± 0.12 0.06 ± 0.01
Fintraffic 2024 [26] 1 429 1.70 ± 0.03 0.14 ± 0.02
DELFI 2021 [18] 477 602 — 0.65 ± 0.01
DELFI 2024 [19] 535 873 — 0.73 ± 0.03

Table 5.8: Evaluation results for a nearest neighbors search between stops from
GTFS data sets with a maximum distance of 100 meters

We can observe that the s2geometry index-based algorithm is very fast below
one second in all cases, regardless of whether the stops are geographically close
or distributed. The bad performance of the baseline algorithm for VAG Freiburg
is due to suboptimal query planner decisions during the construction of the join
tables.

76

5 Evaluation

5.2.5 Large Combined Spatial Search

In this final benchmark, we evaluate the queries that motivated this thesis. Ta-
ble 5.9 shows the running times of the OSM subquery for the case study (4)
without election districts. It asks for the average and standard deviation of the
distance of each likely residential building in OSM Germany to its closest public
transport stop, supermarket, bakery, butcher, gas station, gastronomic offering,
hairdresser, hospital, kindergarten, motorway ramp, pharmacy, school and univer-
sity. Buildings that are likely to be residential are selected using common values
of the building key, excluding those that lay within landuse areas like landfills that
prevent residential housing. This requires accessing the appropriate rows within
the 4.4 billion spatial relations on OSM Germany (QLever: 4 seconds, PostgreSQL:
2 minutes 10 seconds). The SPARQL query is produced using the compose_spa-
tial program (3.5). It makes use of the nearest neighbors spatial search using
the SERVICE syntax (2.5) along with the stdev(?numbers) aggregation function
(3.3.3). For PostgreSQL, its built-in STDDEV_SAMP(numbers) function is used.

System Strategy Time
PostgreSQL Ad hoc GiST Index 2:48:36∗
QLever Ad hoc S2 Index 6:33 ± 12.83

Speed-up 2573%

Table 5.9: Running times for the OSM part of the case study: Distance between
residential buildings and 13 types of POIs on OSM Germany. Compar-
ison of QLever with PostgreSQL.

For this very large and complex query, QLever outperforms PostgreSQL by
approximately 26 times. As expected, except for minor differences due to floating
point operations and distance calculation the query results are the same for both
systems. In addition to this purely spatial query, the running times for the full
approximately 1 200 line case study queries are given in Table 5.10.

Election Year Time
German Federal Election 2021 10:58∗
European Election in Germany 2024 10:32∗

Table 5.10: Running times for the complete, combined case study SPARQL query
described in 4.2 using QLever

77

6 Conclusion
In this thesis we presented a complete workflow for performing efficient spatial
searches using the QLever SPARQL engine. Solutions for efficiently representing
geographic points and a fast nearest neighbors search using a clean SPARQL
syntax integration were implemented. Additional programs for importing data
and constructing spatial queries more easily were proposed. In a case study on
the influence of public infrastructure on political polarization the implemented
software passed a practical test. The evaluation showed reliable and fast query
times of the implemented spatial search in QLever, especially for very large data
sets.

6.1 Future Work

The approaches presented in this thesis could be developed even further in multiple
directions:

• To improve the memory requirements of the presented nearest neighbors
search, QLever’s spatial join operation should be extended to support lazy
result evaluation such that the left join table can be processed chunk-wise
without being fully materialized in memory.

• While operating only on centroids is very helpful in terms of performance,
the logical next step is allowing support for the WKT geometries line strings,
polygons and collections. In order to implement this, more advanced WKT
parsing and helpers to convert the WKT geometries to s2geometry objects
would be required. Furthermore the S2PointIndex cannot be used for non-
point geometries. The use of a more general index data structure is therefore
also required if non-point geometries are to be supported.

• It could be explored how non-point geometries could be represented more
efficiently, for example by embedding parts of the S2CellId containing the
geometry into the ValueId.

• Another very relevant task is the improvement of support for GeoSPARQL
in QLever. This includes functions for converting literals, dynamically

78

6 Conclusion

calculating the length of lines and the area of polygons, computing centroids
and spatial relations ad hoc, performing union or intersection on geometries
as aggregations and more.

• The query planner in QLever could be extended to detect optimizable
queries containing a filtered cartesian product and rewrite the query plan
automatically to make use of the spatial search feature.

• Further statistical aggregation functions could be implemented in QLever,
for example median, arbitrary quantiles or correlation.

• Using the intermediate geometry representation from kml2rdf, converters
for other geometry file types could be implemented.

• The gtfs2rdf program could be extended to support more non-mandatory
tables like translations, levels or pathways as an extension to the Linked
GTFS standard.

79

7 Acknowledgments
First and foremost, I would like to thank Johannes Kalmbach for his time and
expertise. He provided valuable guidance and answered countless questions. I also
want to sincerely thank Hannah Bast for her very good ideas and constructive
feedback on various topics as well as for agreeing to supervise my thesis. Addition-
ally, I would like to express gratitude to Axel Lehmann for his implementation
of centroids in osm2rdf and to Patrick Brosi for his work to support auxiliary
geometries in osm2rdf. Both of these features were of great use to this thesis.
Last but not least, I want to thank my family and friends for their support.

80

8 Bibliography
[1] Greg Albiston, Haozhe Chen, and Taha Osman. Apache Jena: GeoSPARQL.

https://web.archive.org/web/20241230124009/https://jena.apach
e.org/documentation/geosparql/index.html. 2024.

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter,
and Domagoj Vrgoč. “Foundations of modern query languages for graph
databases”. In: ACM Computing Surveys (CSUR) 50.5 (2017), pp. 1–40.

[3] Apache Software Foundation. Apache License 2.0. https://web.archive.o
rg/web/20250108024732/https://www.apache.org/licenses/LICENSE-
2.0. 2004.

[4] Oleg Bartunov, Teodor Sigaev, and Andrew Gierth. PostgreSQL 16 Doc-
umentation: Additional Supplied Modules and Extensions: hstore key/-
value datatype. https://web.archive.org/web/20241217211743/https:
//www.postgresql.org/docs/16/hstore.html. 2023.

[5] Hannah Bast and Patrick Brosi. “Sparse map-matching in public transit
networks with turn restrictions”. In: Proceedings of the 26th ACM Interna-
tional Conference on Advances in Geographic Information Systems. 2018,
pp. 480–483.

[6] Hannah Bast, Patrick Brosi, Johannes Kalmbach, and Axel Lehmann. “An
efficient RDF converter and SPARQL endpoint for the complete Open-
StreetMap data”. In: Proceedings of the 29th ACM International Conference
on Advances in Geographic Information Systems. 2021, pp. 536–539.

[7] Hannah Bast, Patrick Brosi, Johannes Kalmbach, and Axel Lehmann. “Ef-
ficient Interactive Visualization of Large Geospatial Query Results”. In:
Proceedings of the 31st ACM International Conference on Advances in
Geographic Information Systems. 2023, pp. 1–4.

[8] Hannah Bast, Patrick Brosi, Johannes Kalmbach, and Axel Lehmann. “Ef-
ficient Spatial Joins for Large Sets of Geometric Objects”. In: Proceedings
of the 32nd ACM International Conference on Advances in Geographic
Information Systems. 2024. Submitted.

81

https://web.archive.org/web/20241230124009/https://jena.apache.org/documentation/geosparql/index.html
https://web.archive.org/web/20241230124009/https://jena.apache.org/documentation/geosparql/index.html
https://web.archive.org/web/20250108024732/https://www.apache.org/licenses/LICENSE-2.0
https://web.archive.org/web/20250108024732/https://www.apache.org/licenses/LICENSE-2.0
https://web.archive.org/web/20250108024732/https://www.apache.org/licenses/LICENSE-2.0
https://web.archive.org/web/20241217211743/https://www.postgresql.org/docs/16/hstore.html
https://web.archive.org/web/20241217211743/https://www.postgresql.org/docs/16/hstore.html

8 Bibliography

[9] Hannah Bast and Björn Buchhold. “QLever: A query engine for efficient
SPARQL + text search”. In: Proceedings of the 2017 ACM Conference on
Information and Knowledge Management. 2017, pp. 647–656.

[10] Rudolf Bayer and Edward McCreight. “Organization and maintenance of
large ordered indices”. In: Proceedings of the 1970 ACM SIGFIDET Work-
shop on Data Description, Access and Control. 1970, pp. 107–141.

[11] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange For-
mat. RFC 8259, https://web.archive.org/web/20241204204821/https:
//www.rfc-editor.org/rfc/rfc8259.txt. 2017.

[12] Bundeswahlleiterin. Europawahl 2024. Ergebnisse nach Kreisen und kreis-
freien Städten. Statistisches Bundesamt, Wiesbaden. Datenlizenz Deutsch-
land - Namensnennung - Version 2.0. https://web.archive.org/web/
20241207021943/https://bundeswahlleiterin.de/dam/jcr/32edebff-
544d-489d-ae16-0d40faac180e/ew24_kerg2.csv. 2024.

[13] Bundeswahlleiterin. Strukturdaten für die kreisfreien Städte und Landkreise
zur Europawahl am 09.06.2024. Statistisches Bundesamt, Wiesbaden. Daten-
lizenz Deutschland - Namensnennung - Version 2.0. https://web.archive.
org/web/20241226172941/https://bundeswahlleiterin.de/dam/jcr/
c8d845ab-1d69-4c16-a47a-9ed600641217/ew24_strukturdaten.csv.
2024.

[14] Bundeswahlleiterin. Wahlergebnisse Bundestagswahl 2021 nach Wahlkreisen.
Statistisches Bundesamt, Wiesbaden. Datenlizenz Deutschland - Namen-
snennung - Version 2.0. https://web.archive.org/web/20241119164247/
https://www.bundeswahlleiterin.de/dam/jcr/860495c9-83fb-4068-
8a99-c1c985ffffd2/w-btw21_kerg2.csv. 2024.

[15] Bundeswahlleiterin. Wahlkreiskarte für die Wahl zum 20. Deutschen Bun-
destag: Geographie der Wahlkreise. Statistisches Bundesamt, Wiesbaden.
Grundlage der Geoinformationen Geobasis-DE, BKG. https://web.arch
ive.org/web/20250108092008/https://www.bundeswahlleiterin.de/
dam/jcr/87bf809f-d778-493d-8de8-77ebee2af9c6/btw21_geometrie_
wahlkreise_kml.zip. 2020.

[16] Bundeswahlleiterin. Wahlkreiskarte für die Wahl zum 20. Deutschen Bun-
destag: Strukturdaten der Wahlkreise. Statistisches Bundesamt, Wiesbaden.
Grundlage der Geoinformationen Geobasis-DE, BKG. https://web.arch

82

https://web.archive.org/web/20241204204821/https://www.rfc-editor.org/rfc/rfc8259.txt
https://web.archive.org/web/20241204204821/https://www.rfc-editor.org/rfc/rfc8259.txt
https://web.archive.org/web/20241207021943/https://bundeswahlleiterin.de/dam/jcr/32edebff-544d-489d-ae16-0d40faac180e/ew24_kerg2.csv
https://web.archive.org/web/20241207021943/https://bundeswahlleiterin.de/dam/jcr/32edebff-544d-489d-ae16-0d40faac180e/ew24_kerg2.csv
https://web.archive.org/web/20241207021943/https://bundeswahlleiterin.de/dam/jcr/32edebff-544d-489d-ae16-0d40faac180e/ew24_kerg2.csv
https://web.archive.org/web/20241226172941/https://bundeswahlleiterin.de/dam/jcr/c8d845ab-1d69-4c16-a47a-9ed600641217/ew24_strukturdaten.csv
https://web.archive.org/web/20241226172941/https://bundeswahlleiterin.de/dam/jcr/c8d845ab-1d69-4c16-a47a-9ed600641217/ew24_strukturdaten.csv
https://web.archive.org/web/20241226172941/https://bundeswahlleiterin.de/dam/jcr/c8d845ab-1d69-4c16-a47a-9ed600641217/ew24_strukturdaten.csv
https://web.archive.org/web/20241119164247/https://www.bundeswahlleiterin.de/dam/jcr/860495c9-83fb-4068-8a99-c1c985ffffd2/w-btw21_kerg2.csv
https://web.archive.org/web/20241119164247/https://www.bundeswahlleiterin.de/dam/jcr/860495c9-83fb-4068-8a99-c1c985ffffd2/w-btw21_kerg2.csv
https://web.archive.org/web/20241119164247/https://www.bundeswahlleiterin.de/dam/jcr/860495c9-83fb-4068-8a99-c1c985ffffd2/w-btw21_kerg2.csv
https://web.archive.org/web/20250108092008/https://www.bundeswahlleiterin.de/dam/jcr/87bf809f-d778-493d-8de8-77ebee2af9c6/btw21_geometrie_wahlkreise_kml.zip
https://web.archive.org/web/20250108092008/https://www.bundeswahlleiterin.de/dam/jcr/87bf809f-d778-493d-8de8-77ebee2af9c6/btw21_geometrie_wahlkreise_kml.zip
https://web.archive.org/web/20250108092008/https://www.bundeswahlleiterin.de/dam/jcr/87bf809f-d778-493d-8de8-77ebee2af9c6/btw21_geometrie_wahlkreise_kml.zip
https://web.archive.org/web/20250108092008/https://www.bundeswahlleiterin.de/dam/jcr/87bf809f-d778-493d-8de8-77ebee2af9c6/btw21_geometrie_wahlkreise_kml.zip
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv

8 Bibliography

ive.org/web/20241213004101/https://www.bundeswahlleiterin.de/
dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturda
ten.csv. 2020.

[17] Creative Commons. Attribution 4.0 International. https://web.archive.
org/web/20250108010019/https://creativecommons.org/licenses/
by/4.0/. 2013.

[18] DELFI e.V. Deutschlandweite Sollfahrplandaten (GTFS). Version 2021-09-
24. Creative Commons Attribution 4.0 (CC-BY). https://web.archive.
org/web/20250108091434/https://archiv.opendata-oepnv.de/DELFI/
Soll-Fahrplandaten%20(GTFS)/2021/20210924_fahrplaene_gesamtde
utschland_gtfs.zip. 2021.

[19] DELFI e.V. Deutschlandweite Sollfahrplandaten (GTFS). Version 2024-06-
03. Creative Commons Attribution 4.0 (CC-BY). https://www.opendata-
oepnv.de/fileadmin/datasets/delfi/20240603_fahrplaene_gesamtd
eutschland_gtfs.zip (User registration required for download). 2024.

[20] Larissa Deppisch. “Die AfD und das ‘Dornröschenschloss’ — über die
(Be-) Deutung von Peripherisierung für den Rechtspopulismuszuspruch”.
In: Sozial- und Kulturgeographie 48 (2022), pp. 103–121.

[21] Deutscher Bundestag. Sitzverteilung des 20. Deutschen Bundestages. https:
//web.archive.org/web/20241230215850/https://www.bundestag.de/
parlament/plenum/sitzverteilung_20wp. 2024.

[22] Martin J. Dürst and Michel Suignard. Internationalized Resource Identifiers
(IRIs). RFC 3987, https://web.archive.org/web/20241207092323/
https://www.rfc-editor.org/rfc/rfc3987.txt. 2005.

[23] European Commission. Commission Delegated Regulation (EU) 2017/1926
of 31 May 2017 supplementing Directive 2010/40/EU of the European Par-
liament and of the Council with regard to the provision of EU-wide multi-
modal travel information services. Official Journal of the European Union. L
272/1. https://web.archive.org/web/20241214203803/https://eur-
lex.europa.eu/eli/reg_del/2017/1926/oj/. 2017.

[24] European Parliament. Chamber seating plans. https://web.archive.
org/web/20250101034135/https://www.europarl.europa.eu/sedcms/
pubfile/HEMICYCLE/PLAN_STR.pdf and https://web.archive.org/web/

83

https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20241213004101/https://www.bundeswahlleiterin.de/dam/jcr/b1d3fc4f-17eb-455f-a01c-a0bf32135c5d/btw21_strukturdaten.csv
https://web.archive.org/web/20250108010019/https://creativecommons.org/licenses/by/4.0/
https://web.archive.org/web/20250108010019/https://creativecommons.org/licenses/by/4.0/
https://web.archive.org/web/20250108010019/https://creativecommons.org/licenses/by/4.0/
https://web.archive.org/web/20250108091434/https://archiv.opendata-oepnv.de/DELFI/Soll-Fahrplandaten%20(GTFS)/2021/20210924_fahrplaene_gesamtdeutschland_gtfs.zip
https://web.archive.org/web/20250108091434/https://archiv.opendata-oepnv.de/DELFI/Soll-Fahrplandaten%20(GTFS)/2021/20210924_fahrplaene_gesamtdeutschland_gtfs.zip
https://web.archive.org/web/20250108091434/https://archiv.opendata-oepnv.de/DELFI/Soll-Fahrplandaten%20(GTFS)/2021/20210924_fahrplaene_gesamtdeutschland_gtfs.zip
https://web.archive.org/web/20250108091434/https://archiv.opendata-oepnv.de/DELFI/Soll-Fahrplandaten%20(GTFS)/2021/20210924_fahrplaene_gesamtdeutschland_gtfs.zip
https://www.opendata-oepnv.de/fileadmin/datasets/delfi/20240603_fahrplaene_gesamtdeutschland_gtfs.zip
https://www.opendata-oepnv.de/fileadmin/datasets/delfi/20240603_fahrplaene_gesamtdeutschland_gtfs.zip
https://www.opendata-oepnv.de/fileadmin/datasets/delfi/20240603_fahrplaene_gesamtdeutschland_gtfs.zip
https://web.archive.org/web/20241230215850/https://www.bundestag.de/parlament/plenum/sitzverteilung_20wp
https://web.archive.org/web/20241230215850/https://www.bundestag.de/parlament/plenum/sitzverteilung_20wp
https://web.archive.org/web/20241230215850/https://www.bundestag.de/parlament/plenum/sitzverteilung_20wp
https://web.archive.org/web/20241207092323/https://www.rfc-editor.org/rfc/rfc3987.txt
https://web.archive.org/web/20241207092323/https://www.rfc-editor.org/rfc/rfc3987.txt
https://web.archive.org/web/20241214203803/https://eur-lex.europa.eu/eli/reg_del/2017/1926/oj/
https://web.archive.org/web/20241214203803/https://eur-lex.europa.eu/eli/reg_del/2017/1926/oj/
https://web.archive.org/web/20250101034135/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_STR.pdf
https://web.archive.org/web/20250101034135/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_STR.pdf
https://web.archive.org/web/20250101034135/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_STR.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf

8 Bibliography

20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/
HEMICYCLE/PLAN_BRU.pdf. 2024.

[25] Federal Communications Commission. Reference points and distance com-
putations. Code of Federal Regulations (Annual Edition). Title 47: Telecom-
munication. 73 (208). https://web.archive.org/web/20241222101048/
https://www.govinfo.gov/content/pkg/CFR-2016-title47-vol4/pdf/
CFR-2016-title47-vol4-sec73-208.pdf. 2016.

[26] Fintraffic. Digitraffic: Timetables, delays, locations and composition of trains
operating in Finland — GTFS for railway traffic. Version 2024-11-27. Cre-
ative Commons Attribution 4.0 (CC-BY). https://web.archive.org/
web/20241127154525/https://rata.digitraffic.fi/api/v1/trains/
gtfs-all.zip. 2024.

[27] Maximilian Förtner, Bernd Belina, and Matthias Naumann. “The revenge
of the village? The geography of right-wing populist electoral success, anti-
politics, and austerity in Germany”. In: Environment and Planning C: Pol-
itics and Space 39.3 (2021), pp. 574–596.

[28] John Fox and Sanford Weisberg. An R Companion to Applied Regression.
Version 3.1. Website: https://cran.r-project.org/web/packages/car/.
2019.

[29] Free Software Foundation. GNU General Public License Version 3. https:
//web.archive.org/web/20241031200145/http://www.gnu.org/
licenses/gpl-3.0.html. 2007.

[30] Freiburger Verkehrs AG. Fahrplandaten im GTFS-Format, Datensatz der
VAG Freiburg. Datenlizenz Deutschland - Namensnennung - Version 2.0.
Website: https://www.vag-freiburg.de/service-infos/downloads/
gtfs-daten. Data: https://web.archive.org/web/20241108074231/
https://www.vag-freiburg.de/fileadmin/gtfs/VAGFR.zip. 2024.

[31] GEOS contributors. GEOS computational geometry library. Website: https:
//libgeos.org/. 2024.

[32] Google. General Transit Feed Specification (GTFS). https://web.archive.
org/web/20241223095056/https://gtfs.org/documentation/schedul
e/reference/. 2024.

[33] Google. S2 Cell Hierarchy. https://web.archive.org/web/20241202095
947/https://s2geometry.io/devguide/s2cell_hierarchy. 2024.

84

https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20250101034134/https://www.europarl.europa.eu/sedcms/pubfile/HEMICYCLE/PLAN_BRU.pdf
https://web.archive.org/web/20241222101048/https://www.govinfo.gov/content/pkg/CFR-2016-title47-vol4/pdf/CFR-2016-title47-vol4-sec73-208.pdf
https://web.archive.org/web/20241222101048/https://www.govinfo.gov/content/pkg/CFR-2016-title47-vol4/pdf/CFR-2016-title47-vol4-sec73-208.pdf
https://web.archive.org/web/20241222101048/https://www.govinfo.gov/content/pkg/CFR-2016-title47-vol4/pdf/CFR-2016-title47-vol4-sec73-208.pdf
https://web.archive.org/web/20241127154525/https://rata.digitraffic.fi/api/v1/trains/gtfs-all.zip
https://web.archive.org/web/20241127154525/https://rata.digitraffic.fi/api/v1/trains/gtfs-all.zip
https://web.archive.org/web/20241127154525/https://rata.digitraffic.fi/api/v1/trains/gtfs-all.zip
https://cran.r-project.org/web/packages/car/
https://web.archive.org/web/20241031200145/http://www.gnu.org/licenses/gpl-3.0.html
https://web.archive.org/web/20241031200145/http://www.gnu.org/licenses/gpl-3.0.html
https://web.archive.org/web/20241031200145/http://www.gnu.org/licenses/gpl-3.0.html
https://www.vag-freiburg.de/service-infos/downloads/gtfs-daten
https://www.vag-freiburg.de/service-infos/downloads/gtfs-daten
https://web.archive.org/web/20241108074231/https://www.vag-freiburg.de/fileadmin/gtfs/VAGFR.zip
https://web.archive.org/web/20241108074231/https://www.vag-freiburg.de/fileadmin/gtfs/VAGFR.zip
https://libgeos.org/
https://libgeos.org/
https://web.archive.org/web/20241223095056/https://gtfs.org/documentation/schedule/reference/
https://web.archive.org/web/20241223095056/https://gtfs.org/documentation/schedule/reference/
https://web.archive.org/web/20241223095056/https://gtfs.org/documentation/schedule/reference/
https://web.archive.org/web/20241202095947/https://s2geometry.io/devguide/s2cell_hierarchy
https://web.archive.org/web/20241202095947/https://s2geometry.io/devguide/s2cell_hierarchy

8 Bibliography

[34] Google. S2 Cell Statistics. https://web.archive.org/web/20241210203
618/https://s2geometry.io/resources/s2cell_statistics. 2024.

[35] Google. s2geometry library. Website: https://s2geometry.io. 2024.

[36] Julius Heinzinger. pdf2gtfs: Timetable Extraction from PDF Files. Bachelor
of Science Thesis. Chair for Algorithms and Data Structures, University of
Freiburg. 2023.

[37] Joseph Hellerstein, Jeffrey Naughton, and Avi Pfeffer. “Generalized Search
Trees for Database Systems”. In: Proceedings of the 21st International Con-
ference on Very Large Data Bases. 1995, pp. 562–573.

[38] Sarah Hoffmann. osm2pgsql version 2 Manual. https://web.archive.org/
web/20241202004009/https://osm2pgsql.org/doc/manual.html. 2024.

[39] Sarah Hoffmann. osm2pgsql: an open source tool for importing OpenStreetMap
data into a PostgreSQL/PostGIS database. Version 1.8.0. Website: https:
//osm2pgsql.org. 2023.

[40] Sarah Hoffmann. Who uses osm2pgsql? https://web.archive.org/web/
20241119155258/https://osm2pgsql.org/about/users/. 2024.

[41] International Organization for Standardization. Information technology —
Database languages SQL. ISO/IEC 9075. https://web.archive.org/web/
20241224102539/https://www.iso.org/standard/76583.html. 2023.

[42] Marcel Kornacker. Access methods for next-generation database systems.
PhD Thesis. University of California, Berkeley. 2000.

[43] Kostis Kyzirakos, Dimitrianos Savva, Ioannis Vlachopoulos, Alexandros
Vasileiou, Nikolaos Karalis, Manolis Koubarakis, and Stefan Manegold.
“GeoTriples: Transforming geospatial data into RDF graphs using R2RML
and RML mappings”. In: Journal of Web Semantics 52.53 (2018), pp. 16–32.

[44] Pola Lehmann, Simon Franzmann, Tobias Burst, Sven Regel, Felicia Rieth-
müller, Andrea Volkens, Bernhard Weßels, and Lisa Zehnter. The Manifesto
Data Collection. Manifesto Project (MRG, CMP, MARPOR). Version 2024a.
Berlin: Wissenschaftszentrum Berlin für Sozialforschung (WZB), Göttingen:
Institut für Demokratieforschung (IfDem). https://web.archive.org/
web/20250108091730/https://manifesto-project.wzb.eu/down/data/
2024a/datasets/MPDataset_MPDS2024a.csv. 2024.

85

https://web.archive.org/web/20241210203618/https://s2geometry.io/resources/s2cell_statistics
https://web.archive.org/web/20241210203618/https://s2geometry.io/resources/s2cell_statistics
https://s2geometry.io
https://web.archive.org/web/20241202004009/https://osm2pgsql.org/doc/manual.html
https://web.archive.org/web/20241202004009/https://osm2pgsql.org/doc/manual.html
https://osm2pgsql.org
https://osm2pgsql.org
https://web.archive.org/web/20241119155258/https://osm2pgsql.org/about/users/
https://web.archive.org/web/20241119155258/https://osm2pgsql.org/about/users/
https://web.archive.org/web/20241224102539/https://www.iso.org/standard/76583.html
https://web.archive.org/web/20241224102539/https://www.iso.org/standard/76583.html
https://web.archive.org/web/20250108091730/https://manifesto-project.wzb.eu/down/data/2024a/datasets/MPDataset_MPDS2024a.csv
https://web.archive.org/web/20250108091730/https://manifesto-project.wzb.eu/down/data/2024a/datasets/MPDataset_MPDS2024a.csv
https://web.archive.org/web/20250108091730/https://manifesto-project.wzb.eu/down/data/2024a/datasets/MPDataset_MPDS2024a.csv

8 Bibliography

[45] Seymour Lipset and Stein Rokkan. “Cleavage structures, party systems, and
voter alignments: an introduction”. In: Party systems and voter alignments:
Cross-national perspectives. Ed. by Seymour Lipset and Stein Rokkan. New
York Free Press, 1967, pp. 1–64.

[46] Clayton Nall. “The political consequences of spatial policies: How interstate
highways facilitated geographic polarization”. In: The Journal of Politics
77.2 (2015), pp. 394–406.

[47] Thomas Neumann and Gerhard Weikum. “RDF-3X: a RISC-style engine
for RDF”. In: Proceedings of the VLDB Endowment. 2008, pp. 647–659.

[48] Open Data Commons. Open Database License 1.0. https://web.archive.
org/web/20250105094031/https://opendatacommons.org/licenses/
odbl/1-0/. 2009.

[49] Open Geospatial Consortium. GeoSPARQL — A Geographic Query Lan-
guage for RDF Data. https://www.ogc.org/publications/standard/
geosparql/. https://web.archive.org/web/20250102013515/https:
//docs.ogc.org/is/22-047r1/22-047r1.html. 2024.

[50] Open Geospatial Consortium. KML — Keyhole Markup Language. https:
//www.ogc.org/publications/standard/kml/. https://web.archive.
org/web/20250102100426/https://portal.ogc.org/files/?artifact
_id=23689. 2024.

[51] Open Geospatial Consortium. OpenGIS Implementation Specification for
Geographic information — Simple Feature Access — Part 1: Common Ar-
chitecture. https://www.ogc.org/publications/standard/sfa/. https:
//web.archive.org/web/20241216014324/https://portal.ogc.org/
files/?artifact_id=25355. 2011.

[52] Open Transport Working Group. Linked GTFS Specification. https://web.
archive.org/web/20250108090634/https://github.com/OpenTranspo
rt/linked-gtfs/blob/master/spec.md. 2015.

[53] OpenStreetMap Contributors. Elements. https://web.archive.org/web/
20241103202210/https://wiki.openstreetmap.org/wiki/Elements.
2024.

[54] OpenStreetMap Contributors. OpenStreetMap PBF export for Germany.
Version 2024-11-27 21:21:30. Open Database License 1.0. https://downlo
ad.geofabrik.de/europe/germany-latest.osm.pbf. 2024.

86

https://web.archive.org/web/20250105094031/https://opendatacommons.org/licenses/odbl/1-0/
https://web.archive.org/web/20250105094031/https://opendatacommons.org/licenses/odbl/1-0/
https://web.archive.org/web/20250105094031/https://opendatacommons.org/licenses/odbl/1-0/
https://www.ogc.org/publications/standard/geosparql/
https://www.ogc.org/publications/standard/geosparql/
https://web.archive.org/web/20250102013515/https://docs.ogc.org/is/22-047r1/22-047r1.html
https://web.archive.org/web/20250102013515/https://docs.ogc.org/is/22-047r1/22-047r1.html
https://www.ogc.org/publications/standard/kml/
https://www.ogc.org/publications/standard/kml/
https://web.archive.org/web/20250102100426/https://portal.ogc.org/files/?artifact_id=23689
https://web.archive.org/web/20250102100426/https://portal.ogc.org/files/?artifact_id=23689
https://web.archive.org/web/20250102100426/https://portal.ogc.org/files/?artifact_id=23689
https://www.ogc.org/publications/standard/sfa/
https://web.archive.org/web/20241216014324/https://portal.ogc.org/files/?artifact_id=25355
https://web.archive.org/web/20241216014324/https://portal.ogc.org/files/?artifact_id=25355
https://web.archive.org/web/20241216014324/https://portal.ogc.org/files/?artifact_id=25355
https://web.archive.org/web/20250108090634/https://github.com/OpenTransport/linked-gtfs/blob/master/spec.md
https://web.archive.org/web/20250108090634/https://github.com/OpenTransport/linked-gtfs/blob/master/spec.md
https://web.archive.org/web/20250108090634/https://github.com/OpenTransport/linked-gtfs/blob/master/spec.md
https://web.archive.org/web/20241103202210/https://wiki.openstreetmap.org/wiki/Elements
https://web.archive.org/web/20241103202210/https://wiki.openstreetmap.org/wiki/Elements
https://download.geofabrik.de/europe/germany-latest.osm.pbf
https://download.geofabrik.de/europe/germany-latest.osm.pbf

8 Bibliography

[55] OpenStreetMap Contributors. PBF Format. https://web.archive.org/
web/20241209122441/https://wiki.openstreetmap.org/wiki/PBF_
Format. 2024.

[56] Terence Parr. ANTLR. Another Tool for Language Recognition. Version
4.11.1. Website: https://www.antlr.org/. 2024.

[57] PostgreSQL Global Development Group. PostgreSQL 16 Documentation:
Queries: Table Expressions: The FROM clause: LATERAL Subqueries. https:
//web.archive.org/web/20241123035453/https://www.postgresql.
org/docs/16/queries-table-expressions.html#QUERIES-LATERAL.
2023.

[58] PostgreSQL Global Development Group. PostgreSQL Relational Database.
Version 16.2. Website: https://www.postgresql.org. 2023.

[59] R Core Team. R: A Language and Environment for Statistical Computing.
Version 4.2.2. Website https://www.R-project.org/. The R Foundation
for Statistical Computing. 2022.

[60] Refractions Research. PostGIS: Nearest Neighbor Join. https://web.arc
hive.org/web/20241113043738/https://www.postgis.net/workshops/
postgis-intro/knn.html#nearest-neighbor-join. 2023.

[61] Refractions Research. PostGIS: PostgreSQL Geographic Information Sys-
tem: spatial and geographic objects for PostgreSQL. Version 3.3.2. Website:
https://postgis.net. 2023.

[62] Yakov Shafranovich. Common Format and MIME Type for Comma-Separated
Values (CSV) Files. RFC 4180, https://web.archive.org/web/2024112
6230413/https://www.rfc-editor.org/rfc/rfc4180.txt. 2005.

[63] Lee Sigelman and Syng Nam Yough. “Left-Right Polarization In National
Party Systems: A Cross-National Analysis”. In: Comparative Political Stud-
ies 11.3 (1978), pp. 355–379.

[64] Annette Spellerberg, Denis Huschka, and Roland Habich. “Angleichung und
Polarisierung: Entwicklung der Lebensqualität in ländlichen Kreisen”. In:
Soziale Ungleichheit, kulturelle Unterschiede. Ed. by Karl-Siegbert Rehberg.
Campus Verlag Frankfurt a.M., 2006, pp. 839–861.

87

https://web.archive.org/web/20241209122441/https://wiki.openstreetmap.org/wiki/PBF_Format
https://web.archive.org/web/20241209122441/https://wiki.openstreetmap.org/wiki/PBF_Format
https://web.archive.org/web/20241209122441/https://wiki.openstreetmap.org/wiki/PBF_Format
https://www.antlr.org/
https://web.archive.org/web/20241123035453/https://www.postgresql.org/docs/16/queries-table-expressions.html#QUERIES-LATERAL
https://web.archive.org/web/20241123035453/https://www.postgresql.org/docs/16/queries-table-expressions.html#QUERIES-LATERAL
https://web.archive.org/web/20241123035453/https://www.postgresql.org/docs/16/queries-table-expressions.html#QUERIES-LATERAL
https://www.postgresql.org
https://www.R-project.org/
https://web.archive.org/web/20241113043738/https://www.postgis.net/workshops/postgis-intro/knn.html#nearest-neighbor-join
https://web.archive.org/web/20241113043738/https://www.postgis.net/workshops/postgis-intro/knn.html#nearest-neighbor-join
https://web.archive.org/web/20241113043738/https://www.postgis.net/workshops/postgis-intro/knn.html#nearest-neighbor-join
https://postgis.net
https://web.archive.org/web/20241126230413/https://www.rfc-editor.org/rfc/rfc4180.txt
https://web.archive.org/web/20241126230413/https://www.rfc-editor.org/rfc/rfc4180.txt

8 Bibliography

[65] SYSTAP LLC. Geospatial Support in Blazegraph. https://web.archive.
org/web/20241230123951/https://github.com/blazegraph/database/
wiki/GeoSpatial. 2020.

[66] Michael Taylor and Valentine Herman. “Party systems and government
stability”. In: American Political Science Review 65.1 (1971), pp. 28–37.

[67] Konstantinos Theocharidis, John Liagouris, Nikos Mamoulis, Panagiotis
Bouros, and Manolis Terrovitis. “SRX: efficient management of spatial RDF
data”. In: The VLDB Journal 28 (2019), pp. 703–733.

[68] Uwe Wagschal. “Polarisierung der Parteiensysteme in Zeiten des Populis-
mus”. In: The European Social Model under Pressure: Liber Amicorum in
Honour of Klaus Armingeon. Ed. by Romana Careja, Patrick Emmenegger,
and Nathalie Giger. Springer, 2020, pp. 365–382.

[69] David R. Williams. NASA Goddard Space Flight Center’s Earth Fact Sheet.
https://web.archive.org/web/20250102224318/https://nssdc.gsfc.
nasa.gov/planetary/factsheet/earthfact.html. 2024.

[70] World Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Fifth Edition). https://web.archive.org/web/20241224055222/https:
//www.w3.org/TR/2008/REC-xml-20081126/. 2008.

[71] World Wide Web Consortium. RDF 1.1 Concepts and Abstract Syntax.
https://web.archive.org/web/20250105025544/https://www.w3.org/
TR/rdf-concepts/. 2014.

[72] World Wide Web Consortium. Resource Description Framework (RDF)
Model and Syntax Specification. https://web.archive.org/web/202412
31073425/https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.
1999.

[73] World Wide Web Consortium. SPARQL 1.1 Query Language. https://web.
archive.org/web/20250102012146/https://www.w3.org/TR/sparql11-
query/. 2013.

[74] World Wide Web Consortium. XPath and XQuery Functions and Operators.
https://web.archive.org/web/20241204060738/https://www.w3.org/
TR/xpath-functions-31/. 2017.

88

https://web.archive.org/web/20241230123951/https://github.com/blazegraph/database/wiki/GeoSpatial
https://web.archive.org/web/20241230123951/https://github.com/blazegraph/database/wiki/GeoSpatial
https://web.archive.org/web/20241230123951/https://github.com/blazegraph/database/wiki/GeoSpatial
https://web.archive.org/web/20250102224318/https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://web.archive.org/web/20250102224318/https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://web.archive.org/web/20241224055222/https://www.w3.org/TR/2008/REC-xml-20081126/
https://web.archive.org/web/20241224055222/https://www.w3.org/TR/2008/REC-xml-20081126/
https://web.archive.org/web/20250105025544/https://www.w3.org/TR/rdf-concepts/
https://web.archive.org/web/20250105025544/https://www.w3.org/TR/rdf-concepts/
https://web.archive.org/web/20241231073425/https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://web.archive.org/web/20241231073425/https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://web.archive.org/web/20250102012146/https://www.w3.org/TR/sparql11-query/
https://web.archive.org/web/20250102012146/https://www.w3.org/TR/sparql11-query/
https://web.archive.org/web/20250102012146/https://www.w3.org/TR/sparql11-query/
https://web.archive.org/web/20241204060738/https://www.w3.org/TR/xpath-functions-31/
https://web.archive.org/web/20241204060738/https://www.w3.org/TR/xpath-functions-31/

9 Appendix

9.1 Software and Documentation

The new software for the conversion of external data sets to RDF (3.4) and the
generation of large spatial queries (3.5) can be run as shown in Code 9.1.

1 curl -O -J -L https://ullinger.info/bachelor-thesis/main.tar.gz
2 tar xzf spatial-search-main.tar.gz && cd spatial-search-main
3 podman build -t spatial .
4 podman run --rm -it -v ./output:/output:rw -p 7990:7990 spatial
5 # In the container: use 'make help' for more information

Code 9.1: Commands to download and run the presented software

9.2 Reproduction of the Results

The reproduction of all evaluation and case study results can be performed
as shown in Code 9.2 after cloning the code. The program requires a recent
GNU/Linux operating system with basic utilities, python3 (version ≥ 3.8),
podman and qlever-control installed. The output directory should have 1 TiB
of free disk space, podman’s data directory should have 500 GiB of free disk space
and the system should have 100 GiB of available memory. On the machine stated
in Table 5.1, the full reproduction takes approximately 85 hours.

1 # View options:
2 python3 reproduction.py --help
3 # List reproduction steps:
4 python3 reproduction.py --list-steps
5 # Run full reproduction:
6 python3 reproduction.py --output ./output

Code 9.2: Commands for reproduction of the results

89

	Introduction
	Motivation
	Related Work
	Contribution

	Background
	RDF
	SPARQL and GeoSPARQL
	QLever
	OpenStreetMap and osm2rdf
	S2Geometry

	Approach and Implementation
	Efficient Representation of Geographic Points
	Nearest Neighbors Spatial Search
	Nested-Loop Baseline Algorithm
	Efficient Index-Based Algorithm
	Integration into SPARQL Syntax

	SPARQL Functions
	Precision Improvement of Geographic Distance Function
	Support for Exponentiation Math Function
	Support for Standard Deviation Aggregation Function

	Conversion of External Data Sets to RDF
	Keyhole Markup Language (KML)
	Comma-Separated Values (CSV)
	General Transit Feed Specification (GTFS)
	Election Data

	Generation of Large Spatial Queries
	Interactive Graphical User Interface

	Case Study: On Infrastructure and Political Polarization
	Background
	Data Set Generation using QLever
	Real-World Results

	Evaluation
	Experimental Setup
	Results
	Data Generation and Import
	Distance Measurement on Points
	Nearest Neighbors Spatial Search
	Maximum Distance Spatial Search
	Large Combined Spatial Search

	Conclusion
	Future Work

	Acknowledgments
	Bibliography
	Appendix
	Software and Documentation
	Reproduction of the Results

