universitatfreiburg

Bachelorarbeit

Titel der Arbeit // Title of Thesis

Qlue-Is, a powerful SPARQL language server

Akademischer Abschlussgrad: Grad, Fachrichtung (Abkiirzung) // Degree
Bachelor of Science (B.Sc.)

Autorenname, Geburtsort / Name, Place of Birth

Ioannis Nezis, Breisach am Rhein

Studiengang // Course of Study
Informatik

Fachbereich // Department
Technische Fakultét

Erstpriiferin/Erstpriifer / First Examiner

Prof. Dr. Hannah Bast

Abgabedatum // Date of Submission
26.09.2025

universitatfreiburg

DECLARATION

I hereby declare, that [am the sole author and composer of my thesis and that no other sources or learning
aids, other than those listed, have been used. Furthermore, I declare that I have acknowledged the work
of others by providing detailed references of said work. I also hereby declare that my thesis has not been
prepared for another examination or assignment, either in its entirety or excerpts thereof.

Freiburg im Breisgau, am 26.09.2025 @

Ort, Datum, Unterschrift // Place, Date, Signature

Abstract

The Resource Description Framework (RDF) formalizes a way to describe Information in a graph-like
structure. SPARQL is the standard query language for interacting with RDF data, but writing queries can
be challenging, especially without auto completion support. In this work I present Qlue-Is, a SPARQL
language server. Powered by a parser that is able to parse incomplete queries, it’s able to provide support
when writing SPARQL. By using the language server protocol Qlue-Is can be used by any editor that
provides language server support.

CONTENTS |
Contents
1 Introduction 1
1.1 Problem defiNitioncccceiiiieiieiieieeiee ettt sttt et b et st st 1
1.2 CONEIIDULIONSviiiiviiiiiie ettt ettt ettt e ettt e et e e e e e e eatee e ateeeeaseeetseeensseeenrseesaseeenssesenssesennns 3
2 Background 3
2.1 Resource Description FramewWorKc.cccieiiiiiiieiiiiiiecie ettt eve s veeveesaneesree 3
2.2 SPARQL .t h ettt b e a et e et h e e e bt e ae e st e teeaeeneeeennene 4
2.3 Language Server ProtOCOLcciivieiieiieieciesie sttt ettt et e ste et sseessaessnesnne s 6
3 Related work 8
T B 003 4310) (<] 10 o NSRS 8
3.2 FOIMALHING ..eecvviiieiiiiiiiieeie ettt ettt et et et e stbesebeetbessbeesbeesseesbeesseesssesssessesssesssesssesssesssennns 11
3.3 DIAGNOSLICS .evevvveiereieieiieeieetiete et et ete e teesteeseesseesseesseesseesseesseesssesssesssesssesssessseessenssenssesssennns 11
R I & [0 SRS 11
4 Architecture 12
5 Parser 14
5.1 GTAIMIMIAL ...ttt et sb e sb ettt et e e sb e e sbeeeat e e bt e sbeesbeesabeeabe e bt esbeesmeeeaseennee 15
5.2 Extended Backus-Naur FOTMcccooiiiiiiiiiiiiiiice et 18
5.3 SPARQL GIamMIMALcooiiiiiiiieiiiieiiieeite ettt ettt ettt e st e et e e bt e e sabeessabeesbbeesateesbeeenane 19
5.4 LeXICal ANALYSIS ..eecviieiviieieiieeiie ettt ettt e et e et e estteestteesebeeebeeetaeessseesssaessseeensseesseensseeeseeanes 19
5.5 Parsing AIZOTItRIMccviiiiiiiiii ettt ettt e et eesteestaessbeesbeesbe e saessseesseenseennes 20
6 Capabilities 29
6.1 COMPLELION ..ottt ettt sttt b e ettt b et e st sb et entesbesbeeeenbesbea 29
6.2 FOTMALLING ...eveiiiiiiieieieeie ettt ettt ettt sb e st e et e st e st e et et e emteenteebe e beebeebeenns 37
0.3 DIQGNOSLICS .eevvieierieiiieetieeitieesteesteesteeeteesteeeseeasaeessseessseessseessseessseesssseessseessseessseessseessseesnes 39
0.4 €O ACLIONS ...ttt ettt sttt ettt et e et s a et e st e e st e e et e esteeesbeeaeeneeaseeneenseeneenean 44
0.5 HOVET ettt ettt sttt 47
7 Theoretical Analysis 49
7.1 Parsing AIZOTItRIMc.oiiiiiiiiii et ettt e e e st e e taeesebeeetbeessseesnsaeenssaeenns 49
8 Empirical Analysis 50
8.1 COMPIELION ..e.vvieieeiieeieeiieeieeteete et et e et e stesetessbeesseesseesseasseesseasseasseasseasseasseasseasseansensseenseenses 51
8.2 FOTTNALINEveeviiiieeiieeiieeie ettt e ettt e et e et et enbeesteesteeste e beenseenseenseeseenseesseesseesssesnsesnnesnsens 54
8.3 DHAGNOSTICS ..uveeuieiieeiieeiie ettt ettt ettt ettt et et ettt e e et e eateeate et e enbeenteeateeateeabeenbeenbeenteentean 55

8.4 Code Actions

CONTENTS

I

9 Acknowledgements

10 Appendix

10.1 Completion categories

55

55

56

1 INTRODUCTION 1

1 Introduction

Modern developing environments have transformed software development by offering intelligent
assistance while writing code. Features like automatic code formatting, error detection or completion
suggestions allow developers to iterate faster and work more efficiently. These features are often
provided by language servers — programs that offer language specific capabilities.

For many popular programming languages (like python, C++, Rust, Java, JavaScript, ...), language
support is very extensive. Domain specific languages (DSL) often lack modern tooling. This makes them
harder to use and harder to learn. One such language is SPARQL.

SPARQL[1] is a query language standardized by the W3C. It is designed to retrieve and manipulate data
stored in Resource Description Framework (RDF)[2] format. It plays a key role in the semantic web.

Despite it’s importance in this field, SPARQL lacks proper tooling. Specialized editors that provide
some support, mainly completion, exist. But there is currently no mature language support available
for SPARQL.

This thesis presents Qlue-Is, a language server for SPARQL that brings modern language support.

1.1 Problem definition

This thesis addresses the problem of providing language support for SPARQL.

The term ‘language support’ is vague. It refers to a range of features that assist with development in a
specific formal language. [will refer to these features as capabilities.

To make things concrete, I define a fixed set of capabilities that count as ‘/anguage support’ in this thesis.
1.1.1 Completion

1 SELECT * WHERE { 1 PREFIX wd: <http://www.wikidata.org/entity/>
2 Meryl 2 SELECT * WHERE {
: 3

4

= Meryl Streep wd wd: Q873 |
= Meryem Uzerli H
o

= Merya wd:Q36508
= Merya w 144528

= Meryl Davis wd:Q242921

= Meryl Streep filmography wd:Q6820388
= Meryem Boz wd:Q2436603
= Meryeta 0'Dine v
== Meryem Benm'Barek
= Meryl Cassie wd
= Meryem Erdogan wd:Q
= Merycoidodontoidea wd:

Figure 1: Completion suggestions after typing Figure 2: Editor state after accepting the first
“Mery”, in the Wikidata dataset. suggestion. The suggestion had the label “Meryl
Streep” but the wd:Q873 was inserted. wd:Q873 is
the resource identifier for the actress “Meryl Streep

in the wikidata dataset.”

Given a cursor position within a SPARQL, the completion capability returns a set of suggestions.
Suggestions are Variables, IRIs, Literals, or snippets of SPARQOL that could validly follow at the cursor
position.

https://www.w3.org/

1 INTRODUCTION

1.1.2 Formatting

1 PREFIX rdfs: < w3.org/2000/01/rdf-schemat> 1 PREFIX rdfs: <http w3.org/2000/01/rdf-schemat>

2 PREFIX wdt: <http .wikidata.org/prop/direct/> 2 PREFIX wdt: <http:/ vikidata.org/prop/direct/>

3 PREFIX pq: <http kidata.org/prop/qualifier/> 3 PREFIX pq: <http kidata.org/prop/qualifier/>

4 PREFIX ps: <http kidata.org/prop/statement/> 4 PREFIX ps: <http kidata.org/prop/statement/>

5 PREFIX p: <http:// kidata.org/prop/> 5 PREFIX p: <http:, vikidata.org/prop,

6 PREFIX wd: <http:/ v.wikidata.org/entity/> 6 PREFIX wd: <http wikidata.org/entity/>

7 SELECT ?film_id ?film ?award WHERE { 7 SELECT ?film_id ?film ?award WHERE {

8 wd:Q873 p:Pl66 ?pléc . 8 wd:Q873 p:Pl66 7pl66 .

9 ?plé6 ps:Pl66 ?award_id ; pq:P1l686 2film_id 9 ?pl66 ps:P166 ?award_id 3

10 ?award_id wdt:P31 wd:Q19620 ; 10 pq:P1686 ?film_id .

11 rdfs:label ?award . FILTER (LANG(?award) = "en") 11 ?award_id wdt:P31 wd:Q19020 ;

12 12 rdfs:label ?award . FILTER (LANG(?award) = "en")
13 ?film_id rdfs:label ?film FILTER (LANG(?film) = "en") 13 ?film_id rdfs:label ?film . FILTER (LANG(?film) = "en")
14} 14}

Figure 3: Unformatted SPARQL query.

Figure 4: Formatted SPARQL query.

The formatting capability transforms a SPARQL query into a standard form. Only whitespace is added
or removed, the structure and meaning of the query stays the same. The standard form is defined by a

configuration and the formatting algorithm.

1.1.3 Diagnostics

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schemai>

2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>

3 PREFIX pq: <http://www.wikidata.org/prop/qualifier/>

4 PREFIX ps: <http://www.wikidata.org/prop/statement/>

5 PREFIX p: <AtTp: 1yd' is used here, but was never declared
6 SELECT ?film_id ?fi| ,1uc 1le(undeclared-orefix)

T wd:Q873 p:P166 7p

8 7p166 ps:P166 7aw Academy Awards

Q pq:P1686 ?f1lm_ View Problem (Alt+F8) Quick Fix... (Ctri+.)

10 ?award_id wdt:P31 wd:0Q19020 ;

11 rdfs:label Zaward FILTER (LANG(?award) = "en')

12 ?film_id rdfs:label ?film FILTER (LANG(?film) = "en'")
13}

Figure 5: In this SPARQL query the PREFIX wd is used. But since this PREFIX was never declared in the
PROLOGUE this will cause an error. The diagnostic message is showing this information to the user and

the error is

underlined in the editor.

Given a SPARQL query, the diagnostics capability reports issues in the query, each tied to a specific

range in the document. Each issue has one of four severity levels: Error, Warning, Info, or Hint.

1.1.4 Code Actions

1 SELECT * WHERE {
2 s ?p 2@
3

More Actions...

Add to result

1 SELECT % WHERE {
2 ?s ?p 7o FILTER (LANG(?0) = "en")
3}

® Add Lang-Filter

Add Filter

Figure 6: SPARQL query with action menu

Figure 7: SPARQL query with language filter

The code action capability suggests edits to improve or modify the query. These edits can be simple or

complex. Code actions typically automate common tasks -— for example, adding a language filter.

2 BACKGROUND 3

1.1.5 Hover

1 SELECT * WHERE {
2 s 7p 70 FILTER (LANG(?0) =)
3k

The FILTER keyword is used to restrict the results by applying a boolean condition.
SELECT ?name WHERE {

?person foaf:iname 7name .

?person foaf:iage ?age .

FILTER (?age > 20)
}

Figure 8: Hover information for FILTER

Given a SPARQL query and a cursor position, the sover capability shows textual information about the
element under the cursor.

1.2 Contributions

I consider the following as my main contributions:

e [implemented a SPARQL parser. When the input is incomplete or incorrect, the parser still returns
a partial parse tree for the longest possible prefix that is valid.

e [implemented the 5 capabilities defined above.

e [implementing a fully functioning SPARQL language server called Qlue-Is.

e [published Qlue-Is publicly available, open source project on GitHub.

The remainder of this thesis is structured as follows.

Chapter 2 provides background on RDF, SPARQL, the language server protocol. Chapter 3 lists existing
notable SPARQL editors and SPARQL tooling in general. Chapter 4 describes the structure of the
implementation. Chapter 5 describes the parser and how it works. and the implemented capabilities in
detail. Chapter 6 describes the individual capabilities and how they are implemented. Chapter 7 evaluates
the parsers theoretical time complexity. Finally Chapter 8 evaluates the systems empirical performance.

2 Background

This section provides the background knowledge required to understand the concepts in this thesis.

2.1 Resource Description Framework

The Resource Description Framework (RDF)! is a data model, standardized by the W3C.

RDF data is a set of triples.
A triple consists of (1) a subject, (2) a predicate and (3) a object.

In Listing 1 there are 6 triples separated by dots.?

'To be exact RDF 1.1.
2This format is called n-triples.

https://github.com/IoannisNezis/Qlue-ls

2 BACKGROUND 4

<freiburg> <type> <city> .
<freiburg> <name> "Freiburg"
<freiburg> <hasPopulation> "237244"
<miinster> <type> <city> .
<minster> <name> "Minster"

o g &~ W N R

<miinster> <hasPopulation> "307071" .

Listing 1: Six RDF triples, assigning two cities their name and population size.

Each triple statement forms the edge of a directed graph. The subject is the start node, the predicate is a
annotated edge, and the object is the end node.

<name> <name>
"Freiburg" "Minster"

<type> <type>

<freiburg> <miinster>

"237244" "307071"
<hasPopulation>

<hasPopulation>

Figure 9: Visualization of Listing 1 as a graph.
Resources are represented with rectangles, literals with hexagons

The subject of an RDF statement is either an Internationalized Resource Identifier (IRI) or a blank node
(I will ignore those) and denotes a resource. A blank node represents an anonymous resource without
a global identifier. For the purposes of this thesis, IRIs are just strings without whitespace enclosed by
angle brackets. The predicate of a RDF statement also has to be an IRI. The object is an IRI, a blank
node, or a string literal.

Data in RDF format is often called RDF graph or knowledge graph.

2.2 SPARQL

SPARQL is the standard query language for RDF data.
It allows users to retrieve and manipulate data stored in RDF knowledge graphs.

The two actions — retrieving and manipulating data — are separated into two disjoint sublanguages:
e SPARQL 1.1 Query Language: to retrieve data
e SPARQL 1.1 Update: to manipulate data — e.g. insert, delete, change

In this thesis I will focus on the SPARQL query language.

SPARQL queries use pattern matching as a central mechanism. A pattern describes a structure of a
subgraph. Such a pattern is called group graph pattern. Listing 2 shows a simple query with a group
graph pattern.

2 BACKGROUND 5

1 SELECT * WHERE {

2 [?Clty] [<type>] [<City>] . Group
- (1) Graph
3 [?city] (<name>) [?name] Pattern

4}
Listing 2: SPARQL query with a simple group graph pattern

Here the group graph pattern (1) has 2 triples. ?city and ?name are variables. They function as wildcards
and match any node in the graph.

<type> <name>

Figure 10: Visualization of the graph pattern from Listing 2.
Variables are represented with octagons.

This graph pattern matches 2 subgraphs in the knowledge graph.
The first solution is shown in Figure 11.

<name> <name>

<type> <type>

"237244" "307071"
<

hasPopulation> <hasPopulation>

Figure 11: RDF graph with a highlighted subgraph that matches the group graph pattern from Listing 2.

Note that in this solution 2€i#ji matches Kfieiburg> and P#ainie matches [Freiburg'.

2 BACKGROUND 6

The second solution is shown in Figure 12.

<name> <name>

<type> <type>

<hasPopulation> <hasPopulation>

Figure 12: RDF graph with a highlighted subgraph that matches the group graph pattern from Listing 2.

Note that in this solution 2€i#)i matches Knitinster> and 2fianie matches [NMiinster..

In each match, every variable matches a literal or IRI. In other words every match provides a binding
for every variable. The result is a table with a column for each variable. For every match a row is added
to the result, listing the bindings.

The result for the example would is shown in Table 1.

Table 1: SPARQL result table.

This is the basic query mechanism.
SPARQL supports a wide range of features:
e Selecting a specific variable
Binding variables to given values
Filtering for conditions
Grouping and aggregating
Ordering
Limiting
some conversions via build-in functions

SPARQL is described in detail, with examples, in its specification.

2.3 Language Server Protocol

The Language Server Protocol (LSP) [3] is a protocol used between editors and language servers that
provide language specific tooling.

https://www.w3.org/TR/sparql11-query/

2 BACKGROUND 7

The idea is that an editor should only implement language agnostic features and everything language
specific should be provided by the language server. The editor and the language server form a client —
server architecture.

The protocol is JSON-RPC based. That means the messages are JSON strings that follow a specific
structure. In JSON-RPC there exist 3 types of messages:

e Requests, containing a method name, parameters and an id

e Responses, containing results or errors and the corresponding request id

e Notifications, containing a method name, parameters but no id

During the initialization stage, the client and server exchange their capabilities.
When the language server does not implement a capability — for example formatting — the client knows
that and will not send formatting requests.

Every change in the editor is sent to the language server so it can maintain a synchronized version of
the input.

Each capability has a unique method name — for example formatting: “textDocument/formatting”.
The client can trigger a capability by sending a request with the respective method and parameters.
The request for formatting requires the following parameters:

e the documents identifier (a URI)

e formatting options

(LSP-Request 1
(L J ~

' N

method: "text]}ocument/{:ormattin9"J [id: 42
e

textDocument: { uri: "Fi{e..rq"r 3
options: { tabSize: 2, insertSpaces: true }

3 J
N\ _J

Figure 13: Visualization of a formatting LSP-request.

v

The server processes these messages and responds with a result or error.
In the case of formatting, the result is an array of text edits. A text edit is represented by a range in the
document, and a string. The range is supposed to be replaced with that string.

3 RELATED WORK 8

(LSP- ReSponse]
& J

-

[result: [\
{

range: {
start: { line: 0, character: 0 3,
end: { line: 0, character: 6 }

3

newText: "SELECT"

]
= -~

Figure 14: Visualization of a LSP-response to a formatting request.

This is how almost all capabilities are implemented. They are registered during initialization, initiated
by a request to the language server and solved by a response.

3 Related work

I defined /language support as the collection of the five capabilities: completion, formatting, diagnostics,
code actions and hover. I will discuss the related work for each of these capabilities.

3.1 Completion

3.1.1 Data-driven completion

Hannah Bast, Johannes Kalmbach, Theresa Klumpp, Florian Kramer and Niklas Schnelle [4] proposed
and demonstrated the completion strategy: “SPARQL Autocompletion via SPARQL”.

In this strategy, the suggestions are retrieved from the knowledge-graph itself via SPARQL queries. This
has the advantage that the completion suggestions are very accurate. The disadvantage is that this puts a
lot of load on the triple store, since for each completion request at least one SPARQL query is sent. The
SPARQL query used to compute the completions (called autocompletion query) can also become slow,
or throw an error. Here is a example:

Given the knowledge-graph from before:

3 RELATED WORK 9

<name> <name>
"Freiburg" "Minster"

<type> <type>

<freiburg> <minster>
"237244" "307071"

<hasPopulation> <hasPopulation>

Figure 15: Example knowledge graph, containing name and population of two german cities.

And this query:

SELECT * WHERE {
?city <type> <city> .

?city <name> [[)

S~ WN R

(The red box is not part of the input, but the cursor position.)

A good autocompletion query would be

SELECT ?suggestion WHERE {
{ ?city <type> <city> }

?city <name> ?suggestion

;W ON R

The marked section is the computed completion context, i.e. everything that constrains the result.
The result of this query would be:

?suggestion

“Freiburg”

“Miinster”

What’s omitted in this example is a relevancy based ranking of the suggestions.

This autocompletion strategy is used in the “QLever-UI’, a web-based SPARQL editor for the “QLever”
RDEF triple store. QLever-Ul, QLever and Qlue-Is (this thesis) are projects of the Algorithms and Data
structures group at the University Freiburg lead by Hannah Bast.

The source of QLever-Ul is publicly available on GitHub: https://github.com/ad-freiburg/qlever-ui.
And a demo is available on this webpage: https://qlever.cs.uni-freiburg.de/.

https://github.com/ad-freiburg/qlever-ui
https://qlever.cs.uni-freiburg.de/

3 RELATED WORK 10

The implementation of “SPARQL autocompletion via SPARQL” in the QLever-Ul works, but has
weaknesses. The biggest problem is that it does not use a parse tree. It uses regular expressions to locate
cursor in the query grammar.

SPARQL has nested structure such as balanced parentheses an cannot be captured by regular expressions.
This limitation is formalized in the Chomsky hierarchy of languages [5]. Therefor this approach is
inherently limited.

In this thesis I will improve this approach. My goal is that QLever-UI will use Qlue-Is for its completion
capability.

3.1.2 Schema-driven completion

Vincent Emonet, implemented an autocompletion strategy that could be summarized as “Schema-driven
completion”.

In contrast to “SPARQL Autocompletion via SPARQL” it does not use the data in the knowledge-graph,
but the structure of the data, sometimes called schema.

RDEF itself does not enforce any schema or rules on the data.

For example: “If an entity has the type city, it has to have a <name> and <hasPopulation> property”.
How ever, there exist systems to descrive and enforce such schemas. One way to describe the schema
with RDF is with a VoID description [6].

Vincent Emonet’s implementation of “Schema-driven completion” uses the VoID description of the
knowledge-graph to provide completion for classes and properties.

The advantage of this approach is that completions are computed very fast. Since the schema can be
fetched once and then no further queries are required.

The disadvantage is that the accuracy of the results is limited to the schema. Also a VoID description is
required and the syntactic location is limited to predicate and object.

This completion strategy is implemented in a SPARQL editor of the Swiss Institute of Bioinformatics.

The source of this editor is publicly available here: https://github.com/sib-swiss/sparql-editor.

And a demo is available on this webpage: https://sib-swiss.github.io/sparql-editor/.

3.1.3 Prefix completion

Vercruysse, Arthur and Rojas Melendez, Julian Andres and Colpaert, Pieter presented a language server
called “Semantic Web Language Server” in 2025 [7].

This language server has a completion capability.

When typing a prefix at the predicate location of a triple it suggests valid completions. When the predicate
is “a” (a special keyword) it also supports prefix completion for the object location.

It also suggests every keyword at any location.

The source of this language server is publicly available here: https://github.com/SemanticWebLanguag

eServer/swls.
And a demo is available on this webpage: https://semanticweblanguageserver.github.io/swls/.

https://github.com/sib-swiss/sparql-editor
https://sib-swiss.github.io/sparql-editor/
https://github.com/SemanticWebLanguageServer/swls
https://github.com/SemanticWebLanguageServer/swls
https://semanticweblanguageserver.github.io/swls/

3 RELATED WORK 11

PREFIX ed: <./owl.ttl#> PREFIX ed: <./owl.ttl#>

1 1

2 SELECT * WHERE { 2 SELECT * WHERE |{

3 <SWLS> ed: 3 <hover> a ed:

4 3 /% ed:completesPropert.. Indicates that the hover act. 4} “; ed:Completion
/2 ed:completesTypes Indicates that the hover action ..
/° ed:hasFeature Links a property to a language serv.. % ed:Hover
/2 ed:isCool Indicates whether or not a feature is .. % ed:languageServer

Figure 16: Prefix completion at predicate location. Figure 17: Prefix completion for a class.

3.2 Formatting

3.2.1 Sparqling sparql-formatter
Hirokazu Chiba, implemented a SPARQL formatter tool called spargl-formatter [8].

It works quite well but it does have some issues.
I’ve written a detailed comparison and analysis in my blog post about Qlue-Is[9].

The source of spargl-formatter is publicly available here: https://github.com/sparqling/sparql-formatter/.
And a demo is available on this webpage: https://spargl-formatter.dbcls.jp/.

3.2.2 YASGUI

YASGUI is a SPARQL client. It was presented in the paper “YASGUI: Not Just Another SPARQL Client”
by Laurens Rietveld]l and Rinke Hoekstra in the year 2013 [10].

It’s is a web based SPARQL client that provides a full user experience.
From selecting the SPARQL endpoint, writing the query to finally fetching and displaying the results.

At it’s time, according to [10], YASGUI was one the first SPARQL editors to provide modern features
like formatting, autocompletion or syntax highlighting to the table.

The source of YASGUI is publicly available here: https://github.com/TriplyDB/Yasgui.
And a demo is available on this webpage: https://yasgui.triply.cc/.
The key combination to trigger formatting is Ctrl + Shift + f.

3.3 Diagnostics

3.3.1 Undefined prefix

The Semantic Web Language Server [7] also supports one diagnostic called “Undefined prefix”.

This diagnostic does exactly the same as my implementation of the “undeclared prefix” diagnostic,
described in Section 6.3.2. When a prefix is used but was never declared, this diagnostics is shown to
the user via Error-diagnostic.

3.4 Hover

3.4.1 Data-driven hover

The QLever-UlI also provides the hover capability.

When hovering IRIs in QLever-UI it tries to show the label of this resource.

https://ad-blog.cs.uni-freiburg.de/post/qlue-ls-a-sparql-language-server/#qlue-ls-vs-sparql-formatter
https://github.com/sparqling/sparql-formatter/
https://sparql-formatter.dbcls.jp/
https://github.com/TriplyDB/Yasgui
https://yasgui.triply.cc/

4 ARCHITECTURE 12

PREFIX wd: <http://www.wikidata.org/entity/>
BREER Y andfasshttn : //www. w3 . 0rg/2000/01/rdf -schema#>

-1

s e b e 1 Rl =Tk

wd:Q2833 rdfs:label "Freiburg im Breisgau"@en

Figure 18: query in the QLever-UI, hovering wd: Q2833

Just like the completion capability of QLever-UlI, this is implemented via SPARQL queries.
This makes the shown content configurable. With the right query the QLever-UI could show anything
from the knowledge graph, like comments or information about the class of the entity.

4 Architecture

I want to briefly discuss the architecture of Qlue-Is to provide an overview before I discuss each
component in greater detail.

Qlue-Is is a language server, that means it’s a program that sends and receives LSP messages.

The “connection” module is responsible to send and receive these messages.

The “message dispatch” module is responsible to recognize the methods of incoming messages and
dispatch it to a message handler.

Each capability has a “message handler” module that is responsible to handle the messages. The
“message handler” modules use the “connection” module to send a LSP response to the client.

The “parser” module is responsible for building parse trees, it’s available from every “message handler”
module.

4 ARCHITECTURE

13

[Qlue-Is]

LSP-Client

; message . .
connection . — diagnostics
dispatch - -

code actions

- J

|\

Figure 19: Architecture of the Qlue-Is language server.

5 PARSER 14

5 Parser

Every capability implementation uses the parser to “understand” the syntactic structure of the input.
The parser transforms a simple string into a structured representation called parse tree.
In this section I will describe what a parse tree is and how I compute it for SPARQOL.

In the next sections I describe how the actual capabilities are implemented.

Assume you have a SPARQL query input as a vector of bytes. Suppose you want to extract the variables
listed in the SELECT clause. This information is not directly accessible from the raw bytes. One
might attempt to locate the substring “SELECT” and extract variable names using regular expressions.
However, this approach is error-prone, inefficient, and difficult to maintain.

Given the string: “SELECT ?s WHERE { ?s ?p ?0 }”

I want to compute the tree in Figure 20.

QueryUnit

¥ v

| SelectClause | | WhereClause |

(SELECT) | Var | (WHERE) | GroupGraphPattern |

(var1) (‘curty) | Grouperaphpatternsub | (Rcl‘ly)
| TriplesSalmeSubject |
| VarO\fTerm | | PropertyLisilePathNotEmpty |
¢—H
var | verbsimple || objectListpath |

v
| Var | | ObjectPath |

VAR1 GraphNodePath

Figure 20: Parse tree for the input “SELECT ?s WHERE { ?s ?p 70}”.

Given this tree, finding the variables listed in the SELECT clause is easy.

5 PARSER 15

The program that builds this tree is called parser.

An important detail to keep in mind is that the given SPARQL query does not have to be complete.
Especially for the completion capability, the input is often invalid.

5.1 Grammar

To build the parser, I use a context free grammar as a theoretical basis.
For simplicity I will write “grammar” instead of “context free grammar” in the rest of this thesis.

A grammar can be used to describe the syntax of formal languages, such as SPARQL.
Essentially a grammar is a set of rules for rewriting strings, along with a “start symbol” from where the
rewriting starts.

The core idea is simple. For example a grammar would be:

1 There are 2 rules:

2 - Replace 'A' with "4B'.

3 - Replace 'B' with '2°'

4 Start with 'A' and apply the rules above.

We start with ‘A’ apply the first rule and get ‘4B’ then we apply the second rule ‘42’.
This is the core principle of a formal grammar.

Formally a grammar G consist of four components:

e a finite set V of nonterminal symbols

o a finite set X of tokens, known as terminal symbols, that is disjoint from N

e a finite set P of productions, where each production consists of a nonterminal, called left hand
side (lhs), and a sequence of tokens and/or nonterminals, called right hand side (rhs).
A rule states that the /4s can be replaced with the rks.
Formally written, a production has this form: N — (XUN)*

lhs rhs
where * is the Kleene star operator, which denotes zero or more repetitions.

e anonterminal S € N that is the start symbol.

The grammar formally is defined as the tuple (N, 3, P, S).

These four components form a rewriting system:

Start with the start symbol S, repeatedly apply rules from P to replace nonterminals from NV until only
tokens from 3 are left.

the strings that get produced are called words

the set of all words is called language

each replacement step is called derivation-step

the sequence of derivation-steps is called derivation

5.1.1 Grammar example
Given the Grammar G = (N, X, P, S) with:

5 PARSER 16

N = {A, B}

Ez{id’<v>7+}
P={A— B,B— (B+B),B—id}
S=A

Now we start with A and apply rules from P.

A= B= (B+B)= (id+B)= (id+ (B+ B)) = (id+ (id + B)) = (id + (id + id))

We have shown how the string “(id + (id + id)))” is generated from the start symbol.
To indicate zero or more steps we can write =, as in 4 = (id + (id + id))

5.1.2 Parse tree

Let G = (N, X, P, S) be a Grammar
and S = wy = w; = ... = w,, be a derivation, with w; € (N U X)*.

Then we get the parse tree as follows:
e The parse tree is initialized with a single root node S
o The tree is constructed stepwise. After step i, the leaves — read from left to right — are always w;
e If in derivation-step w; = w;,,; the rule V' — u is applied, then V' gets |u| children that get
annotated — from left to right — with the symbols of u.

For the example derivation above:

A=B= (B+B)= (id+B)= (id+ (B+ B)) = (id+ (id + B)) = (id + (id + id))

We would get this parse tree:

s
b

Figure 21: A parse tree for the word “(id + (id + id))”.
Nonterminals are blue and rectangles, tokens are green and octagons.

©
o <
S~

Note that there are multiple derivations that can yield the same parse tree.
The parse tree above is also the parse tree of this derivation:

5 PARSER 17

A= B= (B+B)= (id+B)= (id+ (B+ B)) = (id+ (B+id)) = (id + (id + id))
5.1.3 Leftmost derivation
A leftmost derivation is a derivation where always the leftmost variable gets replaced.

This is a leftmost derivation:

A=B= (B+B)= (id+B) = (id+ (B+ B)) = (id+ (id + B)) = (id + (id + id))

This is not:

A=B= (B+B)= (id+B)= (id+ (B+ B)) = (id+ (B+1id)) = (id + (id + id))

5.1.4 LL(Kk) property
Formally this is the definition of LL(k):

Let G be agrammarand k > 1 € N.
G is LL(k), if and only if for any two leftmost derivations:

1. S=..=>wAa=wla=..=wu
2. S= .=z wAa=>wya= ... = wv

The first £ tokens of u and v are the same, then 5 = ~.

In this definition:
e S is the start symbol
A is a nonterminal
w is the already derived input
u and v are the remaining inputs

a, B and -y are sequences of grammar symbols

Let’s unpack this definition as it will become very important.

Given a word w’ = wu.

Suppose we found a partial leftmost derivation S = wAa.

If the grammar is LL(k) then, only by looking at the first £ symbols of « we know that there is exactly
one rule to expand A that is allowed to apply next.

This is relevant, because the SPARQL grammar is LL(1).

5.1.5 FIRST set

For the construction of the parser, FIRST sets are important.
FIRST assigns each nonterminal a set of tokens. This set contains exactly the first tokens of all words
that could be derived from the nonterminal.

For example:

e If A can only be extended to the words “abc” or “def” then FIRST(A) = {'a','d'}

e If A can only be extended to the empty word € and “x” then FIRST(A) = {'x', e}
The letter € denotes the empty word, not a grammar symbol. If the FIRST set of a nonterminal contains
€, that means it can be extended to “nothing”.

5 PARSER 18

To formally define FIRST, I will first define FIRST ;..
FIRST,, does the same as FIRST just for right hand sides of production rules instead of nonterminals.
Let G = (N, X%, P, S) be a grammar, then FIRST ;. is defined as follows.

FIRST,, : (N US)* - P(SU{e}) :

{e} ifrhs =¢
bs s {t} if rhs = ¢ rhs'
FIST) FIRST(A) if ths = A rhs’ A e ¢ FIRST(A)

FIRST(A) U FIRST,; (rhs’) if rhs = A rhs’ A e € FIRST(A)

In this definition ¢ is a token A is nonterminal and rhs’ is another right hand side of a production rule
(possibly empty).

Now FIRST is defined as

FIRST: N —» P(SU{e}): V= |) FIRST,,(rhs)
V— rhs €P

With these definitions FIRST and FIRST ,, can be recursively computed.

For example, given this grammar:

1 A—> B
2 B - (B + B)
3 B — id

The FIRST sets would be:
FIRST(B) = FIRST,.((B+ B)) UFIRST,,,(id) = FIRST,,.((B + B)) U {id} = {(,id}
FIRST(A) = FIRST,,(B) = FIRST(B) = {(,id}

5.2 Extended Backus-Naur Form

SPARQL is provided in the Extended Backus—Naur Form (EBNF).
EBNF is a notation to declare grammars. Unfortunately there exist many different variations.

For this thesis the notation is not really important, what is important is the constructs EBNF brings to
the table. EBNF is syntactic sugar for formal grammars. Every grammar that can be described in EBNF
could be described in a formal grammar and vice versa.

EBNF provides the following constructs to the right hand side of rules:
Let E;, E, be EBNF right hand side terms then so are:

Concept Notation Semantic
concatenation E\E, E, followed by E,
alternation E, | E, Either E; or E,

repetition E” Repeat E; zero or more times

5 PARSER 19

Concept Notation Semantic

non zero repetition | E;* Repeat E/; one or more times
option E? E; or the empty word €
group (E,) Group term for precedence

Note that concatenation takes precedence over alternation.
The table above creates a recursive definition for a EBNF term. The base cases for this recursion is:
Every grammar symbol is a EBNF term.

Every EBNF term could be rewritten using formal grammar production rules.
The proof is left as an exercise for the reader.

5.2.1 FIRST sets for EBNF terms
Now that I introduced EBNF, the definition for FIRST ;; needs to be extended.

;

FIRST,,.(E;) if rhs = E, B, A e ¢ FIRST”(E,)
FIRST,,.(E,) UFIRST”(E,) if rhs = E, E, A e € FIRST”(E,)
FIRST,(E;) UFIRST”(E,) if rhs = E; | E

FIRST,,(rhs) = 4 FIRSTr};SEEi)U {e} (52) if rhs = E1 e
FIRST,, (E) if rhs = B+
FIRST,(E) U {e} if rhs = E7
FIRST,,_(E) if rhs = (E)

5.3 SPARQL grammar

SPARQL was standardized by the World Wide Web Consortium.

It is defined in the specification SPARQOL 1.1 Query Language [1].

The SPARQL Grammar is a context free grammar.

It consists of 138 nonterminals, a production rule each and 161 terminals.

There are two entry points into the grammar: QueryUnit and UpdateUnit.

Formally, only one entry to a grammar is allowed. It would be more correct to say there are 2 grammars
defined, one with starting symbol ‘Queryunit’ and one with starting symbol ‘UpdateUnit’.

In Section 2.2 I mentioned that there are two disjoint sublanguages. ‘QueryUnit’is the starting symbol for
the SPARQL query language and ‘UpdateUnit’ is the starting symbol for the SPARQL update language.

Both grammars use the same set of production rules and both are LL(1).

5.4 Lexical Analysis

A parser gets a sequence of tokens as input and transforms them into a parse tree.

A few examples of tokens of the SPARQL grammar are: SELECT, WHERE, {, *, VAR1, INTEGER

However the input is sequence of chars. A sequence of chars that make up a single token is called lexeme.
For example “?var123” is a lexeme of the token VAR1.

https://www.w3.org/TR/sparql11-query/#sparqlGrammar
https://www.w3.org/TR/sparql11-query/#sparqlGrammar

5 PARSER 20

The role of the lexical analyzer is to read the input chars and produce a sequence of tokens.
This transformation is also called /exing.

1 13 14 15 16 17 18 19 20 21 22 23 24 25

0
L[] L

(STAR) (WHERE) LCurly (VAR) (VAR RCurly)

0 6 7 8 9 14 15 16 1 19 20 22 23 25 25

Figure 22: The string SELECT * WHERE { ?s ?p ?0 } transformed into SPARQL tokens.

For my application it’s important to remember the lexeme of each token.

Figure 22 shows how “SELECT * WHERE { ?s ?p 70 }”” would get lexed. In this thesis I always represent
tokens with octagons. The numbers and arrows show which slice of the input is the lexeme of each token.
Also the token “{* is written “RCurly”.

In this thesis, I do that with all “symbol-tokens” like ‘+” — ‘Plus’,*|” — ‘Bar’ and so on.

In the example whitespace is being skipped. In reality this is not the case. The parser I built is lossless.
That means that the input can always be reconstructed from the parse tree. To achieve that, whitespace
is not skipped but tokenized as well. When a parse-tree has this property we call it a lossless concrete
syntax tree.

In the SPARQL specification each terminal is defined by regular expressions.
To convert the input sequence into a byte sequence, we repeatedly match the remaining input against
these regular expressions, consuming the input token by token.

To create an efficient lexer is more complex that that, but since this is not the topic of this work, we will
keep it simple.

5.5 Parsing Algorithm

In this section I describe the parser I built to parse SPARQOL.
The input is a sequence of tokens w,, ws, ..., w,, and the output a parse tree.

I build a predictive recursive decent parser.

Recursive decent parsing is a parsing method where each nonterminal is assigned one procedure.
These procedures call each other recursively to process the input.

The input sequence will be scanned from left to right.

Predictive parsing means that there is no backtracking — no token of the input is scanned twice.

This is possible due to the LL(1) property of the grammar. Whenever a procedure is required to make a
decision, the next token (called lookahead) is used to unambiguously determine the correct procedure.

A predictive parser can be implemented by mutually recursive procedures. These procedures can be
computed by automatons.

For each nonterminal an automaton is constructed. Each automaton has a finite number of states. One
state is a start state and one state is a final state. These states can be connected by directed edges.

5 PARSER 21

Edges are annotated with a token, nonterminal or a special symbol . I draw edges, annotated with a
nonterminal, with a dashed line.

Here are 3 example automatons:

Automaton A:

id

start

(@!

Figure 23: Automaton for nonterminal A withruleA — B | C | id.

Automaton B:

@ P PP D@

Figure 25: Automaton for nonterminal B withruleB — (A + A).

Automaton C:

Figure 27: Automaton for nonterminal C withruleC — [A = A 1.

The parser executes these automatons the following way:

The input is a sequence of tokens: wy, ..., w,,.

The parser “reads” the tokens one by one from left to right.

The next token to read is called lookahead. Initially the parser has not read any tokens and the lookahead
is wy.

The parser starts in the start state of the start symbol. Assume that after some steps it is in state s. If there
is an edge from s to ¢ annotated with token a and the lookahead matches a, the parser reads the next
token into the lookahead and moves to state t.

If the edge is annotated with a nonterminal A and the lookahead is in FIRST(A), the parser moves to
the start state for A without reading from the input sequence. If the parser reaches the final state for A,
the parser moves to state ¢.

Only if there is no edge as just described, but an edge annotated with &, the parser moves to ¢ without
reading from the input sequence.

5 PARSER 22

To construct the automatons I first declare a help procedure.
The procedure is called connect and takes 3 arguments, the first two are states and the last is an EBNF rhs.

If X = a where a is a token:
Connect s and ¢ with an edge annotated with a.

Figure 29: Sub-automaton created by calling
connect, where the rhs is a token.

If X = A where A is a nonterminal:
Connect s and ¢ with an edge annotated with A. [o &~ __

Figure 30: Sub-automaton created by calling
connect, where the rhs is a nonterminal.

IfX =X, | X,|..|X, (alternation): X,
For each i € [1, ..., n] apply connect to s, t and X;. e
X,
I draw a dotted edge if two states willbe /7 O e
connected by applying connect.
X

Figure 31: Sub-automaton created by calling
connect, where the rhs is a alternation.

If X = X, X,...X,, (sequence):

Create n — 1 states g, ..., q,,- Apply connect to s, q, and X . Apply connect to q,,, t and X,.
Foreachi € [2,...,n — 1] apply connect to q;, ¢;,, and X.

Figure 32: Sub-automaton created by calling connect, where the rhs is a sequence.

If X = X’? (optional): e
Connect s and ¢ with an edge annotated with €.
Apply connect to s, t and X’.

Figure 33: Sub-automaton created by calling
connect, where the rhs is a optional construct.

5 PARSER 23

If X = X" X’
Connect s and ¢ with an edge annotated with €.
Apply connect to s, s and X’.

Figure 34: Sub-automaton created by calling
connect, where the rhs is a repetition construct.

IfX =X X’
Connect ¢ and s with an edge annotated with €.
Apply connect to s, t and X’.

Figure 35: Sub-automaton created by calling
connect, where the rhs is a non-zero repetition
construct.

With this help procedure we can construct an automaton for every nonterminal.
For every production A — X in the SPARQL grammar

1. create start state s and finite state ¢.

2. apply connect to s, t and X.

Here are 2 examples from the SPARQL grammar:

\
! Expression

Expression

DISTINCT

NIL

start

Figure 36: Automaton for the production:
ArglList ::= NIL | '(' 'DISTINCT'? Expression (',' Expression)x ')'

5 PARSER 24

start

TriplesBlock

TriplesBlock

Figure 37: Automaton for the production:
GroupGraphPatternSub = TriplesBlock? (GraphPatternNotTriples '.'? TriplesBlock?)%

If the parser reaches the final state of the parsing procedure for QueryUnit or UpdateUnit the input was
a valid word of the SPARQL language.

To construct a parsing tree from these procedures:

1. Create a root node and mark it as active.

2. When an edge annotated with a token is used, add a leaf node marked with that token to the
active node.

3. When an edge, annotated with an ¢ is used, nothing happens.

4. When a procedure starts, a child node is added to the active node, marked with the corresponding
nonterminal of the procedure. The new node is marked as the new active node. When the
procedure is finished, the parent node is again marked as the active node.

5.5.1 Properties

This parsing algorithm creates a LL parser.

That means it is a top-down parser reads the input from Left-to-right performing Leftmost derivation.
5.5.1.1 Top-down

Top-down refers to a parsing strategy where we begin with the grammars’ start symbol and expand it step
by step to match the input. As we do this, the parse tree grows from the top (the start symbol) downwards
toward the leaves, which correspond to the input tokens.

My parsing algorithm does this as it starts with the grammars’ start symbols by calling the procedure for
QueryUnit or UpdateUnit. The constructed parse tree grows by adding nodes to the active node. So the
constructed tree grows from the top (the root node) down to the leaves.

This is perfect for my use-case, because at any point during parsing, | have a partial tree rooted at the
start symbol — making it easy to represent and inspect intermediate structure.

5.5.1.2 Left-to-Right

The input to our parser is a sequence of tokens—for example:

5 PARSER 25

(SELECT) (STAR) (WHERE)(LCurly)

Figure 38: Token sequence for the string “SELECT * WHERE {“

Left-to-right means that the parser processes these tokens in the same order they appear in the input.

My parsing algorithm does this because it starts with the first token and then reads the tokens one by one
from left to right.

This is again a perfect fit for my use-case. If the input unexpectedly ends or if a there is an error token,
my algorithm will parse everything up to this point.

Here is for example how the parse tree gets built step by step.
The octagon represents the /ookahead token.
The red box represents the currently active node in the parse tree.

Step 01 Step 02
Input (SELECT) (STAR) (WHERE)(LCurly) Input (SELECT) (STAR) (WHERE)(LCurly)
Parse tree: QueryUnit Parse tree: QueryUnit
v
Query
Step 03 Step 04
v y
Input: (SELECT) (STAR) (WHERE)[:LBraCJ Input: (SELECT) (STAR) (WHERE)(LCurly)
Parse tree: QueryUnit Parse tree: QueryUnit
v v
Query Query
v v
SelectQuery SelectQuery
SelectClause

5 PARSER

26

Step 05

Input: (SELECT) (STAR) (WHERE)(LCurly)

Step 06

Input: (SELECT) (STAR) (WHERE)(LCurly)

V_H
(SELECT) (STAR)

Parse tree: QueryUnit Parse tree: QueryUnit
Query Query
SelectQuery SelectQuery
SelectClause SelectClause
|SELECT | (SELECTJ (STAR)
Step 07 Step 08
Input: (SELECT) (sTAR) (wHERE) (tBrac) | | Input: (sELecT) (sTAR) (‘where)(Lcurly)
Parse tree: QueryUnit Parse tree: QueryUnit
Query Query
SelectQuery SelectQuery
A A
¥ v 1 v
SelectClause WhereClause SelectClause WhereClause

V_H
(SELECT) (STAR) (EEEEE)

5 PARSER 27

Step 09 Step 10

v v
Input: (SELECT) (STAR) (WHERE) (LCurlyj Input: (SELECT) (STAR) (WHERE) (LCurlyj

Parse tree: Parse tree: QueryUnit
SelectQuery SelectQuery
| SelectClause | | WhereClause | | SelectClause | | WhereClause |

(SELECT) (STAR) (WHERE) | GroupGraphPattern | (SELECT) (STAR) (WHERE) |GroquraphPattern |

Note how the input is incomplete, but I still get a valid partial parse tree.

5.5.1.3 Leftmost Derivation

I defined in Section 5.1.3 what a leftmost derivation is.

The constructed automatons perform leftmost derivations because of how sequences are handled. When
there is a sequence of nonterminals the automaton handles them from left to right, therefore performing
leftmost derivations.

5.5.2 Operation Identification

The SPARQL grammar is composed of 2 formal grammars:
e SPARQL 1.1 Query Language, with start symbol QueryUnit
e SPARQL 1.1 Update, with start symbol UpdateUnit

My algorithm can parse both. To parse a SPARQL query input, call parse_QueryUnit and to parse a
SPARQL update input, call parse_UpdateUnit.

To parse any SPARQL input, I need to decide if the given input is a SPARQL query or SPARQL update
input.

Here are the first two rules of SPARQL query:

QueryUnit ::= Query

Query ::= Prologue
(SelectQuery | ConstructQuery | DescribeQuery | AskQuery)
ValuesClause

And here are the two rules of SPARQL update:

UpdateUnit ::= Update
Update ::z= Prologue (Updatel (';' Update)?)?

5 PARSER 28

Both languages start with Prologue. The nonterminal Prologue can produce the empty word €.
After Prologue SPARQL query continues with (SelectQuery | ConstructQuery | DescribeQuery
| AskQuery). This rule can’t produce € and has the first set:

first_set_query = {"SELECT", "CONSTRUCT", *ASK", ' DESCRIBE" }

SPARQL update follows Prologue with Updatel, which has the first set:

first_set_update = { "LOAD", CLEAR", 'DROP", CREATE", ‘ADD",
*MOVE", ‘COPY", ‘INSERT", "INSERT DATA",
‘DELETE", ‘DELETE DATA", 'DELETE WHERE", ¢}

To decide what operation the input is, I iterate over the input tokens until I find a token from either of
those sets.

If it is in set first_set_query, the input is in SPARQL query, if it is in set first_set update it is in SPARQL
update. If no token is in either of those sets, it can’t be decided.

6 CAPABILITIES 29

6 Capabilities

In Section 5 I have shown in depth how the heart of Qlue-Is — the parser — works.
In this section I will show how I use the parser to provide language support for SPARQL.

6.1 Completion

Given a cursor position in the input, the completion capability returns a list of suggestions. These
suggestions are inserted at the cursor position, or replace a range in front of the cursor.

Completion requests can be sent from anywhere in the input string s.

1 SELECT * { 1 SELECT * {

2 (1) 2}
3} 3 (1

Listing 3: SPARQL query with cursor at the start of Listing 4: SPARQL with the cursor after the
a GroupGraphPattern SelectQuery

For example in Listing 3 the cursor is where a triple would start.

Here valid suggestions would be: variables, IRIs or constructs like FILTER or OPTIONAL. But in Listing 4
the cursor is right after the SelectQuery. Here none of the suggestions above would be legal but instead
only SolutionModifier like ORDER BY or GROUP BY and a ValuesClause would work.

The difference between those positions are the possibilities of how the prefix ¢ could be continued.

In the next section I will provide a formalization for this idea.

The outline of the completion algorithm looks like this:

Syntacti leti
input Y .lc Classification>—)< Resolve e ehlon
Analysis suggestions

Figure 39: Diagram of the completion algorithm

Input: The input is a sequence of UTF-8 bytes s and a natural number ¢ € [0..]s].
Step 1: s is tokenized and parsed into a parse tree.

Step 2: The input is classified, each input gets a syntactic location assigned.

Step 3: Based on the syntactic location, the completion suggestions are computed.
Step 4: The output is a list of suggestions.

In the next 2 sections I focus on step 2 and 3.

6.1.1 Syntactic Location Classification

The idea here is to put all inputs that can be resolved the same way into one bucket.
Inputs can be resolved the same way if they can be continued the same way.

Let s be the input string and ¢ € [0, |s|] be the cursor position.

6 CAPABILITIES 30

Let W = (wg, wy, ..., w,,) be the sequence of tokens produced by lexing s.
Foreachw € W:
o range(w) € {[a,b) | a,b € [0..|s|] Aa < b} is a tuple s.t.
s[range(w).first() : range(w).last()] is the string slice of the lexeme of w in s. Ranges are
inclusive-exclusive, meaning the range (0, 0) does not include s[0] but (0, 1) does.
e type(w) € ¥ U {Error}, where X is the set of tokens of the SPARQL grammar.

Tokens are constructed s.t. their ranges are consecutive and non-overlapping.
Since our input can be incomplete or contain errors, I introduce a special token: Error.

Let tree be the parse tree of s, and parent(v) be the parent node of a node v € tree.

The cursor position c lies at one of the following positions relative to the token sequence:
1. Before the range of the first token w,
2. Within the range of some token w;
3. Between the ranges of two consecutive tokens w,, w;_
4. After the range of the last token w,,

Define the trigger token wy,,,,, as:

w, if ¢ < range(wy).first()
w, if range(w;).first() < ¢ < range(w,).last()

; if range(w;).Jast() < ¢ < range(w, 4).first()
w,, if ¢ > range(w,,).last()

wtrigger -

The anchor token is defined as:

Wanchor = W, Where max{j | j < index (Wygge,), type(parent(w;)) # Error }

In natural language: The anchor token is the nearest preceding token of wy,;,,, Whose parent node in
tree is not an Error node.

Example:
Given the input:

1 SELECT * WHERE {

2 FREI[[)
3}

Listing 5: Incomplete SPARQL query. The cursor — marked in red — is right after the word “Frei”.

The cursor at position 23, as shown in Figure 40.

c=23

v
= BIEIL N U e LML el ool]

8§ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 40: The input from Listing 5 visualized as a sequence of chars.

6 CAPABILITIES 31

“Frei” is not a valid SPARQL lexeme and will get recognized as Error. The cursor position c is between
the ranges of the tokens w, and wjy. Therefore, the frigger token w,;gq, 18 w,, marked red in Figure 41.

Wo Wy Wa w3 Wy Wy
0 6 7 8 9 14 15 16 19 23 24 25
Figure 41: The input from Listing 5 visualized as a sequence of chars.

The anchor token is the w; marked yellow in Figure 42.

QueryUnit

v

Query

v

SelectQuery
SelectClause WhereClause
(SELECT) (STAR) (WHERE) GroupGraphPattern

1

LCurly Error (RCurly)

Figure 42: A parse tree for the input from Listing 5.
The trigger token marked red, and the anchor token marked yellow.

The token w,, 4, 1s the starting point for the completion. The substring from the end of w,,, ., up to ¢

is the text that will get replaced by the suggestions.
Definition (completion prefix & search term):

copletion prefix := s[0 : range(w,, o,)-1ast()]
Jast() : ¢

search term := s[range(wanchor)

Example

For the input Listing 5:
e the completion prefix is: “SELECT * WHERE {“
o the search term is: “\n Frei”

Definition (continuations set)

Let p be the completion prefix for s and c.

Let W' = (wq, ...w) be the sequence of tokens produced by lexing p.
By definition w

anchor

anchor 18 @ non-Error token and child of a non-Error node.

6 CAPABILITIES 32

For simplicity I assume that p is a valid prefix of a SPARQL query.

That implies that there exists an error-free partial parse tree for p, where the rightmost leaf node is w,
Let § be every possible SPARQL query.

Let S, = {pr | pr € S} be every SPARQL query starting with p.

Let 7, = {tree(z) | = € 8,} be the parse trees of queries in &,,.

In every tree € 7, the leftmost leaves are exactly W”.

anchor*

Let next(¢, w) denote the node that immediately follows w in an in-order traversal of the parse tree ¢.
Then the continuations set is:

{type(next(t, wypenor))| t € T, }

To summarize:
e The completion prefix is the fixed part of the input that will remain unchanged.
e The search term is what the user typed after the completion prefix.
e The continuations set is every possible grammatical symbol that could continue the parse tree of
the completion prefix

Example:
For the input Listing 5 the continuations set is {GroupGraphPatternSub, SubSelect, RCurly }.

Figure 43 shows the partial parse tree for p =“SELECT * WHERE {“.

Figure 44 shows a possible continuation of this tree where the next node is GroupGraphPatternSub.
Figure 45 shows a possible continuation of this tree where the next node is SubSelect.

Figure 46 shows a possible continuation of this tree where the next node is RCurly.

QueryUnit QueryUnit

SelectQuery

1 v 1 v

| SelectClause | | WhereClause | | SelectClause | | WhereClause|

SelectQuery

(SELECT) (STAR) (WHERE) |GroquraphPattern |(SELECT) (STAR) (WHERE) |GroquraphPattern|

LCurly LCurly | GroquraphPatternSubl

Figure 43: Partial parse tree for completion prefix ~ Figure 44: Continuation of the tree in Figure 43.
Pp="“SELECT * WHERE {“

6 CAPABILITIES 33

QueryUnit

QueryUnit

SelectQuery
1 v 1 v
| SelectClause | | WhereClause | | SelectClause | | WhereClause|
SELECT STAR WHERE GroupGraphPattern SELECT STAR WHERE GroupGraphPattern
(serecr) (star) (wnese) | | (seeer) (star) (wmese) | |

LCurly || SubSelect

LCurly RCurly

Figure 45: Continuation of the tree in Figure 43. Figure 46: Continuation of the tree in Figure 43.

Given input s and c I define the syntactic location via the Table 2.
The syntactic location in the first column is assigned if the continuations set of p contains any of the
symbols in the second column.

If the continuations set of p contains none of the symbols in the second column, the syntactic location
is unknown.

6 CAPABILITIES

34

Syntactic location Continuations example
Start Prologue 1 [j
GroupGraphPatternSub
TriplesBlock 1 SELECT * {
Subject GraphPatternNotTriples 2 [:
DataBlockValue 3}
GraphNodePath
PropertyListPathNotEmpty
PropertylListPath
Path
VerbPath 1 SELECT * {
VerbSimple 2 ?a ?b 2c;
Predicate PathEltOrInverse 3 []
PathSequence
PathElt 4}
PathNegatedPropertySet
PathOneInPropertySet
PathAlternative
ObjectListPath 1 SELECT * {
. ObjectPath 2 ?7a b ?c;
Object . .
ObjectlList 3 2d (1)
Object 4}
SolutionModifier
HavingClause 1 SELECT * {
) . OrderClause 2 7a ?b 7¢;
SolutionModifier ..
LimitoffsetClauses 3}
LimitClause 4 [:
OffsetClause
1 SELECT * {
2 ?a ?b ?c;
GroupCondition GroupCondition 3}
4 GROUP BY (]|
1 SELECT * {
2 ?a ?b ?c;
OrderCondition OrderCondition 3}
4 ORDER BY []]
1 SELECT * {
FilterConstraint Constraint 2 FILTER ([j)
3 1

6 CAPABILITIES 35

6.1.2 Compute Completions

For each syntactic location a unique resolve strategy is used to provide completions.

6.1.2.1 Start Completions
If the syntactic location is Start, query templates for all 4 query types are suggested.

1 1 SELECT * WHERE {
2 ?s ?p 70
3}

Select query

Figure 47: Suggestions for the syntactic location ~ Figure 48: After accepting the SELECT suggestion.
Start.

6.1.2.2 Subject Completions

For subject completions the search term is used to determine if the user is typing a variable or not. If the
first non whitespace char of the search term is ? or $, the user is typing a variable.

Otherwise the user is typing an IRI or a GraphPatternNotTriples. A GraphPatternNotTriples is for
example a FILTER or OPTIONAL expression.

If the user is typing a variable, all variables in scope are collected and suggested.

1 SELECT * WHERE {

2 {

3 SELECT 7?x WHERE {}

4 }

5 7

6 Variable

Figure 49: Variable completion

If the user is not typing a variable, GraphPatternNotTriples and IRI completions are mixed. Just like
the Start completions, the completions for GraphPatternNotTriples are static.

1 SELECT * WHERE { 1 SELECT * WHERE {
2 | 2 FILTER ()
ER [| FILTER Filter the results 3}

[1 BIND

[1VALUES

[]1 SERVICE

[1MINUS

[1OPTIONAL

[1UNION

[1Sub select

Figure 50: Static suggestions for the syntactic Figure 51: After accepting the FILTER suggestion
location Subject

6 CAPABILITIES

36

The IRI completions are more complex.
I implemented the “SPARQL Autocompletion via SPARQL” strategy as described in [4].

That means that a completion query is used to find matching IRIs in the knowledge graph.

SELECT * WHERE {
Mery|

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 SELECT * WHERE {

3 wd: Q873

4 1}

== Merya wd:Q36508

== Meryl Davis wd:Q242921

=" Merya wd:Q1144528

=" Meryl Streep filmography wd:Q6820988
=~ Meryem Boz wd:Q2436603

=® Meryeta O'Dine wd:Q29413875

=~ Meryem Benm'Barek wd:Q53774210
== Meryl Cassie wd:Q2908
== Meryem Erdogan wd:Q
== Meryem Akdag wd:(Q2480¢

Figure 52: Suggestions for the syntactic location Figure 53: After accepting the Meryl Streep

Subject after typing “Mery” suggestion

Here is the completion query used in Figure 52:

ga &~ W N R

10
11
12
13
14
15
16
17
18
19

PREFIX wd: <http://ww .wikidata.org/entity />
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX wikibase: <http://wikiba.se/ontology#>

PREFIX skos: <http://ww .w3.0rg/2004/02/skos/core#>

PREFIX schema: <http://schema.org/>

SELECT ?qlue_ls_entity (SAMPLE(?name) AS ?qlue_ls_label) (SAMPLE(?alias) AS ?
qlue_1s_alias) (SAMPLE(?sitelinks) AS ?qlue_ls_count) WHERE {

{
SELECT ?qlue_ls_entity ?name ?alias WHERE {
?qlue_ls_entity rdfs:label ?name FILTER (LANG(?name) = "en")

?qlue_ls_entity skos:altLabel ?alias FILTER (LANG(?alias) = "en")
FILTER (REGEX(STR(?name),""Mery") |l REGEX(STR(?alias),"”"Mery"))
}
}
?qlue_ls_entity “schema:about/wikibase:sitelinks ?sitelinks
}
GROUP BY ?qlue_ls_entity
ORDER BY DESC(?qlue_ls_count)
LIMIT 101
OFFSET 0

The search term is used in line 11 to filter the results using the search term.

6.1.

2.3 Predicate & Object Completions

At the syntactic location Predicate variables and IRIs are allowed.

Variable completions are computed the same way as before.
The other completions are again computed using “SPARQL Autocompletion via SPARQL”[4].

6 CAPABILITIES

6.2 Formatting

The formatting capability transforms any SPARQL input into a formatted standard form.

There is no style guide for SPARQL. So I had to decide how a formatted SPARQL operation looks like.
The configuration and the formatting algorithm define the standard form for any SPARQL query.

The formatting algorithm receives a UTF-8

First the input sequence is parsed.

string and returns a sequence of textedits.

v

Sele.c‘tQue.ref

SelectClause

J/H
&)

HEH —

()
v

Figure 54: Parse tree for the input “SELECT * WHERE {}”

Then the parse tree is traversed. For each node textedits are computed.
These textedits can be classified into two kinds:
e The separation edits insert textedits between the children of the node.
e The augmentation edits change the text inside the node.

6 CAPABILITIES

v

Se[e.ctG{uery

H
| (o)
N
N

SelectClause

7o
-_—-

i

,

v

Se[ec‘bQuery

Selecttlause

!}Il
i

. le

@O @

Figure 55: Separation edits for input
“SELECT * WHERE {}”

Figure 56: Augmentation edits for input
“SELECT * WHERE {}”

Finally the collected edits are ordered by start position.

When the edits are consecutive — the end and start overlap — edits are consolidated.

D @\)(vere) @D

consolidate

- ["\n"] [WHEREj -

EE O (vee) @ @

Figure 57: Consolidation and application of textedits.

Here is a collection of formatted examples:

SELECT * WHERE { SELECT * WHERE { SELECT * {
?s 7p 70 . { 7s 7p 0
?a ?b ?c SELECT *= WHERE {} OPTIONAL {

} GROUP BY (2 AS 7a) 7a 7c Tc

SELECT - | HAVING (2 > 2) (1 > 2) }

I ORDER BY ASC(2c) }

’s 7p %0 .

0 OFFSET 3 SELECT * {
7a 7h 7c LINIT 3 7a 7b 7c

} . s

UNION
[sELECT + wHERE {} || crour BY (2 As 7a) o {
{} ORDER BY ASC(7c) 2a 7b ?c
MINUS { OFFSET 3 }
{1 LIMIT 3 }
MINUS {}
H
1

6 CAPABILITIES 39
PREFIX foaf: <> SELECT * { SELECT * {
SELECT * WHERE { {} s Ip To
7P foaf:givenName ?G ; GRAPH 7a { SERVICE <iri> {
foaf:surname 75 ; 7a 7b 7c 7a ¢ Tc
p 7o 3 } }
<> 4> } }
! PREFIX foaf: <foaf/6.1/> |[INSERT {
SELECT * { DESCRIBE 7x 7y <dings> v <a>
FILTER (1 > @) WHERE { 1
} ?x foafiknows ?y WHERE {
Py
SELECT » { } . VALUES 7v { 1 2 }
BIND (1 AS ?var) PREFIX foaf: <foaf/0.1/>
1 ASK { DELETE DATA {
? : '"Alice" 7a 7b 7c .
SELECT » { 7% foaf:name I é;Apﬁ .c> .
VALUES 72 { 12 3 } } h
c ?b ?a .
} PREFIX a: <> :
LOAD SILENT <a> INTO GRAPH <c> 3 c 7b ?7a
SELECT = {} LOAD 3 } .
VALUES 7a {12 3 } CLEAR GRAPH 3 2d 7e ?f
- — DROP GRAPH <c> 3 7d
PREFIX foaf: <foaf/0.1/> ADD SILENT GRAPH <c> TO DEFAULT ; GR?PH}.c?{
SELECT ?name ?x MOVE DEFAULT TO GRAPH <a> ?a 2d ?c
FROM <a> CREATE GRAPH <d> 1
7 ? 7F
FRON PREFIX foaf: <>) dte
WHERE { SELECT * WHERE {
2? . I . . . SELECT * WHERE {
?x foaf:name ?name 7P foaf:givenName ?7G ; 7a <irisfraj(1<o7)s | (<ird> | *a | a) 7b
} foaf:surname 75 3 }
CONSTRUCT { p 70 3 # comment
<Alice> vcard:FN ?name S2os PREFIX testl: <test>
} ¥ # comment
WHERE { SELECT * WHERE { PREFIX test2: <test> # cmt
?x foafiname ?name <subject> <predicatel> [SELECT ?a WHERE {
} <predicate2> <objectl> 3 # comment
LIMIT 10 <predicate3> <object2> testl:a <> 7a . # comment
SELECT * WHERE {] test2:b < b .
e L 1 b <> 7a .
<g> <pl> [<p2> <o>] L .
} SELECT » WHERE { # comment
) {} # comment
SELECT * WHERE { ?s # comment }
FILTER (7a) ’p 20 # comment
s 7p "y, . SELECT * WHERE {
FILTER (?a) <a> <c>, <d>
7a b 7c . FILTER (7a) 1
}

I wrote a deeper explanation of the formatting algorithm in my blog post [9].

6.3 Diagnostics

The diagnostics capability provides detailed feedback to the user.
Each diagnostic consists of a range in the input, a severity level and a message.

Qlue-Is provides six diagnostics, discussed in the following sections.

https://ad-blog.cs.uni-freiburg.de/post/qlue-ls-a-sparql-language-server/#formatting

6 CAPABILITIES 40

6.3.1 Unused Prefix Declaration

The unused-prefix-declaration diagnostic detects prefix declarations that are unused.
Such prefix declarations make a query less readable while providing no benefit. However, because such
queries are still valid, the severity of this diagnostic is: Warning.

1 PREFIX namespace: <iri>

-

A\ query.rq 2 of 2 problems

'namespace’' 1s declared here, but was never used

qlue-ls (unused-prefix—-declaration)

2 SELECT * WHERE {}

Figure 58: SPARQL query with an unused prefix. The diagnostic is underlining the prefix declaration
and telling the user that this prefix is unused.

The algorithm to find unused prefixes starts with parsing the input.

Then it finds all declared prefixes and used prefixes, the difference of those two sets are the unused
prefixes. To find the declared prefixes 1 traverse the subtree starting at the Prologue node in the parse
tree. Every PNAME_NS node, in this subtree, has to be a declared prefix.

QueryUnit

Query

Prologue

) .
v v v

PrefixDecl PrefixDecl

(PREFIX) (PNAME NS) (IRIREF] (PREFIX) (PNAME NS) IRIREF

Figure 59: Parse tree of a SPARQL query. The Prologue node is highlighted orange, every PNAME_NS
dependent of Prologue is highlighted red.

To find the used prefixes the full parse tree is traversed. Every PrefixedName node contains a used prefix.

6.3.2 Undeclared Prefix

The undeclared-prefix diagnostic detects prefixes that are used but not declared.

Such undeclared prefixes will result in an error. That’s why the severity of this diagnostic is: Error.

6 CAPABILITIES 41

1 SELECT * WHERE {

2 foo:bar
il

) query.rq 1of 1 problem

'foo' 1s used here, but was never declared
qlue-1ls(undeclared-prefix)

3}

Figure 60: SPARQL query with an undeclared prefix. The diagnostic is underlining the undeclared prefix

usage and telling the user that this prefix is undeclared.

The algorithm is almost the same as for unused-prefix-declaration. The two sets are just subtracted the
other way around. The used prefixes minus the declared prefixes are the undeclared-prefixes.

6.3.3 Uncompressed IRI

Often SPARQL queries contain long unreadable IRIs.
For example <http://ww .wikidata.org/entity/Q5>. SPARQL has the prefix mechanism to help with
this. When a prefix is declared in the Prologue, it can be used to abbreviate the IRI:

1 PREFIX wd: <http://ww.wikidata.org/entity/>
2 ...
3 wd:Q5

This makes SPARQL much more readable.

The uncompressed iri diagnostic detects raw IRIs that could be abbreviated using a prefix.
Raw IRIs are bad style, this is why the severity is: Info.

1 SELECT * WHERE {

2 <http://waw.wikidata.org/entity/Q52>

il
@ query.rq 1of 2 problems
You might want to shorten this Uri
http://waw.wikidata.org/entity/Q5 -> wd:Q5 (uncompacted-uri)

3 1

Figure 61: SPARQL query with the full IRI <http://ww .wikidata.org/entity/Q5>. The diagnostic
is underlining the IRI and telling the user that this IRI could get abbreviated with wd: Q5.

The language server needs a list of known prefixes.
These are either configured by the user or are shipped with the server.

6 CAPABILITIES 42

The uncompressed IRIs are retrieved from the parse tree by scanning the parse tree except the Prologue
sub-tree.
If the IRI is listed in the Prologue, or if the IRI has a known prefix the diagnostic is created.

6.3.4 Ungrouped Select Variable

When a SPARQL query has a GROUP BY solution modifier, only variables in the GroupClause are allowed
to be selected.

The ungrouped-select-variable diagnostic detects selected variables that are not in the GroupClause.
Selecting variables that are not in the GroupClause will cause an error. That’s why the severity for this
diagnostic is: Error.

1 SELECT 70 WHERE {

o
P

F
() query.rg 1of 1 problem

(ungrouped-select-var)

0 1s not part of the Group by Clause

2 s 7p 7o
}
GROUP BY 7s

(%]

P

Figure 62: SPARQL query with a GroupClause containing ?s and a SelectClause containing ?o0. The
diagnostic is underlining the selected variable 70 and telling the user that this selection is illegal.

The algorithm is straight forward when the parse

iy
tree 1S given. 7
For every SelectQuery or SubSelect compare
the wvariables in the SelectClause and the v
GroupCondition. SelectQuery
The selected variables minus the grouped v ¢

v
. . lectclau olutionModifier
variables are the selected variables that are [5” ¢ “) [5 "]
ungrouped. v v \ \I/
SELECT Var Var GroupC[muse

I

[Grcupﬂono(}t}om] [Groupﬂona(l‘t}ov) GroupCondi‘t‘ucﬂ
[Var] [Var] (Var J

Figure 63: The parse tree for a SPARQL with two
selected variables and 3 grouped variables.

6.3.5 Invalid Projection Variable

In the SelectClause one can bind terms to variables. For example:

1 SELECT (42 as ?x) WHERE {}

6 CAPABILITIES 43

The invalid-projection-variable diagnostic detects if a variable that has been assigned ina SelectClause
has already been declared in the body of the SelectQuery. Such a query is illegal and therefore the
severity level is: Error.

1 SELECT (42 as Is) WHERE ({

F

(*) query.rq 1of 1 problem

A

?s is already defined in the query body (invalid-projection-var)

s 7p 7o
3}

Figure 64: SPARQL query with 42 assigned to ?s in the SelectClause and also the triple ?s ?p 2o
in the query body. The diagnostic is underlining the assigned variable ?s and telling the user that this
assignment is illegal.

The algorithm also uses the parse tree to find every SelectQuery and SubSelect.
For each, check if a assigned variable is in the WhereClause.

6.3.6 Same Subject

Often many triples share the same subject. SPARQL provides a notation that allows to only write the
subject once for many triples.

Here is a example for this notation:

1 ?s ?pl 701 . 1 ?s ?pl 201 ;
2 ?s ?7p2 702 . 2 ?p2 702 ;
3 ?s ?p3 703 3 ?p3 703

The same-subject diagnostic detects triples that share the same subject.

1 SELECT * WHERE {

A
() query.rq 2 of 2 problems

Triple with same subject "?s" can be contracted (same-subject)

4 }

Figure 65: The SPARQL query has two triples. Both start with the same subject ?s. The diagnostic
informs the user that there is a better way of writing this.

6 CAPABILITIES 44

6.4 Code Actions

The code action capability receives an input string s and a range in the string r = (¢, ¢5),
where ¢;, ¢y € [0, |s| + 1] and ¢; < ¢,.
It returns a set of code actions. A code action is a label and a set of text edits.

The deepest node in the parse tree of s that fully contains r is the covering element of r.
Qlue-Is provides six diagnostics:

6.4.1 Add Variable to Result

The add to result code action is returned if the covering element of 7 has type var.
The text edits append the variable to the SelectClause. Thus adding the variable to the result.

1 SELECT = WHERE { 1 SELECT 7o WHERE {
2 s 7p 78 2 s 7p 7o
3 ¥ More Actions... 3 }
4 4
; ;
] o]
6 Add Lang-Filter 6
7 Add Filter 7
Figure 66: SPARQL query with SELECT * as Figure 67: SPARQL query after the code action,
SelectClause and the code action menu. with SELECT ?o0 as SelectClause.

The implementation for this code action uses the parse tree to find the next SelectQuery or SubSelect
node in the ancestors of the covered element. If the SelectClause of this node does not already contain
a variable that matches the covered element, a text edit is created that adds the variable to the end of
the SelectClause.

6.4.2 Add Aggregate to Result

The add aggregate to result code action is also returned if the covering element of r has type var.
If the SelectQuery or SubSelect that contains the node has a GroupClause, this code action adds an
aggregate to the SelectClause.

1 SELECT 70 WHERE { 1 SELECT 70 (AVG(?7s) as 7avg_s) WHERE {
2 I8 p ?0 2 Is 7p 7o
3 ¥ More Actions... 3 }
- I) 4 GROUP BY 7o
~ Add Lang-Filter N
]])
6 Add Filter 6
7 Aggregate Count 7
8 Aggregate Sum 8
g Aggragate Min o]
10 Aggregate Max 16
12 Aggregate Sample 12
13 13
Aggregate Group Concat
14 14

Figure 68: SPARQL query with GroupClause and Figure 69: SPARQL query after the code action,
no aggregate in the SelectClause. with new aggregate in the SelectClause

6 CAPABILITIES 45

The implementation also finds the next SelectQuery or SubSelect ancestor and creates a text edit that
adds the aggregate functions to the end of the SelectClause.
6.4.3 Transform Into Sub-Select

The transform into sub-select code action transforms a SelectQuery into a SubSelect.
The covering element of needs to be a SelectQuery or SubSelect.

1 SELECT 7s (42 as 7x) WHERE { 1 SELECT 7s 7x WHERE {

2 More Actions... 2 {

3 | — 3 SELECT ?s (42 as 7x) WHERE {

- 4 s 7p 7o

5 5 }

6 6 }

T T 1}

Figure 70: SPARQL query with ?s as (42 as ?x) Figure 71: SPARQL query after the code action,
in the SelectClause. with new aggregate in the SelectClause.

The implementation is straight forward. The text range of the SelectQuery or SubSelect is contained
in the parse tree. There are 2 text edits before and after this range that wrap the range in another
SelectQuery. My implementation also indents the nested SubSelect properly. It also copies the selected
variables of the inner SubSelect into the outer, as shown in Figure 71.

6.4.4 Add Filter

The add filter code action is triggered if the covering element of r is a Var node. If the variable is part
of a triple, this code action adds a filter statement to the end of that triple.

1 SELECT = WHERE [{ 1 SELECT * WHERE {

2 s Ip 7@ 2 75 7p 7o FILTER (70)
3 30}

4 4

More Actions...
Add to result
Add Lang-Filter

Add Filter

Figure 72: SPARQL query with no Filter. Figure 73: SPARQL query after the code action,
with a Filter for the variable ?o.

o=l v un

6.4.5 Add Language Filter

The add language filter code action is very similar to the add filter code action. The only difference is
that it pre-fills the filter with a constraint on the language.

6 CAPABILITIES 46

1 SELECT * WHERE { 1 SELECT * WHERE {
2 s Ip Q@ 2 75 7p 7o FILTER (LANG(?0) =)
3 ¥ More Actlons... 3 }
4 4
_ Add to result _
2 2
: :
7 Add Filter 7
Figure 74: SPARQL query with no Filter. Figure 75: SPARQL query after the code action,

with a Filter on the language of ?o.

6.4.6 Compress IRI

The compress IRI code action is returned if the covering element of r is a IRIREF node. It transforms
raw IRIREFs into PrefixedNames.

1 SELECT * WHERE {
2 ?7s <http://www.w3.0rg/2000/01/rdf-schematlabel> 7
3

}

PREFIX rdfs: <http://
SELECT * WHERE {

?7s rdfs:label ?label
}

v.w3.0rg/2000/01/rdf-schema#>

Quick Fix
Shorten URI
Shorten URI

More Actions...
Shorten all URI's

Figure 76: SPARQL query with a raw IRIREF. Figure 77: SPARQL query after the code action,
with the IRIREF replaced with a PrefixedName

This code action is tied to the uncompressed iri diagnostics, discussed in Section 6.3.3.
When this code action is applied, the diagnostic is resolved. Such a code action is called quickfix.

6.4.7 Declare Prefix

The declare prefix code action is the quickfix for the undeclared prefix diagnostic, discussed in
Section 6.3.2. If an undeclared prefix is used, and the language server knows this prefix, this code action
adds the prefix declaration.

SELECT * WHERE {
?s pdfs:label 7label

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE {

?s rdfs:label ?label
}

}

Quick Fix

(SN IV S I
(SN -SRIV S

® Declare prefix "rdfs”

Figure 78: SPARQL query with an undeclared Figure 79: SPARQL query after the code action,
prefix. with the missing prefix declaration
6.4.8 Contract Triples

The contract triples code action is a quickfix for the same subject diagnostic, discussed in Section 6.3.6.
It contracts triples with the same subject.

6 CAPABILITIES 47

1 SELECT * WHERE { 1 SELECT * WHERE {
2 78 ?pl 70l 2 ?s ?pl 7ol ;

3 28.202.292 3 | 2p2 202 .
4 } Quick Fix 4 }

® contract triples with same sub...

More Actlons...
Add to result
Add Lang-Filter
Add Filter

Figure 80: SPARQL query with an undeclared Figure 81: SPARQL query after the code action,
prefix. with the missing prefix declaration.

6.5 Hover

The hover capability is triggered when the user hovers a lexeme. This capability returns text, to be
displayed in the editor. The text can be raw text, markdown or HTML

Qlue-Is provides hover information in two cases:
1. When hovering a keyword, like FILTER
2. when hovering an IRI, like wd:Q1

The first case is quite simple.
If there is documentation of the hovered keyword, this text is returned.

Currently only the keywords FILTER and PREFIX are supported.

1 SELECT * WHERE {

2 ?s 7p 7o FILTER (LANG(?0) = "en")

3 ¥
FILTER
The frILTER keyword is used to restrict the results by applying a boolean condition.
Example:

SELECT 7name WHERE {
?person foaf:name 7name .
?person foaf:age ?age .
FILTER (?age > 20)

}

Figure 82: SPARQL query with hover information on the keyword FILTER.

6 CAPABILITIES 48

T R S

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

The preFix keyword defines a namespace prefix to simplify the use of URIs in the query.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT Zname
WHERE {
?person foaf:name Zname .

}

Figure 83: SPARQL query with hover information on the keyword PREFIX.

The second case is more complex.
When a user hovers an IRI, the capability should display text that contains additional information on this
IRI. To obtain this additional information a SPARQL query is sent to the endpoint.

This query is configurable.

Example:

Given the query:

1 PREFIX rdfs: <http://ww.w3.0rg/2000/01/rdf-schema#>
2 PREFIX wd: <http://wwv.wikidata.org/entity/>

3 SELECT * WHERE {

4 rdfs:label ?label

5

Listing 6: SPARQL query with the lexeme “wd:Q2” hovered. wd:Q2 is the resource for the earth.

The default query to get hover information for an IRI is:

PREFIX wd: <http://ww.wikidata.org/entity/>
PREFIX rdfs: <http://ww.w3.0rg/2000/01/rdf-schema#>
SELECT ?qlue_ls_label WHERE {

rdfs:label ?qlue_ls_label FILTER(LANG(?qlue_ls_label) = "en")

Listing 7: SPARQL query to get hover information on the IRI wd: Q2.

The result of this query on the wikidata backend should be:

?qlue_Is label
Earth

This result is then returned as hover content, as shown in Figure 84.

7 THEORETICAL ANALYSIS 49
1 PREFIX rdfs: <http://www.w3.orq/2000/01/rdf-schema#>
2 PREFTY wd- <http://www.wikidata.org/entity/>

3 SELE; Earth 4epe f

4 wd:02 rdfs:label 7label

5 |

Figure 84: SPARQL query with hover information “Earth” on IRI wd:Q2.

7 Theoretical Analysis

In this section I discuss the time complexity of the presented algorithms.

7.1 Parsing Algorithm

When running the automatons presented in Section 5.5 each step does the following:

1. Compare the lookahead token to the outgoing edges of the current state.
2. Switch to the next state and update the lookahead.

The FIRST sets are precomputed. Checking if the lookahead token is in the FIRST set of a nonterminal
can be implemented with Hash-Sets. This lookup has a runtime complexity of O(1). Comparing a the
lookahead token to another token has trivially a time complexity of O(1).

Therefor each comparison takes some constant time 7. How many outgoing edges a state has at most

varies from grammar to grammar.

When building these automatons for the SPARQL grammar, the state with the most outgoing edges is in
the start state of the automaton for BuiltInCall with 55 edges.

So comparing the lookahead to all edges takes at most 55 - T'.

Switching to the next state and updating the lookahead if necessary is trivial and takes some constant

time B.

So any step requires at most 55 - 7' + B.

How many steps are done to reach the end of the input?

This also depends on the grammar.

Some grammars create automatons s.t. the parser can get stuck in a loop:

1 A > (Aa)?

Listing 8: Grammar with left-recursion.

Figure 85: Automaton for grammar in Listing 8.

For the input “a” the parser will use these edges, starting from g,:

A=>A=>A=> ..

The parser will never read from the input and never terminate.

8 EMPIRICAL ANALYSIS 50

To check that the created automatons for the SPARQL grammar does not create such loops, I looked for
the longest possible walk through the automatons starting from every possible state.

On this walk only edges are used that are not annotated with a token.
If the longest path is finite, the parser can’t get stuck in a loop.
This also gives us the maximum amount of steps the parser can do without reading from the input.

Turns out the longest possible walk without reading from the input starts in the automaton for ArglList,
shown in Figure 36, and is 15 steps long.

Here are the edges used on this walk:

¢ => Expression => ConditionalOrExpression => ConditionalAndExpression => ValueLogical =>
RelationalExpression => NumericExpression => AdditiveExpression => MultiplicativeExpression =>
UnaryExpression => PrimaryExpression => iriOrFunction => iri => PrefixedName

I conclude that for n input tokens the parser takes at most n - 15 steps until the input is read.
Therefore the total time parsing takes is at most: n - 15 - (55 - T' + B).

constant

The runtime complexity of the parsing algorithm is in O(n).

In the best case scenario the parser reads a token every step.
This would take at least n - T'. Therefore the runtime complexity is also in Q(n).

I conclude that the runtime complexity for parsing is in ©(n)

8 Empirical Analysis

The purpose of this section is to assess the usefulness of of Qlue-Is in comparison to existing tools.
I want to compare the feature completeness of each tool and the quality of the results.

I compared Qlue-Is to the following tools:

Semantic web language server, the language server presented in [7].
QLever-Ul, the SPARQL Ul for the QLever engine.

YASGUI, the SIB version of the YASGUI SPARQL editor.

sparql formatter, the formatter by sparkling.

bl o e

Table 3 shows the capabilities each tool provides. Note that this table shows nothing about the quality
of the provided capability.

Qlue-Is is the only tool that provides all of the 5 capabilities.

8 EMPIRICAL ANALYSIS 51

Completion v V| % v/ X
Formatting v X % v/ 2
Diagnostics v V| v X X
Code actions v X X X X
Hover /| X (4 X X

Table 3: This table shows the capabilities each tool provides.

8.1 Completion

To evaluate the quality of the completions capability of Qlue-Is I evaluate 2 dimensions:

1. Coverage (How many different completions are available)
2. Performance (How much time does a completion take)

8.1.1 Coverage

To evaluate coverage I put together a list of different completions categories.
This list is the first column of Table 4. The other columns show what tools provide this category of
completions. The completion categories are explained in Section 10.1

In Table 4 the first column lists all completion I tested, the next four columns show if the tools provide
such completions or not.

Table 4 clearly shows that Qlue-Is has the best coverage across different completions.

QLever-Ul is very close, just missing the Predicate - Path and Service Aware completions. This makes
sense since the completion capability of Qlue-Is takes the OLever-Ul implementation as blue print and
improves on it.

8 EMPIRICAL ANALYSIS

52

Qlue-Is QLever-Ul SIB - YASGUI semantic-web Isp

Variable
Keyword X
Valid Keyword X X
Snippet X X
Select Clause - Variable X X
Select Clause - Aggregate X X
Subject X X
Predicate - prefix
Predicate - IRI X X
Predicate - Path X X X

Object - prefix (for, classes)
Object - IRI or Literal X X
Context Aware X
Service Aware X X X

Table 4: Comparison of the completion capability across tools

8 EMPIRICAL ANALYSIS 53

Table 5 compares the Snippet completions Qlue-Is and QLever-Ul provide.
This table also shows that Qlue-Is provides more Snippet completions.

Qlue-Is QLever-Ul

Prologue - Prefix

N
N

Prologue - Base

Query - Select

Query - Construct

Query - Describe

Query - Ask

Solution Modifier

Update - Graph-management

Update - Delete

Update - Insert

UNION

OPTION

MINUS

FILTER

SEE< A< HE<HE<HE<HEI<HE<BE<BE<HE< < BE<BE<
X IR I8 ([X|IH | X([X (XN |X

BIND

InlineData V|)¢

Table 5: Comparison of the Snippet completions between Qlue-1s and QLever-UI

8.1.2 Performance

To evaluate the performance of the provided completions I group the completions into 3 categories.
e Offline completions (Completions that don’t use the SPARQL endpoint).
e Schema-driven online completions (Completions that use the schema described in the knowledge
graph).
e Data-driven online completions (Completions that use the data in the knowledge graph).

8 EMPIRICAL ANALYSIS 54

The time offline completions take is negligible.

Schema-driven completions usually fire one query in the beginning to retrieve the schema.

After this initial query the completions also basically instant.

Data-driven completions fire a query for each completion. These completions can take a lot of time. This
depends on the size of the knowledge graph and the speed of the triple store.

Qlue-Is and QLever-UI use data-driven completions for the Subject, Predicate and Object completions.
They tradeoff the time delay against quality of the results.

8.2 Formatting

There is currently no style guide or standard form for SPARQL, making an objective comparison difficult.
Since SPARQL queries are relatively small, the time formatting takes is negligibly small. So to compare
the formatting capability I tested each tool manually to find the key differences.

The QLever-UI uses Qlue-Is for formatting, so a comparison is not necessary.

YASGUI provides simplistic formatting. Their formatting algorithm only seems to remove newlines and
indents inside {} blocks. It does not remove whitespace inside a triple or insert newlines in the Prologue.
SPARQL queries formatted with this algorithm can in cases be very hard to read.

Listing 9 shows a query formatted with YASGUI. Listing 10 shows the same query formatted with Qlue-
Is.

1 PREFIX nsl: <a#> 1 PREFIX rdf: <a#>

2 PREFIX ns2: <b#> PREFIX rdfs: <c#> 2 PREFIX rdfs: <b#>

3 SELECT 3 PREFIX rdfs: <c#>

4 ?a ?b WHERE { 4 SELECT ?a ?b WHERE f{

5 ?a ?b ?d . 5 ?a ?b 7d .

6 ?a 6 ?a ?2d ?c

7 7d 7 }

8 ?c 8 LIMIT 10

9 } L .
10 LIMIT Listing 10: SPARQL query formatted with Qlue-Is.
11 10

Listing 9: SPARQL query formatted with YASGULI.

The formatting algorithm of spargling-formatter is more sophisticated.
I found 3 differences to my formatting algorithm.

The sparqling-formatter is not error resilient. If the query is not valid, the formatting algorithm will
throw an error.

Sometimes the algorithm inserts dots into the query. For example when the query in Listing 11 is
formatted, a dot is inserted in line 3, as shown in Listing 12.

9 ACKNOWLEDGEMENTS 55

1 SELECT =* 1 SELECT =
2 WHERE { 2 WHERE {
3 ?a ?b 2d 3 ?a ?b 2d .
4} 4}
Listing 11: SPARQL query before formatting. Listing 12: SPARQL query formatted with
sparqling-formatter.

Furthermore the algorithm throws errors for some valid queries, for example for the query shown in
Listing 13.

1 SELECT =*

2 WHERE {

3 FILTER

4 (?a in 1,2)
5 }

Listing 13: SPARQL query that causes errors in the spargling-formatter formatting algorithm.

To summarize, Qlue-1s has a more mature formatting capability than the sparqling-formatter or YASGUI.
While the spargling-formatter comes close, the fact that it throws errors for valid SPARQL queries makes
it unreliable.

8.3 Diagnostics

The only other tool that supports this capability is the Semantic web language server, but it only provides
one diagnostic.

Qlue-Is provides 6 diagnostics in total, including the diagnostic the Semantic web language server
provides. The diagnostics Qlue-Is provides are presented in detail in Section 6.3.

8.4 Code Actions

Here the comparison is easy, since the other tools don’t support this capability at all.
Qlue-Is provides the code actions presented in Section 6.4.

8.5 Hover
Only the QLever-UI and Qlue-Is provide a proper hover capability.

When hovering IRIs, they implement the same strategy: Fire a custom hover query against the configured
SPARQL endpoint and show the result.

But Qlue-Is also provides hover information when hovering keywords.

This makes the Hover capability of Qlue-Is slightly better.

9 Acknowledgements

I would like to thank Prof. Dr. Hannah Bast for the guidance during this project.
I would also like to thank my friends and family to their support.
A special thanks to Julian Mundhahs who always had an open ear.

10 APPENDIX 56

I would also like to mention the book “Compilers: Principles, Techniques, and Tools” by Alfred V. Aho,
Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman .

It was a great help in figuring out the parser.

I would also like to thank Alex Kladov for his blog post “Resilient LL Parsing Tutorial” which was of
great help in designing the parser.

10 Appendix

10.1 Completion categories

Here is a set of figures that show different completion categories. These categories are used in the
evaluation of the completion capability of Qlue-Is (Section 8.1).

SELECT * WHERE {

?s 7p 70 .

2w N
3

Figure 87: Variable completions suggest variables that are availible within the scope of the triggered

completion position. In the screenshot the completion is triggered in the WHERE CLAUSE of a SELECT

QUERY right after a ?. The only variables availible in the scope of this position are the variables in the
first triple ?s ?p ?o. There variables are also the suggested completions.

1 SELECT ~* WHERE {

2 7s 7 L] (COUNT(*) AS Zcount
3} @ 70

= ?p

[?s

Ensure unique results

== REDUCED

Figure 88: Keyword completions suggest SPARQOL keywords.
Valid Keyword completions also suggest SPARQL keywords but they have to be valid at the completion
trigger position. In the screenshot the completion is triggered in the SELECT CLAUSE in front of the star.
Here the two keywords DISTINCT and REDUCED are valid and also suggested. Therefor these are Valid
Keyword and Keyword completions.

10 APPENDIX

57

1 CONSTRUCT {
2 7s 7p 29|
3} WHERE {

] -
5

}

Figure 89: Snippet completions suggest a templates with predefined slots. The user can jump to these
slots. They are useful to suggest constructs that are often used. In the screenshot the template for a
CONSTRUCT query is suggested. This template contains two slots at the two triple blocks of the query.

1 SELECT ?|WHERE {
2 ?s ?7p 70
3} el p

s

Variable

Figure 90: Select Clause - Variable completions are triggered in the SELECT CLAUSE. These completions
suggest variables that are availible in the WHERE CLAUSE and not already selected.

ECRES IRl [| (AVG(70) AS ?avg_o)

1 SELECT WHERE {
2

3 3 1 (AVG(?p) AS
4 GROUP BY ?s[]

1(
(
L1¢
C(
[1 (MAX(?0) AS
[l (MAX(?p) AS
1 (MIN(?0) AS
1 (MIN(?p) AS
[1 (SAMPLE (?0)
[] (SAMPLE (7p)
[1(SUM(?0) AS

ravg_p)

COUNT(*) AS ?Zcount
COUNT(?0) AS Zcount_o)
COUNT(?p) AS ?count_p)

max_o)
max_p)
min_o)
min_p)
AS ?sample_o)
AS 7sample_p)
?sum_o)

Figure 91: Select Clause - Aggregate completions are triggered in the SELECT CLAUSE. These

completions suggest aggregate functions. A requirement is that the query has a GROUP BY solution

modifier. In the screenshot the completion is triggered in the SELECT CLAUSE and there is a GROUP BY
clause. The suggestions are aggregate bindings for all variables that are not in the GROUP BY clause.

10 APPENDIX 58

1
2
B

SELECT * WHERE {
Freiburg im
} & Freiburg im Breisgau wd

Figure 92: Subject completions are triggered at the first part of a triple. These completions use the search

term, described in Section 6.1.1, and suggest entities that match this search term. In the screenshot the
search term is "Freiburg im" and the suggestion is wd:Q2833. This entity has the label "Freiburg im

UohR W N

Breisgau" and therefor matches the search term.

PREFIX wdt: <http://www.wl

kidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>
SELECT * WHERE {

wd:Q183 wdt:
H & diplomatic relation wdt:P

e member of wdt:P463

e’ demonym wdt:P1549

e’ language used wdt:P2936

=F contains the administrative territorial ..
e” significant event wdt:P793

=" described by source wdt:P1343

= shares border with wdt:P47

e” public holiday wdt:P832

e Vikidia article ID wdt:P12800

= Fandom article ID wdt:P6262

Figure 93: Predicate - Prefix completions are triggered at the second part of a triple. A requirement for
this completion is that the search term, described in Section 6.1.1, is a prefix. These completions suggest

entities that start with this prefix. In the screenshot the completion is triggered at the second part of a

W

triple. The search term is wdt : and suggestions start with this prefix.

PREFIX wd: <http://www.wikidata.org/entity/>
SELECT * WHERE {

wd:Q183
} ? S rpreflLabel

& name schema:name

e name skos:altlLabel

= diplomatic relation p:P530
e diplomatic relation wdt:P530
e” member of p:P463

= member of wdt:P463

e” demonym p:P1549

= official name p:P1448

e” demonym wdt:P1549

= population p:P1082

= Human Development Index p:P1081

Figure 94: Predicate - IRI completions are triggered at the second part of a triple. The suggestions

are IRIs of predicates that exist in the knowledge-graph. In the screenshot the completion is triggered

after the subject wd:Q183, which describes Germany in wikidata. The suggestions are all predicates

of Germany.

10 APPENDIX 59

PREFIX wdt: <http:/

PREFIX wd: <http://

SELECT * WHERE {
wd:Q183 wdt:P31/wdt:P279%/

rikidata.org/prop/direct/>

wikidata.org/entity/>

AW N

b

& name skos:altlLabel

= properties for this type p:P1963
e properties for this type wdt:P1963
e” subclass of p:P279

e different from p:P1889

e different from wdt:P1889

e subclass of wdt:P279

e” has characteristic p:P1552

er has characteristic wdt:P1552

Figure 95: Predicate - Path completions are completions that are triggered behind a property paths.

Property paths describe paths in the knowledge graph, SPARQL support a syntax for this. Completions

at after a property paths suggest continuations of property paths. In the screen shot the completion is

triggered after the property path wdt:P31/wdt:P279*. The suggestions are all properties that validly
continue the property path.

1 PREFIX wdt: <http:/ rikidata.org/prop/direct/>

2 PREFIX wd: <http:// kidata.org/entity/>

3 SELECT * WHERE {

4 wd:Q183 wdt:P31 wd:

5
= wd:Q6256

[?instance_of

Figure 96: Object - Prefix completions are triggered at the third part of a triple. A requirement for this

completion is that the search term, described in Section 6.1.1, is a prefix. These completions suggest

entities that start with this prefix. In the screenshot the completion is triggered at the third part of a triple.
The search term is wd:. Both suggestions start with this prefix: wd:Q6256 and wd:Q3624078.

10 APPENDIX 60

PREFIX wdt: </
PREFIX wd: <ht
SELECT * WHERE {
wd:Q183 wdt:P31
} @ ?instance_of
= sovereign state wd:Q3624078

)

& country wd:(Q6256

1ta.org/prop/direct/>

a.org/entity/>

AW N

Figure 97: Object - IRI or Literal completions are completions triggered at the third part of a triple.

These completions use the search term, described in Section 6.1.1, and suggest IRIs or Literals that match

this search term. In this screenshot the completion is triggered at the third position of the incomplete

triple: wdt :Q183 wdt:P31. The IRIwdt :Q183 describes the entity of the country Germany in the wikidata

dataset. The IRI wdt: P31 is used as predicate to describe what the class of a entity is. Here country and
sovereign state are suggested as object.

1 PREFIX wdt: <ht

2 PREFIX rdfs: < T#>

3 SELECT * WHERE {

4 ?freiburg rdfs:label @en .

5 ?freiburg wdt:P17

6 }

1 7 freiburg_country
@ ?freiburg
= Germany wd:Q183

Figure 98: Context Aware completions are completions of subject, predicates of objects that use the

context of the completion to constrain the completion. In this screenshot the first triple states that ?

freiburg has rdfs:label "Freiburg im Breisgau"®en. This constraints the variable to entities

that have exactly this label. The completion is triggered at the object position of the triple ?freiburg

wdt:P17. The predicate wdt : P17 is used to declare the country of a entity. The context of the completion

is the first triple. A context aware completion only suggests Germany(wd:Q183), since every entity with
the label "Freiburg im Breisgau"qen is in Germany.

10 APPENDIX 61

W~ WU s WK~

PREFIX
PREFIX
PREFIX
SELECT

osmkey: <https://www.openstreetmap.org/wiki/Key:>
osmrel: <https://www.openstreetmap.org/relation/>
OSM_Planet: <https://qlever.cs.uni-freiburg.de/api/osm-planet>

* WHERE {

SERVICE OSM_Planet: {
osmrel:62768 osmkey:name

}
}

] ?name

=

& "Freiburg im Breisgau"

Figure 99: Service Aware completions are completions of subject, predicates or objects that use the

service endpoint to provide data-driven completions. In this screenshot the endpoint is not osm-planet.

But the query contains a SERVICE block with the osm-planet IRI. The completion suggest a object that

comes from the osm-planet knowledge-graph.

ABBREVIATIONS I

Abbreviations
API Application Programming Interface
HTML Hypertext Markup Language
RDF Resource Description Framework
LSP Language Server Protocol
SPARQL SPARQL Protocol and RDF Query Language
DSL Domain Specific Language
IRI Internationalized Resource Identifier
GUI Graphical user interface
EBNF Extendet Backus-Naur Form
References

[1]

(2]

[3]

[4]

[5]

[6]

[8]

S. Harris and A. Seaborne, “SPARQL 1.1 Query Language.” [Online]. Available: https://www.w3.
org/TR/sparqll1-query/

R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and Abstract Syntax.” [Online].
Available: https://www.w3.org/TR/rdf11-concepts/

Microsoft and R. Hat, “Language Server Protocol.” 2016. [Online]. Available: https://microsoft.
github.io/language-server-protocol/

H. Bast, J. Kalmbach, T. Klumpp, F. Kramer, and N. Schnelle, “Efficient and Effective SPARQL
Autocompletion on Very Large Knowledge Graphs,” in Proceedings of the 3 1st ACM International
Conference on Information & Knowledge Management, Atlanta, GA, USA, October 17-21, 2022,
M. A. Hasan and L. Xiong, Eds., ACM, 2022, pp. 2893-2902. doi: 10.1145/3511808.3557093.

N. Chomsky, “On certain formal properties of grammars,” Information and Control, vol. 2, no. 2,
pp. 137-167, 1959, doi: 10.1016/S0019-9958(59)90362-6.

K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, “Describing Linked Datasets with the
VoID Vocabulary.” [Online]. Available: https://www.w3.org/TR/void/

Vercruysse, Arthur and Rojas Melendez, Julian Andres and Colpaert, Pieter, “The semantic web
language server : enhancing the developer experience for semantic web practitioners,” in The
Semantic Web : 22nd European Semantic Web Conference, ESWC 2025, Proceedings, Part II,
Curry, Edward and Acosta, Maribel and Poveda-Villalon, Maria and van Erp, Marieke and Ojo,
Adegboyega and Hose, Katja and Shimizu, Cogan and Lisena, Pasquale, Ed., Portoroz, Slovenia:
Springer, 2025, pp. 210-225. [Online]. Available: http://doi.org/10.1007/978-3-031-94578-6 12

H. Chiba, “sparql-formatter.” [Online]. Available: https://github.com/sparqling/spargl-formatter

I. Nezis, “Qlue-Is a SPARQL language server.” [Online]. Available: https://ad-blog.cs.uni-freiburg.
de/post/qlue-ls-a-spargl-language-server/

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://doi.org/10.1145/3511808.3557093
https://doi.org/10.1016/S0019-9958(59)90362-6
https://www.w3.org/TR/void/
http://doi.org/10.1007/978-3-031-94578-6_12
https://github.com/sparqling/sparql-formatter
https://ad-blog.cs.uni-freiburg.de/post/qlue-ls-a-sparql-language-server/
https://ad-blog.cs.uni-freiburg.de/post/qlue-ls-a-sparql-language-server/

REFERENCES I

[10] L. Rietveld and R. Hoekstra, “YASGUI: Not Just Another SPARQL Client,” in The Semantic Web:
ESWC 2013 Satellite Events, P. Cimiano, M. Fernandez, V. Lopez, S. Schlobach, and J. Volker,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 78-86.

	Introduction
	Problem definition
	Completion
	Formatting
	Diagnostics
	Code Actions
	Hover

	Contributions

	Background
	Resource Description Framework
	SPARQL
	Language Server Protocol

	Related work
	Completion
	Data-driven completion
	Schema-driven completion
	Prefix completion

	Formatting
	Sparqling sparql-formatter
	YASGUI

	Diagnostics
	Undefined prefix

	Hover
	Data-driven hover

	Architecture
	Parser
	Grammar
	Grammar example
	Parse tree
	Leftmost derivation
	LL(k) property
	FIRST set

	Extended Backus-Naur Form
	FIRST sets for EBNF terms

	SPARQL grammar
	Lexical Analysis
	Parsing Algorithm
	Properties
	Top-down
	Left-to-Right
	Leftmost Derivation

	Operation Identification

	Capabilities
	Completion
	Syntactic Location Classification
	Compute Completions
	Start Completions
	Subject Completions
	Predicate & Object Completions

	Formatting
	Diagnostics
	Unused Prefix Declaration
	Undeclared Prefix
	Uncompressed IRI
	Ungrouped Select Variable
	Invalid Projection Variable
	Same Subject

	Code Actions
	Add Variable to Result
	Add Aggregate to Result
	Transform Into Sub-Select
	Add Filter
	Add Language Filter
	Compress IRI
	Declare Prefix
	Contract Triples

	Hover

	Theoretical Analysis
	Parsing Algorithm

	Empirical Analysis
	Completion
	Coverage
	Performance

	Formatting
	Diagnostics
	Code Actions
	Hover

	Acknowledgements
	Appendix
	Completion categories

