Evaluation of Investment Strategies for Cryptocurrencies
How to get Rich Quick with this one Weird Trick (?)

Johannes Herrmann

August 27, 2020
Table of Contents

1. The Problem: Investing in Bitcoin for Fun and Profit
2. The Solution: Deploy a Trading Bot using a popular Trading Strategy
3. The Evaluation: Are we rich yet?
The Problem: Investing in Bitcoin for Fun and Profit

The Solution: Deploy a Trading Bot using a popular Trading Strategy

The Evaluation: Are we rich yet?
Introduction

Problem: Given the price history of Bitcoin, decide whether to
- Buy
- Sell
- Do nothing
The Problem

Introduction

Problem: Given the price history of Bitcoin, decide whether to
- Buy
- Sell
- Do nothing

Objective: Maximum profit
Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

\[
ROI = \frac{\text{Net Profit}}{\text{Investment}}
\]

Example:
Assume we have 200$
Buy 2 BTC for 100$ each
BTC price increases by 10%
Sell 2 BTC for 110$ each
ROI:

\[
\frac{220 - 200}{200} = 0.1 = +10\%
\]
Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

$$\text{ROI} = \frac{\text{Net Profit}}{\text{Investment}}$$

Example:

- Assume we have 200$.
- Buy 2 BTC for 100$ each.
Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

\[
\text{ROI} = \frac{\text{Net Profit}}{\text{Investment}}
\]

Example:

- Assume we have 200$.
- Buy 2 BTC for 100$ each.
- BTC price increases by 10%.
Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

\[
\text{ROI} = \frac{\text{Net Profit}}{\text{Investment}}
\]

Example:

- Assume we have 200$
- Buy 2 BTC for 100$ \textit{each}
- BTC price increases by 10%
- Sell 2 BTC for 110$ \textit{each}
Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

\[
\text{ROI} = \frac{\text{Net Profit}}{\text{Investment}}
\]

Example:
- Assume we have 200$
- Buy 2 BTC for 100$ each
- BTC price increases by 10%
- Sell 2 BTC for 110$ each
- ROI: \(\frac{220 - 200}{200} = 0.1 = +10\%\)
Measuring Profit: The ROI

ROI Return on Investment:
Percentage of funds gained/lost

\[\text{ROI} = \frac{\text{Net Profit}}{\text{Investment}} \]

Example:

- Assume we have 200$
- Buy 2 BTC for 100$ each
- BTC price increases by 10%
- Sell 2 BTC for 110$ each
- ROI: \[\frac{220 - 200}{200} = 0.1 = +10\% \]
A Better Way To Calculate ROI

Example:

- Assume we have 200$
- Buy 2 BTC for 100$ each
- BTC price increases by 10%
- Sell 2 BTC for 110$ each
- ROI: \[\frac{220 - 200}{200} = 0.1 = +10\% \]
Example:

- Assume we have 200$
- Buy 2 BTC for 100$ each
- BTC price increases by 10%
- Sell 2 BTC for 110$ each
- ROI: \(\frac{220 - 200}{200} = 0.1 = +10\% \)

Another way to calculate:

- ROI: \(\frac{110}{100} - 1 = +10\% \)
Example:

- Assume we have 200$
- Buy 2 BTC for 100$ each
- BTC price increases by 10$
- Sell 2 BTC for 110$ each
- ROI: $\frac{220-200}{200} = 0.1 = +10\%$

Another way to calculate:

- ROI: $\frac{110}{100} - 1 = +10\%$
- This works because:

$$\text{ROI} = \frac{F_s - F_b}{F_b}, F_s = \frac{F_b}{p_b}p_s$$
A Better Way To Calculate ROI

Example:
- Assume we have 200$
- Buy 2 BTC for 100$ each
- BTC price increases by 10%
- Sell 2 BTC for 110$ each
- ROI: \(\frac{220 - 200}{200} = 0.1 = +10\% \)

Another way to calculate:
- ROI: \(\frac{110}{100} - 1 = +10\% \)
- This works because:

\[
\text{ROI} = \frac{F_s - F_b}{F_b}, \quad F_s = \frac{F_b}{p_b} p_s
\]

\[
\Rightarrow \text{ROI} = \frac{F_b p_s - F_b}{F_b} = \frac{p_s}{p_b} - 1
\]
Given:
- Current point in time t
- Prices $p = p_0, p_1, p_2, \ldots, p_t$
- Trades $T = \{(b_1, s_1), (b_2, s_2), \ldots\}$
Formal Problem Definition

Given:
- Current point in time t
- Prices $p = p_0, p_1, p_2, \ldots, p_t$
- Trades $T = \{(b_1, s_1), (b_2, s_2), \ldots\}$

The strategy which generated T is called optimal, if there exists no set T', such that:

\[
\left(\prod_{(b,s) \in T} \frac{p_s}{p_b} \right) - 1 < \left(\prod_{(b',s') \in T'} \frac{p_{s'}}{p_{b'}} \right) - 1
\]

(Without cost)
Formal Problem Definition

Given:
- Current point in time t
- Prices $p = p_0, p_1, p_2, \ldots, p_t$
- Trades $T = \{(b_1, s_1), (b_2, s_2), \ldots\}$

The strategy which generated T is called optimal, if there exists no set T', such that:

$$\left(\prod_{(b', s') \in T'} \frac{p_{s'} \cdot (1 - c)}{p_{b'} \cdot (1 + c)} \right) - 1 < \left(\prod_{(b, s) \in T} \frac{p_s \cdot (1 - c)}{p_b \cdot (1 + c)} \right) - 1$$

(With cost)
Formal Problem Definition

Given:

- Current point in time \(t \)
- Prices \(p = p_0, p_1, p_2, \ldots, p_t \)
- Trades \(T = \{(b_1, s_1), (b_2, s_2), \ldots\} \)

The strategy which generated \(T \) is called optimal, if there exists no set \(T' \), such that:

\[
\left(\prod_{(b,s) \in T} \frac{ps \cdot (1-c)}{pb \cdot (1+c)} \right) - 1 < \left(\prod_{(b',s') \in T'} \frac{ps' \cdot (1-c)}{pb' \cdot (1+c)} \right) - 1
\]

(With cost)

Why the brackets?
The Problem

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
The Problem

The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last
The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last
- Set of trades $T = \{(0, t)\}$

ROI: \[p_t = p_0 - 1 \]
The Baseline: HODL

- The Buy and Hold strategy (a.k.a. HODLing)
- Arguably one of the most common strategies
- Buy at the first (possible) point in time and sell at the last
- Set of trades $T = \{(0, t)\}$
- ROI: $\frac{p_t}{p_0} - 1$
The Baseline: HODL

The Buy and Hold strategy (a.k.a. HODLing)
Arguably one of the most common strategies
Buy at the first (possible) point in time and sell at the last
Set of trades \(T = \{(0, t)\} \)
ROI: \(\frac{p_t}{p_0} - 1 \)

Can we do better?
Table of Contents

1. The Problem: Investing in Bitcoin for Fun and Profit

2. The Solution: Deploy a Trading Bot using a popular Trading Strategy

3. The Evaluation: Are we rich yet?
The Basic Idea

- Deploy a bot that can buy/sell when signal is given
- The signal is produced by another popular strategy:

 The SMAC
The SMA: Simple Moving Average

- For each data point, calculate the average of last n data points
The SMA: Simple Moving Average

- For each data point, calculate the average of last n data points

Figure: Black line: Price over Time, Blue Line: SMA with a window of 10
The SMA

Formula for SMA s_t with window n:

$$s_t = \frac{1}{n} \cdot \sum_{i=0}^{n-1} p_{t-i}$$
The SMAC Strategy

SMAC Simple Moving Average Crossover

- For each data point, calculate two SMAs with different windows
- If the difference between the SMAs changes sign, buy/sell
The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10
The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10
The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10
The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10
The SMAC Strategy: Example

Figure: Red SMA window: 6, Blue SMA window: 10
The SMAC Strategy

- Let the window values be m, n with $m < n$
- Fast SMA: $f_t = \frac{1}{m} \cdot \sum_{i=0}^{m-1} p_{t-i}$
- Slow SMA: $s_t = \frac{1}{n} \cdot \sum_{i=0}^{n-1} p_{t-i}$
- Difference: $d_t = f_t - s_t$
- Strategy:

\[
\begin{align*}
 d_{t-1} < 0 \text{ and } d_t \geq 0 & \Rightarrow \text{Buy} \\
 d_{t-1} > 0 \text{ and } d_t \leq 0 & \Rightarrow \text{Sell}
\end{align*}
\]
Table of Contents

1. The Problem: Investing in Bitcoin for Fun and Profit

2. The Solution: Deploy a Trading Bot using a popular Trading Strategy

3. The Evaluation: Are we rich yet?
Theory: An Optimal Model

- Assume price decreases linearly
 \[p_t = p_0 - t \cdot k \]

Figure: \(k = 5 \), Red SMA window: 2, Blue SMA window: 4
Assume price decreases linearly

\[p_t = p_0 - t \cdot k \]

Buy signal is only triggered by a change

\[\geq k \left(\frac{n \cdot m}{2} - 1 \right) \]

Figure: \(k = 5 \), Red SMA window: 2, Blue SMA window: 4
The Evaluation

Theory: An Optimal Model

- Assume price decreases linearly
 \[p_t = p_0 - t \cdot k \]
- Buy signal is only triggered by a change
 \[\geq k \left(\frac{n \cdot m}{2} - 1 \right) \]

Figure: \(k = 5 \), Red SMA window: 2, Blue SMA window: 4
We can trigger a sell signal in a similar fashion.

Figure: $k = 5$, Red SMA window: 2, Blue SMA window: 4
We can trigger a sell signal in a similar fashion. Here: change $\leq -k\left(\frac{n \cdot m}{2} - 1\right)$.
The Evaluation

Theory: An Optimal Model

And so on...

Figure: $k = 5$, Red SMA window: 2, Blue SMA window: 4
Bitcoins Next Top Model?

- $p_0 \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_0}{p_0 - k} - 1$
- Length: $n \cdot m + 2$
The Evaluation

Bitcoins Next Top Model?

- \(p_0 \geq \frac{n \cdot m}{2} \cdot k \)
- ROI: \(\frac{p_0}{p_0 - k} - 1 \)
- Length: \(n \cdot m + 2 \)
- For \(k = 5, m = 2, n = 4 \):
 - \(p_0 = 50 \geq 20 \)

Figure: \(k = 5, m = 2, n = 4 \)
Bitcoins Next Top Model?

- $p_0 \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_0}{p_0 - k} - 1$
- Length: $n \cdot m + 2$

For $k = 5$, $m = 2$, $n = 4$:
- $p_0 = 50 \geq 20$
- ROI: $\frac{50}{50 - 5} - 1 = +11.1111\%$

Figure: $k = 5$, $m = 2$, $n = 4$
The Evaluation

Bitcoins Next Top Model?

- $p_0 \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_0}{p_0 - k} - 1$
- Length: $n \cdot m + 2$

For $k = 5, m = 2, n = 4$:

- $p_0 = 50 \geq 20$
- ROI: $\frac{50}{50 - 5} - 1 = +11.1111\%$
- Length: $2 \cdot 4 + 2 = 10$

Seems reasonable

Figure: $k = 5, m = 2, n = 4$
Bitcoins Next Top Model?

- $p_0 \geq \frac{n \cdot m}{2} \cdot k$
- ROI: $\frac{p_0}{p_0 - k} - 1$
- Length: $n \cdot m + 2$

For a realistic setting:
- $k = 5$, $m = 50$, $n = 100$:
- $p_0 \geq 12500$
The Evaluation

Bitcoins Next Top Model?

- \(p_0 \geq \frac{n \cdot m}{2} \cdot k \)
- ROI: \(\frac{p_0}{p_0 - k} - 1 \)
- Length: \(n \cdot m + 2 \)

For a realistic setting:
- \(k = 5, m = 50, n = 100: \)
- \(p_0 \geq 12500 \)
- ROI:
 \[
 \frac{12500}{12500 - 5} - 1 = +0.04\%
 \]

![Graph](image.png)

Figure: k = 5, m = 50, n = 100
The Evaluation

Bitcoins Next Top Model?

- \(p_0 \geq \frac{n \cdot m}{2} \cdot k \)
- ROI: \(\frac{p_0}{p_0 - k} - 1 \)
- Length: \(n \cdot m + 2 \)

For a realistic setting:
- \(k = 5, m = 50, n = 100: \)
- \(p_0 \geq 12500 \)
- ROI: \(\frac{12500}{12500 - 5} - 1 = +0.04\% \)
- Length: \(50 \cdot 100 + 2 = 5002 \)

Figure: \(k = 5, m = 50, n = 100 \)
The Evaluation

Bitcoins Next Top Model?

- \(p_0 \geq \frac{n \cdot m}{2} \cdot k \)
- ROI: \(\frac{p_0}{p_0 - k} - 1 \)
- Length: \(n \cdot m + 2 \)

For a realistic setting:
- \(k = 5, m = 50, n = 100: \)
- \(p_0 \geq 12500 \)
- ROI: \(\frac{12500}{12500 - 5} - 1 = +0.04\% \)
- Length:
 - \(50 \cdot 100 + 2 = 5002 \)
- Does not seem reasonable

Figure: \(k = 5, m = 50, n = 100 \)

Johannes Herrmann

August 27, 2020 18 / 23
Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period \geq 3 months
Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period \geq 3 months
- Which will yield a greater ROI:
Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period \geq 3 months
- Which will yield a greater ROI:
- HODLing or using the SMAC?
Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period \geq 3 months
- Which will yield a greater ROI:
 - HODLing or using the SMAC?
- And if it is the SMAC: For what window setting?
Empirical Test: The Setting

- Assume we want to invest in some asset (like BTC)
- Time period \(\geq 3 \) months
- Which will yield a greater ROI:
 - HODLing or using the SMAC?
- And if it is the SMAC: For what window setting?

Optional: Formal definition of the binomial test setting
SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- **44850** possible settings (Proof)
SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- 44850 possible settings (Proof)
- Window sizes recommended by “experts”:
- 10, 20, 50, 100, 200 (10 different settings in total)
SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- **44850** possible settings (Proof)
- Window sizes recommended by “experts”:
 - 10, 20, 50, 100, 200 (10 different settings in total)
- Settings used by R+V Insurance (Volksbank):
 - 38, 200
SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
- **44850** possible settings *(Proof)*
- Window sizes recommended by “experts”:
 - 10, 20, 50, 100, 200 (10 different settings in total)
- Settings used by R+V Insurance (Volksbank):
 - 38, 200
- Total number of recommended settings:
 - **11**
SMAC: The Strategy Settings

- If we consider window sizes up to 300 reasonable:
 - **44850** possible settings (Proof)
- Window sizes recommended by “experts”:
 - 10, 20, 50, 100, 200 (10 different settings in total)
- Settings used by R+V Insurance (Volksbank):
 - 38, 200
- Total number of recommended settings:
 - **11**
- What gives a higher chance of success:
 Choosing a recommended setting or one at random?
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0</td>
<td>0.68% (307)</td>
</tr>
<tr>
<td>Microsoft</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euro (in USD)</td>
<td>18.18% (2)</td>
<td>20.43% (9165)</td>
</tr>
</tbody>
</table>
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0</td>
<td>0.68% (307)</td>
</tr>
<tr>
<td>Microsoft</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euro (in USD)</td>
<td>18.18% (2)</td>
<td>20.43% (9165)</td>
</tr>
</tbody>
</table>
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
</tbody>
</table>

The recommended settings do not give a higher chance for profit!
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0</td>
<td>0.68% (307)</td>
</tr>
</tbody>
</table>

The recommended settings do not give a higher chance for profit!
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0</td>
<td>0.68% (307)</td>
</tr>
<tr>
<td>Microsoft</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0</td>
<td>0.68% (307)</td>
</tr>
<tr>
<td>Microsoft</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euro (in USD)</td>
<td>18.18% (2)</td>
<td>20.43% (9165)</td>
</tr>
</tbody>
</table>
Test Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recommended settings (11)</th>
<th>All settings (44850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitcoin (daily)</td>
<td>0</td>
<td>0.033% (15)</td>
</tr>
<tr>
<td>Bitcoin (4-hourly)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethereum</td>
<td>45.45% (5)</td>
<td>27.77% (12454)</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0</td>
<td>0.68% (307)</td>
</tr>
<tr>
<td>Microsoft</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euro (in USD)</td>
<td>18.18% (2)</td>
<td>20.43% (9165)</td>
</tr>
</tbody>
</table>

The recommended settings do not give a higher chance for profit!
Conclusion

- Theoretical model provides limited insights
Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
The Evaluation

Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage
Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage
- An algorithm **might** be able to find the profitable settings
Theoretical model provides limited insights
Empirical evaluation shows that there are very few good settings
Recommended settings do not provide an advantage
An algorithm **might** be able to find the profitable settings
Most other day trading strategies lack a mathematical justification
Conclusion

- Theoretical model provides limited insights
- Empirical evaluation shows that there are very few good settings
- Recommended settings do not provide an advantage
- An algorithm **might** be able to find the profitable settings
- Most other day trading strategies lack a mathematical justification

Day trading strategies are basically astrology for Millennials
Thank you!
Cost

- How do cryptocurrency exchanges earn money?
Cost

- How do cryptocurrency exchanges earn money?
- With the spread
Cost

- How do cryptocurrency exchanges earn money?
- With the **spread**
- **Spread**: Difference between buying and selling price
Cost

- How do cryptocurrency exchanges earn money?
- With the **spread**
- **Spread**: Difference between buying and selling price
- Example, where spread is 2%:
Cost

- How do cryptocurrency exchanges earn money?
- With the **spread**
- **Spread**: Difference between buying and selling price
- Example, where spread is 2%:
- “Regular” BTC price is 100$
Cost

- How do cryptocurrency exchanges earn money?
- With the **spread**
- **Spread**: Difference between buying and selling price
- Example, where spread is 2%:
 - “Regular” BTC price is 100$
 - Exchange will sell BTC for 101$
 - Exchange will buy BTC for 99$
How do cryptocurrency exchanges earn money?

With the **spread**

Spread: Difference between buying and selling price

Example, where spread is 2%:

“Regular” BTC price is 100$

Exchange will sell BTC for 101$

Exchange will buy BTC for 99$

Note: This is more complex in a real setting

(Based on price movement, amount of customers, trading volume, etc.)
Compounded ROI

- For $T = \{(b_1, s_1), \ldots, (b_n, s_n)\}$
Compounded ROI

- For $T = \{(b_1, s_1), \ldots, (b_n, s_n)\}$
- $\text{ROI} = \frac{F_{s_n} - F_{b_1}}{F_{b_1}}$
Compounded ROI

- For \(T = \{(b_1, s_1), \ldots, (b_n, s_n)\} \)
- \(\text{ROI} = \frac{F_{s_n} - F_{b_1}}{F_{b_1}} \)
- Remember: \(F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{b_i} \)
Compounded ROI

- For \(T = \{ (b_1, s_1), \ldots, (b_n, s_n) \} \)
- \(\text{ROI} = \frac{F_{s_n} - F_{b_1}}{F_{b_1}} \)
- Remember: \(F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{b_i} \)
- If we do not change the funds in between trades:
 - \(F_{b_i} = F_{s_{i-1}} \)
Compounded ROI

For $T = \{(b_1, s_1), \ldots, (b_n, s_n)\}$

ROI $= \frac{F_{s_n} - F_{b_1}}{F_{b_1}}$

Remember: $F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{b_i}$

If we do not change the funds in between trades:

$F_{b_i} = F_{s_{i-1}}$

$\Rightarrow F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{s_{i-1}}$
Compounded ROI

For $T = \{(b_1, s_1), \ldots, (b_n, s_n)\}$

$\text{ROI} = \frac{F_{sn} - F_{b1}}{F_{b1}}$

Remember: $F_{si} = \frac{p_{si}}{p_{bi}} F_{bi}$

If we do not change the funds in between trades:

$F_{bi} = F_{si-1}$

$\Rightarrow F_{si} = \frac{p_{si}}{p_{bi}} F_{si-1}$

Solving the recursion:

$F_{sn} = \left(\prod_{i=1}^{n} \frac{p_{si}}{p_{bi}}\right) \cdot F_{b1}$
Compounded ROI

- For $T = \{(b_1, s_1), \ldots, (b_n, s_n)\}$
- $\text{ROI} = \frac{F_{s_n} - F_{b_1}}{F_{b_1}}$
- Remember: $F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{b_i}$
- If we do not change the funds in between trades:
 - $F_{b_i} = F_{s_{i-1}}$
 - $\Rightarrow F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{s_{i-1}}$
- Solving the recursion:
 - $F_{s_n} = \left(\prod_{i=1}^{n} \frac{p_{s_i}}{p_{b_i}} \right) \cdot F_{b_1}$
 - $\Rightarrow \text{ROI} = \left(F_{b_1} \cdot \prod_{i=1}^{n} \frac{p_{s_i}}{p_{b_i}} - F_{b_1} \right) \cdot \frac{1}{F_{b_1}}$
Compounded ROI

- For $T = \{(b_1, s_1), \ldots, (b_n, s_n)\}$
- $\text{ROI} = \frac{F_{s_n} - F_{b_1}}{F_{b_1}}$
- Remember: $F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{b_i}$
- If we do not change the funds in between trades:
 - $F_{b_i} = F_{s_{i-1}}$
 - $\Rightarrow F_{s_i} = \frac{p_{s_i}}{p_{b_i}} F_{s_{i-1}}$
- Solving the recursion:
 - $F_{s_n} = \left(\prod_{i=1}^{n} \frac{p_{s_i}}{p_{b_i}}\right) \cdot F_{b_1}$
 - $\Rightarrow \text{ROI} = \left(F_{b_1} \cdot \prod_{i=1}^{n} \frac{p_{s_i}}{p_{b_i}} - F_{b_1}\right) \cdot \frac{1}{F_{b_1}}$
 - $= \left(\prod_{(b,s) \in T} \frac{p_s}{p_b}\right) - 1$
Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
 - (4, 3), (4, 2), (4, 1)
Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
 - (4, 3), (4, 2), (4, 1)
- For a slow window of \(i \), there are \(i - 1 \) possible settings
Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
 - (4, 3), (4, 2), (4, 1)
- For a slow window of i, there are $i - 1$ possible settings
- Total number of settings, up to a slow window of n:
 \[
 \frac{n(n-1)}{2}
 \]
Number of SMAC strategies

- Example: For slow window of 4, there are 3 possible settings
 - (4, 3), (4, 2), (4, 1)
- For a slow window of i, there are $i - 1$ possible settings
- Total number of settings, up to a slow window of n:
 $$\sum_{i=2}^{n} i - 1 = \sum_{i=1}^{n-1} i = \frac{n(n - 1)}{2}$$
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_0 : \theta \in \left[0, \frac{1}{2}\right]$, $H_1 : \theta \in \left(\frac{1}{2}, 1\right]$
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most \(\frac{1}{2} \)
- \(H_0 : \theta \in \left[0, \frac{1}{2} \right], \quad H_1 : \theta \in \left(\frac{1}{2}, 1 \right) \)
- Each SMAC setting is tested on 100 random samples
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_0 : \theta \in \left[0, \frac{1}{2}\right]$, $H_1 : \theta \in \left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha = 0.01$:
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_0 : \theta \in \left[0, \frac{1}{2}\right], \ H_1 : \theta \in \left(\frac{1}{2}, 1\right)$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha = 0.01$:
- We reject H_0, if SMAC succeeds in more than 62 out of 100 trials
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$
- $H_0 : \theta \in \left[0, \frac{1}{2}\right]$, $H_1 : \theta \in \left(\frac{1}{2}, 1\right]$
- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha = 0.01$:
 - We reject H_0, if SMAC succeeds in more than 62 out of 100 trials
 - $X \sim B(100, 0.5)$, $\mathbb{P}(X \leq 62) = 0.994$
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$

 \[H_0 : \theta \in \left[0, \frac{1}{2}\right], \quad H_1 : \theta \in \left(\frac{1}{2}, 1\right) \]

- Each SMAC setting is tested on 100 random samples

- For a significance level $\alpha = 0.01$:
 - We reject H_0, if SMAC succeeds in more than 62 out of 100 trials
 - $X \sim B(100, 0.5), \quad P(X \leq 62) = 0.994$
 - Assume we commit a type II error, if $\theta \geq 0.7$
 - $Y \sim B(100, 0.7), \quad P(Y \leq 62) = 0.053$
Binomial Test

- Null hypothesis: SMAC has a greater ROI than the BnH with probability at most $\frac{1}{2}$

 $H_0 : \theta \in [0, \frac{1}{2}], \ H_1 : \theta \in (\frac{1}{2}, 1]$

- Each SMAC setting is tested on 100 random samples
- For a significance level $\alpha = 0.01$:
 - We reject H_0, if SMAC succeeds in more than 62 out of 100 trials

 $X \sim B(100, 0.5), \ P(X \leq 62) = 0.994$

 Assume we commit a type II error, if $\theta \geq 0.7$

 $Y \sim B(100, 0.7), \ P(Y \leq 62) = 0.053$

 Then we get type II error probability $\beta = 0.053$

 And power $(1 - \beta) = 0.947$
Bitcoin Price Data
Microsoft Price Data
EUR/USD Price Data