
Undergraduate Thesis

pdf2gtfs: Timetable Extraction from
PDF Files

Julius Heinzinger

Examiner: Prof. Dr. Hannah Bast
Advisers: Patrick Brosi

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair of Algorithms and Data Structures

July 14th, 2023

Writing Period

14. 04. 2023 – 14. 07. 2023

Examiner

Prof. Dr. Hannah Bast

Advisers

Patrick Brosi

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my Thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Place, Date Signature

I

Abstract

We present pdf2gtfs, which enables us to extract timetable data from PDF schedules

and export it in the machine-readable GTFS format. This format requires the

coordinates of the location of each stop. We use OpenStreetMap to search for

the location of a stop, using only the stops name and the other stops of a route.

We also introduce a new table extraction algorithm to pdf2gtfs that is row- and

column-independent, meaning that we can process timetables regardless of their

orientation. As further improvement to pdf2gtfs, we include additional information

from OpenStreetMap about stops, such as the internationally unique IFOPT, or

whether a stop is wheelchair-accessible. Finally, we create p2g-eval to evaluate the

GTFS feed generated by pdf2gtfs based on a ground truth. This is to quantify

the quality of the extracted information, and to help discover those parts that can

still be improved. We show that the new table extraction algorithm achieves more

accurate results, when compared to the previously used algorithm, and another,

state-of-the-art table extraction tool. We also find that the detected locations are, in

general, close to the true locations.

II

Zusammenfassung

Wir präsentieren pdf2gtfs, mit dem man die Fahrplaninformation aus PDF-Fahrplänen

extrahieren und in dem maschinenlesbaren Format GTFS exportieren kann. Dafür

brauchen wir die Koordinaten der Haltestellen. Wir nutzen OpenStreetMap, um

die Haltestellenkoordinaten nur anhand des Haltestellennamens und der anderen

Haltestellen einer Route zu finden. Wir stellen einen neuen Tabellenextraktionsalgo-

rithmus für pdf2gtfs vor. Dieser ist Spalten- und Zeilenunabhängig, was bedeutet, dass

wir in der Lage sind, Fahrpläne unabhängig von ihrer Orientierung zu extrahieren. Als

weitere Verbesserung für pdf2gtfs inkludieren wir zusätzliche Information von Open-

StreetMap über Haltestellen. Wie zum Beispiel die international eindeutige IFOPT

einer Haltestelle, oder ob eine Haltestelle barrierefrei ist. Außerdem erstellen wir das

Tool p2g-eval, mit dem wir die erkannten Positionen von Haltestellen, anhand der

wahren Daten, evaluieren können. Mithilfe dieser Evaluation, versuchen wir die Teile

von pdf2gtfs aufzudecken, welche Verbesserungspotenzial besitzen. Wir zeigen, dass

der neue Tabellenextraktionsalgorithmus verglichen mit dem alten Tabellenextrak-

tionsalgorithmus, sowie einem anderem, aktuellem Tabellenextraktrionstool, präzisere

Ergebnisse erziehlt. Ferner zeigen wir, dass sich die gefundenen Haltestellenpositionen

in der Regel nahe der wahren Position befinden.

III

Contents

1 Introduction 1

2 Related Work 4

2.1 Algorithmic Extraction of Data in Tables in PDF Documents 4

2.2 Camelot and Tabula-Java . 4

2.3 Solutions Based on Machine Learning 5

2.4 PDFTables . 5

3 Background 7

3.1 Bounding Box . 7

3.2 PDF . 8

3.3 Tables . 9

3.3.1 Caveats . 12

3.4 PDF Extraction . 13

3.4.1 Caveats . 15

3.5 GTFS . 15

3.6 OpenStreetMap . 18

3.7 Graph Search using Dijkstra’s Algorithm 20

4 Approach 23

4.1 Extraction Tool pdf2gtfs . 23

4.1.1 Old Table Extraction . 24

4.1.2 GTFS Creation . 27

4.1.3 Location Detection . 27

IV

4.1.4 Export . 32

4.2 New Table Extraction . 32

4.2.1 Data Structures . 33

4.2.2 Character Extraction . 34

4.2.3 Basic Type Inference . 35

4.2.4 Table Creation and Splitting 36

4.2.5 Table Expansion . 38

4.2.6 Advanced Type Detection . 39

4.2.7 Cleanup and TimeTable Creation 41

4.3 Evaluation Tool p2g-eval . 42

5 Experiments 44

5.1 Location Detection Evaluation . 44

5.1.1 Dataset Preparation . 44

5.1.2 Results . 46

5.2 Table Extraction Evaluation . 47

5.2.1 Dataset Preparation . 48

5.2.2 Configuration . 50

5.2.3 Evaluation Measures . 51

5.2.4 Results . 53

5.3 Performance . 56

6 Conclusion 59

7 Future work 61

7.1 Improvements for pdf2gtfs . 61

7.2 Improvements for p2g-eval . 63

8 Acknowledgments 64

Bibliography 65

V

List of Figures

1 A timetable from a PDF schedule of the tram ‘Linie 1’ of the VAG

Freiburg [1]. 1

2 The true celltypes of the cells in a table. The legend in the last two

row shows the cell type of the cells with the same color and number. 12

3 A timetable of the railway line ‘RB90’ of the RMV [2] 13

4 The hierarchical output of pdfminer.sixes’ layout analysis [3]. 14

5 An example of a directed weighted graph. 21

6 The possible celltypes of different cells in a table. The legend in the

last two rows shows the cell type of the cells with the same color and

number. 35

7 The possible celltypes of different cells in a table. The legend in the

last two rows shows the cell type of the cells with the same color and

number. 40

8 The number of detected and missing stops closer to the ground truth

than the specified distance. 47

9 An excerpt of the ‘ART 42’ route from the TTT dataset. 49

VI

List of Tables

1 Excerpts of the stops.txt, calendar.txt, and routes.txt of an

example GTFS feed. 16

2 Excerpts of the trips.txt and stop_times.txt of an example GTFS

feed. 17

3 The min, max, mean, and standard deviation for detected and missing

locations for all datasets. All distances in meters and rounded to the

nearest integer. 46

4 The precision recall and F1-score for the different datasets and table-

extraction methods . 53

5 The precision recall and F1-score for the different datasets and table-

extraction methods . 55

6 The mean and weighted (by table-count) mean of the precision recall

and F1-score for all datasets and table extraction methods 56

VII

List of Listings

1 An example-query for QLever using SPARQL. 19

2 We show how we create Fields from a line of characters. 25

3 A rough overview on how the location search works. 30

VIII

1 Introduction

There exists an abundance of schedule information in PDF timetables, like the one

shown in Figure 1. These timetables are made publicly available by their respective

transit agencies. However, the raw data contained within the tables, often is not.

Figure 1: A timetable from a PDF schedule of the tram ‘Linie 1’ of the VAG
Freiburg [1].

Due to the way a PDF is constructed, extraction of this information from the PDF

is not trivial. This is because text in a PDF is stored in text objects (Section 3.2).

Each text object contains the text, the font the text should be displayed in, as well

as the position at which the text should be displayed. For the position, PDFs use

a coordinate system with the bottom-left corner of the page as the origin. The

coordinate system uses points as the unit, where one point equals one seventy-second

of an inch. This way of storing text makes it easy to display in a compatible and

portable manner. However, it also makes it harder to extract it.

1

There does not exist a one-size-fits-all solution to easily extract tables from PDF

documents, at least not with equally good results. This is largely due to the different

formats of tables. Though the PDF standard allows it, most PDFs do not contain any

additional metadata about the structure of their tables. While there are solutions

that aim to provide PDF table extraction in general, specialized solutions can often

prove to be more accurate. Thus, we created pdf2gtfs, which can detect and extract

the schedule information contained in timetables [4]. The output of pdf2gtfs is a

GTFS feed, which is a machine-readable data format for schedule data.

We may understand the problem of table extraction as a classification problem. We

need to classify whether a word on a page of the PDF is part of a table (and also,

which one, if there are multiple tables). We define a table cell as a collection of words

within the table that are related to each other by their content, position, or both. We

can derive a cell type from the cells’ content, its absolute position, and its position

relative to other cells. In the case of pdf2gtfs, we need to classify the cell type of

the different table cells, as well. Otherwise, we would not be able to differentiate

between cells that contain a time and cells that contain a stop, for example.

The largest part of the timetable is the body, which contains cells of type ‘time’.

That is, cells that contain text that represents a time (e.g., ‘09:42’). These cells

are usually easiest to detect, because of the simple yet restrictive format of their

text. Hence, we create a table extraction algorithm that uses these cells to detect

the body of the timetable. We then incrementally add more cells to the timetable,

as long as the cells can be aligned to it. A previous table extraction algorithm in our

tool pdf2gtfs used only the vertical and horizontal position of the cells to detect the

timetables.

Before we export the data from the timetables using pdf2gtfs, we use the names of

the stops together with the information from the open map-service OpenStreetMap

(OSM) [5] to detect the location of each stop. We use QLever [6], a query engine

able to work on OpenStreetMaps’ dataset, to retrieve that information.

2

We compare our algorithm against a previous algorithm of pdf2gtfs, as well as another,

state-of-the-art table extraction method, namely PDFTables [8]. We may upload a

PDF to PDFTables, which will extract the tables from within the PDF and offer us

different file-formats, like .csv, to download the contained data. To compare the

table extraction methods, we create datasets for different public-transit agencies that

we use to evaluate the accuracy of the table extraction. We show that our algorithm

achieves higher accuracy on these datasets than the other solutions.

We also evaluate the location detection of pdf2gtfs. For this purpose, we created

p2g-eval [9]. It enables automatic evaluation of the stop locations of one GTFS feed

using another GTFS feed, given a mapping between the two feeds.

This thesis is structured as follows. In Chapter 2 we discuss previous work on the

problem of table extraction. Then, we introduce some of the terminology and tools

we use (Chapter 3). Next, we explain how pdf2gtfs and both its table extraction

algorithms work, as well as how we designed p2g-eval (Chapter 4). In Chapter 5 we

evaluate the location detection and table extraction of pdf2gtfs. We discuss these

results in Chapter 6. In the last chapter, Chapter 7, we illustrate some promising

ideas to improve pdf2gtfs in various ways, based on the evaluation results.

3

2 Related Work

In this chapter, we show some existing solutions and research results for the problem

of table extraction.

2.1 Algorithmic Extraction of Data in Tables in PDF

Documents

This Master’s thesis by Anssi Nurminen provides a method that aims to solve the

more general problem of table extraction [10]. It works by using the alignment

of text in rows and columns to detect the tables. They also use the vertical and

horizontal lines present in some tables, to improve the extraction accuracy. To use

these graphical elements, they convert each page into a gray-scale image and use

changes in the pixel brightness to detect these lines. They conclude, that their

algorithm performs “very well in defining table structure in correctly defined table

areas” [10].

2.2 Camelot and Tabula-Java

Both Camelot [11] and tabula-java [12] are open-source libraries that allow table

extraction from PDF documents. Tabula-java is, as the name implies, written in

Java, while Camelot is written in Python. Camelot is based on the work of Anssi

4

Nurminen (2.1) and aims to provide more adjustment possibilities to the user than

other solutions. Both Camelot and tabula-java support two modes. The first, called

‘stream’, uses the text position and the text alignment for the table detection, while

the other mode, called ‘lattice’, uses the horizontal and vertical lines. When we

tried tabula-java and Camelot on timetables, both had similar issues. When using

the lattice-mode, the main problem was that only some cells of the timetables were

completely enclosed by lines. Other times, the lines grouped several rows or columns

together. The stream-mode on the other hand, often did not properly split text of

different table cells. Camelot also provides the neat feature to display an image of

the bounding box of the different detected elements, like the text, lines, and table.

2.3 Solutions Based on Machine Learning

In recent years, more and more effort is spent to create and improve table extraction

tools that use machine learning. For example, the Master’s thesis of Muhammad

Moeez Malik [13] employs deep-learning based object-detectors, to detect the table

regions of solar-panel datasheets. Then, they provide the detected table coordinates

to the aforementioned tabula-java or Camelot, to extract the table. This seems to

yield good results for these types of tables.

2.4 PDFTables

There also exist (closed-source) web services, such as PDFTables that provide table

extraction from PDF documents, as well. Being proprietary, it is difficult to tell

how exactly their table extraction works. It does seem to work using an approach

like the one used by Camelot and tabula-java; at least, PDFTables makes similar

mistakes to these. Sadly, there is no way to fine-tune PDFTables. As noted, our

initial experiments suggest they seem to provide similar results to Camelot and

5

tabula-java. That, combined with its ease-of-use, were the deciding factors why we

use PDFTables for the evaluation.

6

3 Background

In this chapter, we introduce some of the terms we use. We begin by explaining in

Section 3.1 what a bounding box is. We briefly describe how the portable document

format (PDF) stores text and why table extraction is not trivial (Section 3.2). In

Section 3.3, we explain the building blocks of a table. The next section, Section 3.4,

is about the tools and terms we use when extracting the text of a PDF. Then, in

Section 3.5, we introduce the GTFS-format and show some examples. We also explain

how OpenStreetMap (OSM) stores its values and how to retrieve them (Section 3.6).

Finally, in Section 3.7 we explain what a directed, weighted graph is, and how we

can use Dijkstra’s algorithm to find a shortest path in that graph.

3.1 Bounding Box

We can use a bounding box (also known as bbox) to represent the space an object

occupies. For example, bounding has a different bounding box than box. To define

the bounding box of an object, we use its lowest and highest x- and y-coordinates.

We define these as x0 and x1 for the lowest and highest x-coordinate, respectively;

and y0 and y1 for the lowest and highest y-coordinate, respectively. Two bounding

boxes may overlap vertically or horizontally. In summary, a bounding box is a simple

way to define the position and size of an object.

7

3.2 PDF

Here we give a broad overview of the portable document format (PDF). We will

focus on specific, basic aspects and terminology necessary for understanding this

thesis. The full format is a lot more detailed and versatile.

We cannot extract the text of PDF as easily as we can display it. This is largely

because the PDF uses a layout-based system to store its content. There are many

different kinds of objects in a PDF document. However, only the following are

relevant to us. The text objects, which contain the text of the document; the vector

graphics, used for drawing shapes, often generated by some other program; and

images, usually used for photographs, though this also includes scans of text.

Each page of a PDF uses a coordinate system, with the bottom-left corner of the

page being the origin. The unit of measurement used in the coordinate system is

points, where one point equals one seventy-second of an inch.

The text in a PDF is not stored as plain text. The position of each letter on the page

is defined using its bounding box. The letter of the character, and its font properties

are stored as well. The font properties include the font family, font size in points,

and font effects (such as boldness, italicization, and color).

The coordinate system also makes it easy to draw vector-graphics. To draw a straight

line, we simply specify its start and end points in the coordinate system. Then, we

define the thickness and color of the line. The PDF viewer takes care of actually

drawing the character at the right position.

This way of defining objects makes it easy to always display a PDFs’ content the

same way, independently of the used operating system. At the same time, it makes

text extraction difficult, because the context of each character is lost. Only the

absolute position is stored, so we cannot trivially tell, which characters are next to

another. The same applies to word boundaries; a space is often only emulated, by a

8

greater distance between two characters. Therefore, it is difficult to decide whether

two characters belong to the same word. The bounding box is also defined in a way

that it contains just the character. As such, two different characters (e.g., ‘q’ and

‘W’) may have slight differences in their y-position, even if they are on the same line,

which further complicates the previously mentioned problems.

Another difficulty is to decide whether a character (or multiple characters) are

relevant, when only some of the PDFs content should be extracted. For instance,

when extracting a table we cannot easily decide which characters are part of the

table. In this case, the vertical and horizontal lines, as well as text alignment may

prove to be indicators for this boundary. Though the PDF specification offers some

ways to specify which text is part of a table, these are seldom used.

3.3 Tables

In this section, we define the terminology we use when referring to specific parts of a

timetable. For a more general introduction about tables, see the Master’s thesis of

Ansii Nurminen [10].

We define the characters in a similar manner as the text objects in Section 3.2. Each

character has a bounding box, a letter, and font properties. We use the following

four coordinates to define the bounding box: the left, x0; the right, x1; the top, y0;

and the bottom, y1. Note that, compared to the bounding box used in a PDF, we

use the upper-left corner as origin. This is only an implementation detail, because it

feels more intuitive to us. Further, if we talk about directions in this thesis, we mean

the four cardinal directions: north, east, south, and west. Similarly, an orientation

means either vertical or horizontal.

The basic building block of a table is the cell. A cell consists of zero or more characters.

If a cell has no characters, we call it an empty-cell. Each cell also has a row and

column. The row contains all cells that are vertically aligned. That is, every cell of a

9

row has the same (or very similar) y-coordinates. The column contains all cells that

are horizontally aligned, with each cell having equal or similar x0-coordinates. While

there do exist multi-column or multi-row cells, in the case of timetables they are

rarely used. Also, when we encountered timetables with multi-column or multi-row

cells, only one of the rows or columns contains non-empty cells. These multi-row

or multi-column cells can easily be merged into one, without changing the overall

structure of the timetable.

Every cell also has up to four neighbors. A cell is the horizontal neighbor of another

cell, if the cells are consecutive entries of the same row. Similarily, a cell is the vertical

neighbor of another cell, if the cells are consecutive entries of the same column. This

also means that the neighbor-relation is symmetric, i.e., if one cell is neighbor of

another cell the reverse is also true. If a cell is the first cell in a specific direction, it

has no neighbor in that direction. We do not consider the case of single-column or

single-row tables. Therefore, the cells in the corners only have two neighbors, while

the cells in the first and last row and column have three. Every other cell has four

neighbors; one in each direction.

Finally, each cell of a timetable has a cell type. We can use the cell type to describe

the meaning of a cells’ content. For instance, we can define a cell type ‘stop’ and call

a cell with this type a stop cell. We differentiate between 10 different normal cell

types. These cell types contain text of the table.

Time These cells contain the time of arrival and departure of the public

transit vehicle. For a single PDF, they all use the same format.

Time annotation These are rarely used, but sometimes there are annotations

directly adjacent to time cells.

Stop Cells of this type contain the names of the stops.

Stop annotation These cells have a text like ‘arr.’ or ‘dep.’, for example. They

indicate, whether the public transit vehicle arrives at or departs

from the stop, defined by an adjacent stop cell.

10

Days These cells tell us on which weekdays service occurs. They

indicate this either for the whole timetable, or for only some

entries.

Repeat identifier These are the cells that usually exist on both sides of a repeat

interval. At the same time, they can only be found between two

columns or rows of time cells. They contain the surrounding

text, like “every . . . min.”, where ‘. . . ’ is the interval.

Repeat interval These cells contain the interval(s) of the service repetition.

Route identifier These have a text like ‘Route’ or ‘Line’. They indicate that either

their row or column contains route annotations.

Route annotation These usually contain the (short) name of a route.

Entry identifier They have text like ‘Verkehrshinweis’ (= traffic info). They indi-

cate that either their row or column contains entry annotations.

Entry annotation These are usually single characters that indicate, for example,

that a route is not serviced on some days, like the 31st of

December.

There are 2 additional special types, namely Other and Empty. We use Empty

to denote table cells that do not contain and Other to denote all cells that are not

part of the table or that cannot be classified using the other types.

An example for stop cells are the cells with the green (3) box in Figure 2. Each stop

cell defines a stop and requires that either its row or column contain the times when

a public transit vehicle arrives at or departs from that stop. Similarly, the route

annotation (the red (2) box) can usually be found in the same row or column as

timecells, as well. It contains extra information (here, the short route name) about a

route. The first cell of the table, the route identifier, can be used to define that its

row or column contains route annotations. The cells with orange (4) box are time

cells, which contain the actual times. Also note the two empty cells between the

time cells. As seen in these examples, the cell type may depend on the contents of a

11

cell, or its neighbors. It may also change based on more distant rows or columns.

We can use the cell type when extracting the timetable, to narrow down the number

of possible cells (Section 4.2).

Route S1 S2 S3

Central 13:36 15:46

Station 13:38 14:33
Airport 13:42 14:42 16:00

1 2 2 2

3 4 5 4

3 4 4 5

3 4 4 4

1 2

3 4 5

Route
Identifier

Route
Annotation

Stop Time Empty

Figure 2: The true celltypes of the cells in a table. The legend in the last two row
shows the cell type of the cells with the same color and number.

3.3.1 Caveats

Some timetable formats use some special notation, as the ones we describe here. We

need to detect these, if possible at all, to ensure proper table extraction.

For example, the timetable in Figure 3 contains “connections”. That is, stops and

stop times that are not part of the route, but those of different, frequently used,

or otherwise important routes. In the figure, the first three stops are part of a

connection from ‘Frankfurt’ to ‘Limburg’. However, these are serviced by a different

public transport vehicle on a different route (‘G 20’).

12

Figure 3: A timetable of the railway line ‘RB90’ of the RMV [2]

Another special format, visible in the same figure, that is sometimes used by transit

agencies is what we call “split stop names”. These are the stops that start with a

hyphen (or in other cases, are indented). In the example, the stop S2 with text “-

ZOB Nord” is a split stop; it starts with a hyphen. The stop S1 above it with text

“Limburg” contains the city (here “Limburg”) that S2 exists in, as well. On the other

hand, S1 may have been a stop with multiple words as well, where we would have

found it more difficult to detect the correct city-name. For the location detection, it

is often better to include the city name.

These are just two examples, however. In reality, there exist numerous ways to convey

information in a timetable, which we can detect with varying levels of accuracy.

3.4 PDF Extraction

We use pdfminer.six [14] to extract the individual characters from the PDF. In

the following, we will (briefly) explain how pdfminer.six works, as is written in its

documentation [3]. In Subsection 3.4.1 we show some caveats regarding the use of

pdfminer.six.

13

Figure 4: The hierarchical output of pdfminer.sixes’ layout analysis [3].

In Figure 4 the different data structures are shown that pdfminer.six uses. Some of

these represent a PDF object, while others are (more abstract) helpers. For us, only

the LTTextLine, LTChar and LTAnno (not shown in the figure) are of importance.

The LTTextLine contains LTChars that are on the same line, and LTAnnos. Two

LTChars are on the same line, if their x- and y-distance is less than some values. The

specific values depend on the size of the object, as well as the line_overlap and

char_margin parameters of pdfminer.six. Each LTChar contains a single character, its

bounding box, and its font, among other things; it is essentially a direct representation

of a single character in the PDF. A LTAnno does not exist in the PDF, but is created

by pdfminer.six to represent word and line boundaries. Therefore, a LTAnno has no

bounding box. Instead, a LTAnno with text ‘\n’ (a newline) is added to the end of

every LTTextLine. Similarly, a LTAnno with text ‘ ’ (a single space) is added between

two consecutive LTChars of a LTTextLine, if the distance between them is greater

than the parameter word_margin.

14

3.4.1 Caveats

Sometimes, a character can not be extracted properly. In that case, pdfminer.six

uses “(cid:X)” as the text for the LTChar, where X is some number. The reason is

that each character is mapped to both a glyph and a Unicode value. The glyph is

used by a PDF viewer to display the character, while the Unicode value is used when

extracting or copy-pasting the character [15]. For us, this has only occurred with

the German umlauts. Interestingly, in these cases chr(x), which is used to get “the

Unicode string of one character with ordinal x” [16], gave the correct umlauts.

There is an “advanced layout analysis” pdfminer.six runs by default. It is used

to order the LTTextBoxes in a non-trivial way. However, this can lead to some

of the problems other tools exhibited, like Camelot(which uses pdfminer.six with

this default). Also, depending on the size of the timetables and the number of

pages, this analysis can be quite time-consuming. For these reasons, we disable the

advanced layout analysis. This tells pdfminer.six to use the bottom-left corner of

each LTTextBox [17] to order them, instead.

3.5 GTFS

The General Transit Feed Specification (GTFS) defines a file format for public

transit data, created by Google [7]. A GTFS feed is a .zip-archive of multiple

comma-separated-values files. However, these files use the .txt file extension, instead

of .csv. Each .txt file has a different purpose. For instance, the file stops.txt

contains the definition of the different stops used in the feed. At least the names and

locations, as well as a user-selected ID need to be provided for each stop. The ID

defined in one file of a feed may be referenced by entries in other files of the same feed.

The stop_times.txt, for example, uses the stop_id defined in the stops.txt, to

specify the times a vehicle arrives at and departs from the referenced stop.

15

stops.txt

stop_id stop_name stop_lat stop_lon

Central A 50.0395 8.9503

Station B 50.1339 8.3913

Airport C 50.4224 8.2442

...

calendar.txt

service_id monday tuesday ... sunday

Mondays 1 0 ... 0

...

routes.txt

route_id route_short_name route_type

S1 Line 1 1

...

Table 1: Excerpts of the stops.txt, calendar.txt, and routes.txt of an example
GTFS feed.

In Figure 1 excerpts of multiple .txt files of a single GTFS feed are shown. We

omitted some required columns and files for brevity’s sake. As visible in the first

table, we define some stops using their IDs, names, and locations. Then, we add a

service Mondays that is only active on Mondays, as indicated by the 1. Next, we

define a route, by giving it an ID and a name S1, and specify its route-type (here, 1

for ‘Subway’).

16

trips.txt

trip_id route_id service_id

Trip1 S1 Mondays

...

stop_times.txt

trip_id arrival_time departure_time stop_id stop_sequence

Trip1 13:36:00 13:36:00 Central 0

Trip1 13:38:00 13:40:00 Station 1

Trip1 13:42:00 13:42:00 Airport 2

...

Table 2: Excerpts of the trips.txt and stop_times.txt of an example GTFS
feed.

In Figure 2 excerpts from two more GTFS files of the same feed are shown. The

trips are used to map a route to a service. The line shown basically means: “There

is a trip with ID Trip1 that serves the route with ID S1 on the days specified by the

service Mondays.”

In the last table, we see the different times, at which the subway will arrive at and

depart from the different stops of that same trip. The stop_sequence is used to

define the order of the stops of a specific trip.

There are two aspects of the specification, that make it difficult to compare two

GTFS feeds. First, the IDs used in a feed must only be unique for that feed. On one

hand, this makes sense, because feeds are created locally. On the other, this means

that if we have two feeds that are equal, apart from the IDs used in the stops.txt,

it is not immediately obvious. Secondly, a feed is not unique, in the way that there

is only a single way to define its routes. For example, we could add a single entry to

the calendar.txt, to enable a route to be serviced every Monday, as in the previous

17

figure. Then, we add dates to the calendar_dates.txt, at which this route should

not be serviced. We could define the same route equivalently, if we only specify the

dates where the route is serviced in the calendar_dates.txt.

Nowadays, more and more GTFS feeds are being made publicly available by transit

agencies. In Germany this is often done as part of the open data movement. There

are also public databases of public transit data, like the “OpenData ÖPNV” [18] in

Germany. On the other hand, some transit agencies do not provide a way to retrieve

their information. Others add a password to their PDF timetables (on accident or

on purpose), making even the extraction impossible.

3.6 OpenStreetMap

OpenStreetMap (OSM) [5] is a free and open project that provides geographic data.

This information is often manually entered by users.

There exist three fundamental elements to describe objects on the map in OSM:

Node A node is a single position on the map. It can be used, for instance, to

define the location of a stop [19].

Way A way is defined by at least two nodes. It can be used to define map-

features with a shape, like the path of street, or the area of a station [20].

Relation A relation can be used to define that some nodes or ways are part of a

“logical or geometric relationship” [21]. For example, the different stop

positions of a station.

Each of these elements can have a number of different tags. A tag consists of a key

and a value, and is used to add more information about an object. For instance, we

could add the tag with the key ‘highway’ and the value ‘bus_stop’ to a node, to

define that the node describes a bus stop.

18

We can query the information contained in OSM, using a tool like QLever [6]. We

use the query language SPARQL [22] in QLever, to specify what information we

want to receive. Listing 1 shows an example QLever query. The PREFIXes are used to

enable use of the shorthand form (e.g., ‘osm’) instead of the full URL. Any word that

starts with a question mark is a variable. The query returns the names and locations

(Line 6) of all nodes (Line 7) that use the public_transport tag (Line 8). The

public_transport tag is used to define the purpose of a node in public transport.

For example, a node with the public_transport tag set to stop_position defines

that a public transport vehicle (like a bus, or tram) stops at the nodes’ location.

Listing 1 An example-query for QLever using SPARQL.
1 PREFIX geo: <http://www.opengis.net/ont/geosparql#>

2 PREFIX osm: <https://www.openstreetmap.org/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>

5

6 SELECT ?name ?location WHERE {

7 ?stop rdf:type osm:node .

8 ?stop osmkey:public_transport ?public_transport .

9 ?stop osmkey:name ?name .

10 ?stop geo:hasGeometry ?location .

11 }

There also exist specific tags, that can be used in a GTFS feed. For example,

the ref:IFOPT-tag can be used as stop_id. IFOPT stands for Identification of

Fixed Objects in Public Transport [23]. As the name implies, the IFOPT is used to

(uniquely) identify fixed objects (e.g., stops, stations, and the like) in public transport.

The different IFOPTs are also defined in a hierarchical way. For example, the central

station in Freiburg, Germany has the IFOPT de:08311:6508, while the IFOPT

de:08311:6508:8:1 is used for the first platform of that same station. Another

19

tag we will use in the Subsection 4.1.4 is the wheelchair_boarding tag. This tag is

used to define whether a stop is wheelchair accessible.

3.7 Graph Search using Dijkstra’s Algorithm

Graph

A graph consists of vertices (or nodes) V and edges E. An edge between two nodes

v1, v2 ∈ V can be denoted as (v1, v2). We use a directed, (positively-)weighted graph

in our location detection. This type of graph has edges with a direction, that is

(v1, v2) ̸= (v2, v1), unless v1 = v2. The weighted bit means, that each edge has a cost

assigned to it. For example, we use |(v1, v2)| = 3 to denote that the cost of the edge

between v1 and v2 is 3. We also do not allow edges where the start node is the end

node, like (v1, v1).

A path of a directed graph is a series of nodes, such that there is an edge (in

the correct direction) between every two consecutive nodes of the path. We use

P = ⟨v1, v2, v3⟩, with v1, v2, v3 ∈ V to specify a path from v1 to v2 to v3. For a

weighted graph, we can also define the cost or length of a path, as the sum of the

cost of all edges between the nodes of the path. A path between two nodes is called

a “shortest path” between the two, if there is no other path between the same nodes

in the graph that has lower costs (though there may exist some with equal costs).

For example, Figure 5 shows a directed, weighted graph with the nodes A, B, C, and

D. A path P could then be P = ⟨A, B, C⟩, because there is an edge between A and

B, and one between A and C. The length of P would be 14. At the same time, there

is another path R = ⟨A, D, C⟩ with length 7, and a third path Q = ⟨A, B, D, C⟩

with length 6.

20

A

B

D

C

1

5

13

3
2

Figure 5: An example of a directed weighted graph.

Finally, a graph contains loops if we can find a path that contains the same node

more than once. Then, we call the graph cyclic, otherwise acyclic. In the previous

example, the graph has no loops. If we added an edge (B, A) with some cost, we

could find a path like ⟨A, B, A⟩ that contains A twice. The graphs we use in the

location detection do not contain loops either.

Dijktra’s Algorithm

Dijkstra’s algorithm [24] can be used to search for the shortest path in a directed,

acyclic graph.

In principle, it works like this: First, we add a cost Cv to each node v, which we

define as the lowest cost of a path from the start node s to v. For all nodes except s,

we initially set this cost to infinity; for s we set it to 0. Similarly, we add a parent

node Pv to each v. That is, the origin of the edge we used to assign a specific cost to

a node. Thus, no node has a parent at the beginning. Each node can also be visited

and unvisited. In the beginning, all nodes are unvisited.

Now, to find the shortest path between two nodes, ‘start’ and ‘end’, in a graph with

nodes V using Dijkstra’s algorithm, we do the following:

1. We select an unvisited node v ∈ V with the lowest cost.

2. If v is the same node as the end node, we are done.

21

3. For all unvisited nodes w where an edge (v, w) exists in the graph, we update

the cost and parent of w, if this condition applies: Cv + |(v, w)| < Cw, where

Cw is the current cost of w. That is, the cost when using v as parent is lower

than the current cost. If the condition applies, we set Cw to Cv + |(v, w)| and

Pw = v.

4. We mark v as visited and continue with 1.

Note that, because all nodes have a cost of infinity except the start node, the first

iteration will naturally use the start node. Also, there is no need to store the current

shortest path. Once we assign a cost and parent to the end node, we can recursively

get the parent of each node of the path, starting at the end node.

22

4 Approach

In this chapter, we give a high-level overview on how pdf2gtfs works (Section 4.1).

Here, we also include a short introduction to how the old table extraction algorithm

works. In Section 4.2 we explain the new table extraction in detail. Lastly, we show

how we designed the evaluation tool p2g-eval in Section 4.3.

Because pdf2gtfs currently cannot extract tables spanning multiple pages, in the

following sections we will always talk about a single page. When we run pdf2gtfs

with a multi-page PDF, it will iteratively do the same steps for each page.

4.1 Extraction Tool pdf2gtfs

Here, we will briefly explain the different parts of pdf2gtfs. We created a blogpost

where we go into more detail, though some parts may be slightly outdated [25].

In Subsection 4.1.1 we show how the old table extraction works. Then, we introduce

the TimeTable and GTFSHandler that we use to create the GTFS feed in memory

(Subsection 4.1.2). In Subsection 4.1.3 we explain how we use QLever and OSM to

detect the location of the stops. Finally, in Subsection 4.1.4, we export the feed.

23

4.1.1 Old Table Extraction

We preprocess the input file using ghostscript [26], to remove unnecessary content.

This removes the images and vector graphics from the PDF. We do not use these in

our table extraction, thus they can be safely removed.

Next, we use pdfminer.six to extract the individual LTChars from the PDF. As

stated in Section 3.4, each LTChar stores its letter, bounding box and rotation.

Data Structures

Here, we give some definitions about the data structures we use in the old table

extraction. We use Rows to represent the rows in a table, Columns to represent the

columns, and Fields to represent non-empty cells. A Field contains characters of

the same row and has a bounding box, which is based on the bounding boxes of

its characters. Similarly, Rows and Columns contain all Fields in the same row or

column, respectively, and have a bounding box based on their Fields’ bounding

boxes. The Fields, Rows, and Columns also have a type. For the Fields, this is

basically equivalent to the cell type, described in Section 3.3, with the difference that

a Field can only have a subset of these types.

The type of the Rows and Columns depends on the Fields they contain. For instance,

if a Row contains a HeaderField it is a HeaderRow, and if a Column contains a

StopField it is a StopColumn. Finally, a PDFTable consists of Rows and Columns.

It represents a complete timetable of the input file.

PDFTable Creation

Here, we explain how we create the PDFTables for a single page.

24

We first group the LTChars into lines. Each line is simply a list of LTChars. For

this, we sort the LTChars by their y0-coordinate. Then, we add a new list to

the lines containing the first LTChar and iterate over the rest. We compare the

distance between the current LTChar and the first entry of the current line. If the

distance is smaller than the user-defined max_char_dist, we add it to the current line.

Otherwise, we add a new line to the list of lines. Simply sorting the LTChars by their

y0-coordinate would not work, because of the tolerance described in Section 3.2.

Then, we create a Row for each line, as described in Listing 2. As can be seen, we

iterate over the sorted line and create a new Field, if the distance between two

consecutive LTChars is greater than max_char_dist. Once this is done, we simply

use all Fields of a line, to create a Row.

Listing 2 We show how we create Fields from a line of characters.
def line_to_row(line: list[Character]) -> list[Row]:

We want to iterate over the chars from left to right.

line.sort(key=attrgetter("bbox.x_0")

fields: list[Field] = []

Create a Field from the first char, to make the loop cleaner.

field: Field = Field.from_char(line[0])

Thus, we start the loop at the second char.

for char in line[1:]:

The x-Distance between two consecutive characters.

That is, the space between the right side of the first

and left side of the second character

if abs(field.last_char.bbox.x_1 - char.bbox.x_0) > max_distance:

fields.append(field)

field = Field()

field.add_char(char)

return Row(fields)

25

We do this for all lines and group the resulting Rows into PDFTables, similar to

how we create the Fields. We iterate over the Rows. If the distance between two

consecutive Rows is greater than the user-defined max_row_dist, we create a new

PDFTable. The lines were sorted when we created the Rows, hence, the Rows are

sorted in the same way.

Next, we detect the type of each Field and Row. We split PDFTables with multiple

HeaderRows horizontally, such that each PDFTable contains only a single one. Then,

we create the Columns of the PDFTable. For this, we create a Column for each Field

of the first Row. We iterate over the Fields of the other Rows. If a Fields’ bounding

box overlaps with an existing Column, we add it to that Column. Otherwise, we

create a new Column for that Field. We sort the Columns based on their bounding

boxes x0-coordinate, which is the lowest x0-coordinate of their respective Fields.

Once we have created all Columns, we detect the type of each Field, Row, and Column.

The reason we detect the type for the Fields and Rows again is that their type may

have changed.

We split any PDFTables vertically that contain more than one StopColumn, such that

each PDFTable contains only a single one. Then, we run the type detection one last

time, in case the splitting has altered the type of any Fields, Rows, or Columns.

We then run some cleanup steps. In particular, to fix the split stop names described

in Subsection 3.3.1.

Lastly, we create a TimeTable from each PDFTable. Whereas a PDFTable contains the

bounding box and other low-level information of each Field, a TimeTable contains a

list of stops and a list of TimeTableEntries. In simple terms, each TimeTableEntry

is a TimeColumn of a PDFTable. However, instead of containing a list of Fields, it

contains mapping between the stops and the times. In abstract terms, a TimeTable

is closer to the GTFS, while the PDFTable is closer to the PDF.

26

4.1.2 GTFS Creation

At this point, we have extracted all necessary data from the PDF and have created

a TimeTable for each timetable in the PDF. Next, we want to create the GTFS feed

in memory. The reason we create the GTFS feed before we do the location detection,

is because this makes some of the information we need more accessible to us. For

instance, we require the stops of each different route, because we detect the locations

of each route separately.

To properly store the GTFS feed in memory we create two types of data structures.

The first one represents a single entry in a single file of the GTFS feed. For example,

the StopTimesEntry has a variable for each column in the stop_times.txt, like the

trip_id or the arrival_time. In a way, these data structures mirror the structure of

the file they represent. The other type of data structures are the ones that represent

a single file of the GTFS feed. For example, the StopTimes contains functions to

create new StopTimesEntry objects from TimeTableEntries. This makes it easy,

to create the stop_times.txt. We simply have to iterate over all StopTimesEntry

objects and add their values to the same file.

The user also has the option, to include their own GTFS files. In that case, we

read the input files using these data structures first. For example, we use the Stops

and StopEntries, to read the stops.txt. These can then be used in the location

detection.

4.1.3 Location Detection

In this subsection, we will describe how we search for the locations of the stops.

First, we use QLever to fetch the names, locations and other, optional OSM-values

we may need of OSM-nodes that represent public transport locations.

27

The names of an OSM-node consists of a string of different names of each location,

separated by the pipe-character (|). We normalize each of the names to improve

the search for the stop names. In this step, we remove all text in parentheses, lower

all characters, and sort the words of a name in alphabetical order. We also expand

common abbreviations to their full form, like ‘Hbf’ to ‘Hauptbahnhof’ (= central

station). We use a user-provided dictionary for this. The normalization of the names

is the step that takes by far the longest, with regard to retrieving the OSM-nodes.

Thus, we cache these values in a .csv file.

As stated in Subsection 4.1.2, we detect the stop locations for each route separately.

We do this in case the timetables contain stops that are not all serviced in sequence.

If we only detected the stops for the longest route, we would not be able to properly

detect stops that are serviced by one route and not the other.

We read the cached OSM-nodes into a pandas DataFrame and pre-filter the nodes,

based on the names of all stops of the routes. Then, for each stop we create a

DataFrame that only contains the possible locations for this stop. If a stops.txt

file was given as input, we search this file beforehand. If any stop was found, the

DataFrame for that stop will only contain that single entry.

The search for the correct locations can be specified as a shortest-path search in a

directed, weighted graph. Each stop location is a node in the graph. Each possible

node of one stop has an edge to all possible nodes of the next stop. The cost of

an edge between a node of a stop and a node of the next stop can be defined as

the sum of three costs. The name cost, node cost and travel cost. The name cost

represents the difference between the name of the node and its stop. Because of

the way we filter the DataFrame beforehand, we can simply use the difference in

length for this, instead of a more performance-intense accurate calculation like the

edit-distance. (We require a stop-node name to contain all words of a stop name.)

The node cost depends on the type of node. For example, a bus stop has a lower

node cost than a railway stop, if the user-defined route type is ‘Bus’. The travel cost

28

depends on the distance between the two nodes. Depending on the selected settings,

this may simply mean that higher distance equates higher travel cost. On the other

hand, we may also use an estimation of the average speed and the travel time. The

average speed is different based on the route type, while we get the travel time from

the GTFSHandler. Then, we simply multiply the travel time with the average speed,

to get the expected distance. In this case, the travel cost is calculated using the

difference between the actual distance and the expected distance. The nodes of the

first stop have a travel cost of 0. We normalize each of the costs, such that neither is

the single deciding factor. Otherwise, the travel distance would most likely dominate

the node selection.

The filter step may sometimes filter out the true stop location, or the true stop

location may simply not exist on OSM. Thus, we also define MissingNodes. We

need these, because each node is only connected to nodes of the next stop. Thus, if

one stop has no nodes at all, no shortest path can be found. A MissingNode has a

high node-cost and the travel cost is defined using the parent of the MissingNode.

We create these MissingNodes on the fly, for stops that do not have any nodes.

Similarly, for existing locations, we define ExistingNodes. These are used for stops

that were found in the input GTFS files. If an ExistingNode exists for a stop, we

simply remove any other node for this stop. We also do not create MissingNodes

for stops that have an ExistingNode. Thus, regardless of the settings, these nodes

will always be part of the locations returned by the location detection.

In Listing 3, we show how we use Dijkstra’s algorithm (described in Section 3.7), to

solve the shortest-path search. The unvisited nodes are stored in a min heap, sorted

by each nodes’ overall cost.

29

Listing 3 A rough overview on how the location search works.
1 def shortest_path(nodes: MinHeap[Node], last_stop: Stop) -> Node:

2 while True:

3 # Get the node with the lowest cost.

4 current_node = nodes.pop()

5 # We are done once we have reached the last stop.

6 if current_node.stop == last_stop:

7 break

8 for node in current_node.get_neighbors():

9 # Any parent is trivially better than no parent (in this case).

10 new_parent = not node.has_parent()

11 # Missing nodes are worse than normal nodes.

12 new_parent |= (not isinstance(MNode, current_node)

13 and isinstance(MNode, node.parent))

14 if not new_parent:

15 continue

16 new_cost = node.cost_with_parent(current_node)

17 if not new_parent or new_cost >= node.cost:

18 # The current parent is better than the current_node could be.

19 continue

20 node.set_cost(new_cost)

21 node.set_parent(current_node)

22 # We need to update the nodes' position in the heap.

23 nodes.update(node)

24 current_node.visited = True

25 # We can recreate the route from the last node,

26 # by using its parents' parents, and so on.

27 return current_node

30

Location Interpolation of Missing Nodes

Next, we interpolate the location for each MissingNode using the surrounding nodes.

We denote the nodes of the route with N1, . . . , Nn with location vectors L1, . . . , Ln,

respectively, where n is the number of stops in the route. The coordinates of the

location vectors are the latitude and longitude of the location.

Next, we explain how we interpolate locations for MissingNodes between other nodes.

Assume there are consecutive MissingNodes Ni+1, . . . , Nk−1 with 1 ≤ i < k − 1 and

i + 1 < k ≤ n, such that Ni and Nk are nodes that already have a valid location. We

can interpolate the locations of each Nj with i < j < k using the following formula.

Lj = j − i

k − i
· (Lk − Li) + Li

Loosely speaking, this means that we place the MissingNodes between two nodes in

equidistant steps.

We interpolate the locations for MissingNodes at the start in a similar way. Assume

there are consecutive MissingNodes N1, . . . , Ni−1 with 1 < i < n, where Ni and

Ni+1 are nodes that already have a valid location. We can interpolate the locations

of each Nj with 1 ≤ j < i using the following formula, instead.

Lj = (i − j) · (Li − Li+1) + Li

For MissingNodes at the end, we simply reverse the order of all nodes, temporarily.

Then, we can apply the same steps as for the MissingNodes at the start.

Final Node Selection

It may have happened that we found different nodes for a single stop, depending on

the route. Thus, we need to select one of these nodes for each stop as the one we

31

use in the GTFS feed. For this, we simply count the number of routes that use a

specific node for a stop. Then we select the node we most frequently detected for

that stop.

4.1.4 Export

As the final step, we update the location of each stop. Here, we also add the additional

information from OSM about the locations to the feed. In particular, we add whether

the detected stop locations are wheelchair-accessible, as well as the IFOPT, if it

exists. For the missing locations, we also add a note in the stop_description, to

show that they were interpolated.

To create the GTFS feed, we simply write all GTFS files that currently exist as data

structures in memory to a temporary directory. Then, archive the contents of this

directory in a .zip file, to create the GTFS feed.

4.2 New Table Extraction

The new table extraction algorithm works in multiple stages. First, in Subsection 4.2.1,

we define the data structures we use. In Subsection 4.2.2, we create new Cells from

the words of a single page of the input file. Then, we run the basic type detection,

described in Subsection 4.2.3, to determine which Cells contain time data and are

therefore part of a tables’ body. We create a preliminary Table from all TimeCells

of a page (Subsection 4.2.4). If necessary, we split this Table and expand each

resulting Table using the remaining Cells as described in Subsection 4.2.5. We

run the advanced type detection on each Cell(4.2.6). In the last stage, we fix some

common issues each Table may have (Subsection 4.2.7). Here, we also create a

TimeTable from each Table, using only those Cells we could detect a proper type

for.

32

4.2.1 Data Structures

Cell

A Cell represents a single non-empty table cell that contains at least one LTChar. As

such, each Cell has a bounding box, defined by the bounding boxes of its LTChars. A

Cell also has a CellType that needs to be inferred first, and neighbors, as described

in Section 3.3.

We define the row of a Cell as the ordered list of all Cells that can be reached by

recursively using only the previous and next neighbors. In the same way, a column

starts with a Cell that has no neighbor above and ends with a Cell that has no

neighbor below and can be reached using only below.

EmptyCell

An EmptyCell is a subclass of Cell, but does not contain any LTChars. The

CellType of an EmptyCell is always Empty. When we want to check if a Cell

overlaps horizontally with an EmptyCell, we use the combined bounding box of the

Cells in the column of the EmptyCell. We use its row, if we want to check, for

vertical overlap.

Table

A Table contains a variable number of Cells. However, instead of actually storing

a reference to each one, only the first Cell (the one in the top-left corner) and the

last Cell (the one in the bottom-right corner) are stored. That way, when adding

more rows and columns to the table, we only need to update either of these Cells,

as well as the neighbors of the Cells in the row or column.

33

We define the bounding box of a Table as the bounding box containing all of its

Cells. We calculate it using the first and last row and column.

The potential_cells of a Table are Cells on the same page of the Table, that

may be part of it. Using the potential_cells, we can reduce the number of Cells

we need to check for each Table. For instance, if there are exactly two tables T1 and

T2 on a page, with T1 being above T2, we can add all Cells that are above T2 as

potential_cells of T1. Any Cell that is next to or below T2 can not be part of T1.

As the Cells between T1 and T2 might be part of either Table, we simply duplicate

them and add them to both tables’ potential_cells.

4.2.2 Character Extraction

Just like in the old table extraction, we preprocess the input file using ghostscript,

and read the preprocessed PDF using pdfminer.six. However, instead of the LTChars,

we use the LTTextLines (Section 3.4). We do this, because the basic layout analysis

of pdfminer.six is run either way. Additionally, it yields results comparable to the

word detection we use in Subsection 4.1.1.

We split the LTTextLines of the page into words and create a Cell from each

word. For this, we iterate over the objects of a LTTextLine. We create a new Cell,

whenever one of two conditions applies: Either the current object is a LTAnno, or

the current and previous objects are both LTChars and have different font properties.

Otherwise, we add the LTChar to the current Cell. The font properties we check

are the used font and font size of the LTChars. Because we create a new Cell for

the first LTChar of each LTTextLine a Cell can only contain LTChars that are on

the same line.

At this point, we have created a Cell for each word-like string of characters on the

page.

34

4.2.3 Basic Type Inference

We do not know the structure of the table yet, so we detect the type of each Cell

based only on its text, hence ‘basic’. When we infer the type of a Cell, we assign

probabilities for each CellType for that Cell. For example, in Figure 6, the same

table as in Section 3.3 is shown. However, all possible types are shown for each

Cell, instead of only the true types. Note that EmptyCells can only have Empty as

possible type, while the Other type is a possible type for all Cells regardless of the

Cells’ text, (except EmptyCells, of course).

Route S1 S2 S3

Central 13:36 15:46

Station 13:38 14:33
Airport 13:42 14:42 16:00

6 6 6 6

6 6 6

6 6 6

6 6 6 6

1 2 43 2 43 2 43

2 43 5 7 5

2 43 5 5 7

2 43 5 5 5

1 2 3

4 5 6 7

Route
Identifier

Route
Annotation

Entry
Annotation

Stop Time Other Empty

Figure 6: The possible celltypes of different cells in a table. The legend in the last
two rows shows the cell type of the cells with the same color and number.

The basic type detection works best for Cells that contain text with an easy-to-check

and restrictive format, like times. It also works well, if a type requires the Cell to

have a specific text, we call keyword, like route identifier. This can also be seen

in the figure. We might still get false positives; however, these are exceedingly

rare (especially for the TimeCells). Therefore, we assume that all Cells that were

identified as TimeCells, were correctly identified. Similarly, a Cell that contains

a keyword, can either be of the corresponding type, or Other. We can provide the

exact keywords for different types using the configuration of pdf2gtfs.

For CellTypes that have neither a strict format they adhere to, nor use specific

keywords, we cannot be certain about a Cells’ type, using the text alone. For

35

instance, when encountering a Cell with the text ‘Central’ as in Figure 6, we can

not make a reliable decision about what type it is, or whether it is even part of the

table.

We run the type detection iteratively over all Cells, as follows. For a given Cell, we

check if its text contains any of the keywords that directly indicate some CellType.

If it contains any, the corresponding CellType will have an increased probability,

while all others will be zero, and we continue with the next Cell. If it does not, we

can be certain that it is not of any type that uses these keywords (with the exception

that the correct keyword may not have been specified). In that case, we set the

probability of each type that does not require a specific text to the same value. This

means, that these types will all be treated equally by the advanced type detection.

At this point, we ran the basic type inference on every Cell.

4.2.4 Table Creation and Splitting

Now, we create a Table from all TimeCells. To do this, we first group the TimeCells

into rows and columns. We consider two TimeCells to be in the same row, if

they overlap more than min_cell_overlap vertically. Similarly, we consider two

TimeCells to be in the same column, if they overlap more than min_cell_overlap

horizontally. By default, min_cell_overlap is 0.8. That is, we check if the absolute

overlap is greater than 80% of the smaller Cells’ size.

We update the neighbors of each Cell. To do that, we iterate over the Cells of each

row and set the horizontal neighbors, previous and next. Similarly, we iterate over

the Cells of each column and set the vertical neighbors, above and below.

Then, we iterate over the rows and columns and insert EmptyCells, into any gaps.

We need these, to ensure some nice-to-have properties. For example, if we did not

36

add EmptyCells, the following would not hold, in general (for simplicity, we assume

that each of the neighbors exist).

node.next.below.prev.above == node

That is, the Table is structured in a grid-like way.

To figure out, where to add the EmptyCells, we do the following. We first store the

first Cell of each row in a list, which we will call all_rows. We iterate over both

all_rows and the first column of the Table, first_column, to ensure that the first

column has the correct number of Cells (= number of rows). We start at i = j =

0 and run the following algorithm:

1. If j >= len(all_rows), we are done.

2. If first_column[i].row == all_rows[j], increment both i and j and at

continue at 1.

3. Otherwise, insert an EmptyCell at first_column[i] and then link it to the

Cells at i-1 and i+1, if they exist. Increment i and continue at 1.

Next, we proceed with the same algorithm for the rest of the columns. Lastly, we

iterate over all Cells of adjacent columns and link the respective Cells using the

previous and next neighbors, to fix the rows. The previous and next neighbors

may not be correct after we inserted the EmptyCells.

Once we have done this, every row contains the same number of cells, and every

column contains the same number of cells. Also, at this point the Table already

looks similar to the combined bodies of all timetables on the page.

We add the potential RepeatIdentifierCells and RepeatIntervalCells to the

table. These types of Cells are used in timetables to define that some of the times

get repeated at some interval. Basically, we search for all RepeatIntervalCells

and RepeatIdentifierCells that are contained within the bounding box of the

37

Table, and add them to the Table. In practice, we run some additional checks to

ensure that the Cells we found are truly of these types.

Then, we recursively split the Table, if necessary. To split the Table, we look for

Cells that are within its bounding box, and that either overlap with a row or a

column. We split the Table, by simply unlinking the Cells next to the splitting

Cells and creating a new Table for each split. After the splitting, we remove any

rows and columns that only contain EmptyCells.

Then, we set the potential_cells of each Table. These are those Cells that may

be part of the Table, but we do not know yet if they are. For example, given two

Tables next to each other, we can be sure, that the left table only contains Cells

that are either above, below or left of it, or are between the two Tables. That is, if

a Cell is right of the right Table, it can not be part of the left Table. Cells that

are between two Tables are simply duplicated and added to both Tables’ potential

Cells.

At this point, we have a list of Tables, where each Table contains TimeCells,

and possibly RepeatIdentifierCells and RepeatIntervalCells, and has a list of

Cells that might be part of it. If we were to print any of these Tables, it would

look exactly like the body of one of the timetables, as long as the type inference

worked properly. Except, that it would contain only times and repeat cells.

4.2.5 Table Expansion

We now add more rows and columns to each Table, using its potential_cells. We

call this process table expansion. By default, we only expand the Tables in the

directions West and North, because it is unusual for a timetable to contain significant

amounts of information in the other directions. However, if a specific timetable

contains additional information in the other directions, we can use the configuration

38

of pdf2gtfs to change this. The expansion works similar in all directions. Hence, we

will only explain it in one direction: West.

To expand the table in direction West, we select those Cells of the potential_cells,

that are adjacent to the last column in that direction, that is, the first column of the

Table. For instance, a Cell c of potential_cells C is adjacent to a Table T in

direction West, if all of the following conditions apply. We denote R as the reference

Cells, in this case the first column of T .

• c is West of T , that is, the x1-coordinate of c is less than or equal to the

x0-coordinate of the right-most Cell of R.

• c is overlapping vertically with any row of T by more than min_cell_overlap.

• c is either the right-most Cell of the adjacent Cells of C, or it overlaps

horizontally with the right-most adjacent Cell.

We link the adjacent Cells using the neighbors above and below. We insert

EmptyCells, to ensure the numbers of Cells is equal to the number of rows of

the Table, just like we did in Subsection 4.2.4. Finally, we link the adjacent Cells

to the first column of the Table and remove them from the potential_cells.

We expand the Table in the directions West until no Cells of the potential_cells

can be added to the Table.

At this point, we expand each Table maximally in the directions North and West,

such that each Table either has no more potential_cells, or no Cell of the

potential_cells can be added to the Tables’ rows or columns in this way.

4.2.6 Advanced Type Detection

Once a Table was fully expanded, we can run the advanced type detection, which

uses other Cells of the Table to improve the type detection accuracy. With the

basic type detection, we estimated the probabilities of the potential types of a Cell.

39

We now apply weights to each of these probabilities, based on other Cells. The

weight represents the confidence we have, that a Cell is a specific type. We run this

advanced type detection on all Cells. For many Cells this weight will simply be

zero for all but one type (or two if we count Other).

Route S1 S2 S3

Central 13:36 15:46

Station 13:38 14:33
Airport 13:42 14:42 16:00

6 6 6 6

6 6 6

6 6 6

6 6 6 6

1 2 43 2 43 2 43

2 43 5 7 5

2 43 5 5 7

2 43 5 5 5

1 2 3

4 5 6 7

Route
Identifier

Route
Annotation

Entry
Annotation

Stop Time Other Empty

Figure 7: The possible celltypes of different cells in a table. The legend in the last
two rows shows the cell type of the cells with the same color and number.

Figure 7 shows our previous example, after the basic type detection was run. We

will explain how the advanced type detection works using the two light-blue colored

Cells. First, we look at the Cell with the text “Station”. The basic type detection

was unable to provide a specific type for that Cell. Thus, for each of the 3 types (we

do not do this for Other), we need to calculate the additional weights. There is no

possible EntryIdentifierCell in the row or column of the Cell. Thus, we multiply

the probability that this Cell is an EntryAnnotationCell with zero. This is, because

we are not confident at all, that the type of the Cell is an EntryAnnotationCell.

On the other hand, there exists a possible RouteIdentifierCell in the column of

the Cell, as well as TimeCells in the row of the Cell. At the same time, all Cells

in the Cells’ column that are in TimeCell-rows, are possibly StopCells. Therefore,

we have a higher confidence that the Cell is one of these two types. In the end,

the deciding factor, in this case, is the text of the Cell. For the StopCells, we

increase the weight depending on its texts’ length and the texts’ relative amount

of numbers versus letters. That is, the text of a StopCell should not be too short

40

and should not contain too many numbers. On the other hand, we expect the

RouteAnnotationCells to generally have shorter text, and they might even consist

of only numbers. Consequently, our confidence that this specific Cell is a StopCell

increases, while our confidence that the Cell is a RouteAnnotationCell decreases.

If we run the advanced type detection on the “S2” Cell, the opposite happens.

The text is short and 50% of its characters are numbers. Hence, it is more likely a

RouteAnnotationCell than a StopCell.

4.2.7 Cleanup and TimeTable Creation

As the final step of the Table creation, we need to fix some potential issues our

approach has. For example, each Cell contains only a single word. This means, that

stops that contain spaces are not properly detected as one Cell, but as multiple.

Therefore, we need to merge these StopCells. If the type detection was successful,

this simply means that we need to merge consecutive StopCells of the same row

(though in practice, we only merge the text). Otherwise, the table extraction, or at

least the location detection will likely fail.

Similarly, consecutive DayCells of the same row also need to be merged, sometimes.

Here as well, the type detection already did most of the heavy lifting. When multiple

adjacent Cells in the same row are part of the same days keyword, this is detected

by the advanced type detection, and it infers the CellType “Days” for them. For

instance, suppose there is a days keyword “Monday – Friday” and we have a Cell

C1 with the text “–”. If C1 has a previous neighbor C0 with text “Monday” and

a next neighbor C2 with text “Friday”, we merge the text of C1 and C2 with the

one of C0. This approach prevents us from accidentally merging two DayCells with

the texts “Saturday” and “Sunday”, respectively, if only the individual keywords

“Saturday” and “Sunday” were specified.

As the final step of the table extraction, we transform each Table into a TimeTable.

41

This is done very similarly to how the old table extraction algorithm does it. The

Cells are added to the TimeTable based on their type. Any Cells that do not have

a proper type (i.e., OtherCells and EmptyCells) are skipped. Thus, even if a Cell

was added to the Table, if we could not correctly infer its type, we will not add the

contained information to the output. This is to safeguard our overly-greedy table

expansion against the (incidental) alignment of irrelevant text to the Table.

To create a TimeTable from a Table, we first search the Table for the StopCells

and create the list of stops from them. If there are multiple rows or columns

with StopCells, we only use the first one we encounter to create the stops. As-

suming the StopCells are in a column, we create a TimeTableEntry for each

column of the Table. We iterate over the columns of the Table and add each Cell

with a proper type, to the respective TimeTableEntry. We add the stops and the

TimeTableEntries to the TimeTable. If the StopCells are in a row instead, we

iterate over the Cells of the rows, instead.

At this point, the new table extraction is finished and pdf2gtfs will continue with the

GTFS creation (Subsection 4.1.2).

4.3 Evaluation Tool p2g-eval

To evaluate the locations detected by pdf2gtfs, we created p2g-eval. This tool reads

two GTFS feeds, the first being the ground truth or true feed, while the second is

the test feed; the one that should be evaluated. The true feed we use, is usually

provided by the different transit agencies. We create the test feed using pdf2gtfs.

We use p2g-eval to calculate the distance between the locations of the stops in the

ground truth and the corresponding locations in the test feed.

Because neither the name of a specific stop nor its ID can be assumed to be equal

in both feeds, we need to map the feeds, somehow. We currently only provide a

42

manual approach to this. That is, the user has to provide a .csv-file, where each

line contains the IDs of both the true feed and the test feed for one stop.

The evaluation of the test feed is straight forward. We use pandas [27], to read

the .txt files of each feed, which stores each in a DataFrame. Then, we filter the

DataFrames using the mapping. We iterate over the stops based on the mapping,

and calculate the distance between the stop location of the true feed and that of the

test feed. The output is printed in human-readable form, where the lowest, highest

and mean distances, as well as the standard deviation are printed, as well.

The batched script of p2g-eval, allows us to supply one feed and a directory. The

script will run p2g-eval to evaluate all feeds in the directory. It still requires each

mapping, which must have the same name as the respective test feed. Compared to

the normal operation, we output the distances of all feeds to a single file, instead of

printing them, which makes evaluation of multiple feeds easier.

43

5 Experiments

In Section 5.1, we evaluated the accuracy of the locations detected by pdf2gtfs. We

evaluated the accuracy of the table extraction in Section 5.2. Finally, we evaluated

the runtime- and memory-requirements of pdf2gtfs in Section 5.3.

5.1 Location Detection Evaluation

We evaluated the location detection of pdf2gtfs on different timetable PDFs using the

ground truth data, which is provided by their respective transit agencies. We first

created datasets in Subsection 5.1.1. Here, we also created the mapping between the

stops of the GTFS feeds. In Subsection 5.1.2 we show the results of the evaluation.

5.1.1 Dataset Preparation

We created datasets for three different transit agencies from Germany:

VAG the “Verkehrs AG Freiburg”, the transit agency in Freiburg im Breisgau.

RMV the “Rhein-Main-Verkehrsverbund”, the transit agency around Frankfurt; its

service is covering most of Hesse

VGN the “Verkehrsverbund Großraum Nürnberg GmbH”, the transit agency in and

around Nuremberg

44

The RMV did not provide the full GTFS feed of its transit data on its website. It

did however, provide a .csv-file containing information about its stops [28]. Thus,

we created a GTFS feed using only the stop names and locations of the stops, and

used this for the evaluation. Though this feed is not valid, as per the specification,

it contains all data required by p2g-eval. To create the feed, we had to change the

latitude and longitude strings in the .txt file, because it used commas as floating-

point delimiter. An alternative solution to the .csv-file would have been, to use the

API provided by the RMV. We opted for our approach instead, because we designed

p2g-eval to work with two input GTFS feeds. The other two agencies provide the

full GTFS feed on their respective websites [29, 30].

The locations provided by the RMV only contained a single location for each stop.

The feeds provided by the VAG and VGN contained multiple locations for each

stop. The additional stop locations are used for the different stop positions and

platforms of the stop. This makes a difference for large stops such as a cities’ central

station. Depending on the size of the station, the different stops may have up to a

few hundred meters between them.

Due to the single locations provided by the RMV, we decided to use the location of

the station of a stop for the other datasets, as well. If no parent station, but multiple

locations existed for a stop we simply selected the first one. That way, we expected

we would be able to compare the results of the datasets in a fairer manner. Note

that pdf2gtfs uses the type of the location (e.g., station or stop position) to modify

the node cost. However, because the stop position is preferred to the station, the

impact of the decision to use the stations, should even out.

We selected the timetables for the evaluation based on whether we could detect

the timetables using pdf2gtfs, and whether there was at least one location detected.

We did not include the other cases, because we evaluated the timetable extraction

separately.

As stated in Section 4.3, a mapping between the two feeds is required to use p2g-eval.

45

We created this mapping manually. We searched the ground-truth feed (or, true

feed), provided by the transit agency, for the stop name of each stop in the test feed;

the one created by pdf2gtfs. We used the new table detection algorithm to extract

the timetables. Next, we simply created the mapping: A .csv-file that contains the

stop_id of the true feed in the first column and the ones of the test feed in the

second. We did not try to create this mapping automatically the same way we do

manually, using the stop names. That would have been an almost identical problem

to the one that we are trying to solve using pdf2gtfs: Finding the locations of the

stops based solely on their names and order.

5.1.2 Results

Once we had created the mappings for each feed generated by pdf2gtfs, we simply ran

p2g-eval using the mapping, the true feed, and the test feed. We list the minimum,

maximum, and mean distance, as well as the standard deviation, of each detected

stop location to its true location in Table 3. From these results, we can infer that the

location accuracy for detected locations was very good. On the other hand, the results

for the accuracy of missing locations, that is, those that have been interpolated, were

mixed.

VAG VGN RMV

both detected missing both det. miss. both det. miss.

count 100 98 2 61 40 21 27 18 9

min 2 2 129 4 5 107 6 6 40

max 175 123 175 87 317 260 87 317 1 012 83 1 012

mean 34 32 152 3 743 44 10 788 231 39 616

std 30 25 32 14 043 49 22 630 319 24 282

Table 3: The min, max, mean, and standard deviation for detected and missing
locations for all datasets. All distances in meters and rounded to the
nearest integer.

46

The bar chart in Figure 8 shows the number of stops that were closer than the

specified distance over all datasets. The results show that if a position was found,

it was within 250m of the actual location, in most cases. On the other hand, the

interpolated locations were generally farther than 500 meters away. This is most

likely due to how simple the interpolation is done.

< 25 < 50 < 100 < 250 < 500 < 1000 < 2500 ≥ 2500

0

10

20

30

40

50

60

70

80

Distance in m

N
um

be
r

of
st

op
s

(t
ot

al
=

18
8)

Detected locations
Missing locations

Figure 8: The number of detected and missing stops closer to the ground truth
than the specified distance.

5.2 Table Extraction Evaluation

We evaluated both the new and the old extraction algorithms of pdf2gtfs against each

other. We also evaluated them against the output of the online pdf-extraction service

PDFTables [8]. For this, we first prepared three different datasets in Subsection 5.2.1.

These contain a diverse set of PDFs that we used for the evaluation. We describe how

we set up each of the tools for the different datasets in Subsection 5.2.2. We explain

the metrics we used for the evaluation in Subsection 5.2.3. Finally, in Subsection 5.2.4,

we compared the results for each extracted timetable.

47

5.2.1 Dataset Preparation

To our knowledge, no dataset exists that contains only PDF timetables. Therefore,

we created a ground truth using a sample of timetables provided by the VAG and

RMV. We also evaluated the quality of the table extraction of transposed tables.

That is, these tables contain the stops in a single row, as opposed to a single column.

For this, we used timetables from different transit agencies in the USA, where this

format is more frequently used.

We created the ground truth manually, by copy-pasting a timetables’ content into

LibreOffice Calc, the spreadsheet component of LibreOffice. Then, we saved the

extracted timetable data in the .csv-format. The copy-pasting proved more difficult

than initially imagined. When we selected and copied text from the table, it was

difficult to predict how it would be pasted. At times, we had to copy-paste single

cell-values, as the order of cells was mangled up. We also used the macro functionality

of the text-editor Vim, to speed up repetitive tasks; to quickly join consecutive lines,

or to replace every second space by a comma, in order to make use of LibreOffices’

text import dialog. In hindsight, if the copy-pasting had worked seamlessly, table

extraction from PDFs would not be such an issue.

The way we selected the timetables for the VAG and RMV datasets was done as

follows. We looked at the PDF files, or schedules, of the different transit agencies

and tried to select a diverse set of different timetable formats. We considered two

timetable formats different, if not only the content of their cells was different, but also

the overall structure of the timetables. Then, for each of the PDF files, we selected

two timetables to use for the evaluation, based on their features. For instance, we

generally selected the table with the most cell types.

For the VAG and the rail-based public transport of the RMV, we simply looked

through all available schedules. Because of the sheer volume of bus-line schedules of

the RMV—they list almost 800 bus-line schedules on their website—we did not look

48

at all of these schedules, individually. Instead, we used the name of the bus lines to

narrow down candidates that are most likely to use different timetable formats. For

instance, given three bus lines with the names ‘1’, ‘10’, and ‘MR-97’, respectively,

the latter is most likely to use a different format.

We call the additional dataset that we use for the evaluation of transposed timetables

‘Transposed Time Tables’, or ‘TTT’, for short. The overall selection process of the

timetables was the same, with the difference that we selected only one timetable

per PDF file. As these are seldom used in Germany and more common in the USA,

this dataset contains timetables exclusively from US-based transit-agencies. One of

the PDF files we initially selected for this dataset, was password-protected, so we

removed it from the dataset.

In total, we selected ten timetables for the VAG dataset, six timetables for the RMV

dataset, and four timetables for the TTT dataset. Theoretically, we could have also

used pdf2gtfs to generate more data for us, which we would only have needed to

check for errors. We decided against this, as this would have made it harder to catch

errors made by all three extraction methods. Also, it would have been difficult not

to make decisions based on the output, rather than the input. What we mean by

this can be best explained using the example in Figure 9.

Figure 9: An excerpt of the ‘ART 42’ route from the TTT dataset.

49

The ‘A’s and ‘P’s denote, whether the preceding time is AM or PM. The new

extraction algorithm of pdf2gtfs would have (and did) output the ‘A’s and ‘P’s as

separate cells from the times. While this is a possible interpretation of cells, it is

more intuitive, as well as closer to reality, to have cells that contain both the time

and the ‘A’ or ‘P’.

5.2.2 Configuration

We mostly used the default pdf2gtfs configuration for all PDFs. We only set the time

format (e.g., "HH:MM" or "HH.MM") and other ‘obvious’ settings. For example,

one timetable used the word ‘Bus’ as keyword for the route identifier. Thus, we

added the keyword to the corresponding config-key. We did so, because this setting

would be commonly used during normal operation of pdf2gtfs. Only when a table was

not detected at all, did we change the more intricate settings. This occurred once.

The old algorithm was initially unable to extract either of the two tables from the

bus-line ‘N46’ of the VAG dataset. We inspected the log and found that the distance

between the rows was too high. Thus, we increased the max_row_distance , to

enable extraction. Apart from these adjustments, we did not change other settings.

Our reasoning was, that we can evaluate the quality of the table extraction based

on (basically) the default settings. Finding and evaluating on the optimal settings

would not only have been time-consuming, it would also not reflect the expected

real-world outcome.

There was no option to configure PDFTables in any way.

We ran all table extraction methods on each of the PDFs we selected. We exported

the extracted table(s) in the .csv-format.

50

5.2.3 Evaluation Measures

We calculated the precision, recall and the resulting F1-score. These are common

measures to evaluate binary classifiers. We can understand the table detection as

a classification problem, where we decide whether a cell is part of the table or not.

This means, we did not directly evaluate the exact cell type, which also would have

made the evaluation with PDFTables difficult.

To use the above-mentioned measures, we first had to define the following disjoint

sets of table cells.

True Positive (TP)

All cells with the correct content, and position relative to other cells.

False Positive (FP)

All extracted cells that do not exist in the ground truth, and extracted cells

with different content to the corresponding cell in the ground truth.

True Negative (TN)

All empty cells that were correctly detected.

False Negative (FN)

All cells that exist in the ground truth, but were not extracted.

The precision describes the relative amount of relevant cells that were extracted.

P = TP
TP + FP

The recall describes the relative amount of correct cells of all extracted cells.

R = TP
TP + FN

The F1-score can be used to balance the other two measures, in a way that both are

51

relevant. It is the harmonic mean between the two and is defined as:

F1 = 2 · P · R

P + R

The F1-score is a more meaningful measure, because both the precision and the

recall can be increased in a (trivial) manner. The recall can be trivially increased by

simply extracting all cells. On the other hand, we can easily increase the precision

by extracting only the cell with the highest probability of being part of the table.

For instance, if we only extracted all TimeCells, the precision would be 1, provided

that we correctly extract those. Note that maximizing either of these measures is,

generally, more difficult, because the Cells need to have the correct content as well,

to count as true positives. The F1-score is maximized only, if both of the other

measures are maximized. One of the down-sides is that the F1-score ignores the true

negatives.

Because PDFTables was unable to split the page into multiple tables, we assumed the

best case. That is, we removed any text that was not between the top and bottom

rows of each table. Otherwise, we felt a comparison between PDFTables and the

other methods would not be meaningful in any way.

We evaluated rows and columns that only contained empty cells favorably. That is,

when the ground truth did not contain an empty row or column, we only counted the

true negatives, if there were any. Otherwise, we evaluated the cells as we normally

would. The aforementioned manual selection of rows for PDFTables was the main

reason we did this, though the algorithms of pdf2gtfs sometimes had this issue, as

well. We also ignored leading and trailing whitespace of a cell. For example, we

consider two cells with the texts ‘Bahnhof ’, and ‘Bahnhof’, to have equal content.

However, we do not consider ‘Am Bahnhof’ and ‘AmBahnhof’ to have equal content.

This whitespace has no impact on the meaning of a cell and can be safely removed.

We also manually disabled some functionality of pdf2gtfs that alters the extracted

52

table in preparation of the location detection. Specifically, we skipped the fixing of

split stop names, described in Subsection 3.3.1. By default, we do this in the Table

or PDFTable as opposed to the TimeTable, where it would technically fit better,

because we need the bounding boxes of the cell. We use the bounding boxes to

determine if a stop cell is indented compared to the other stop cells in its column.

It is ok to disable these, because it only alters the cells content based on cells that

were already detected and does not change the overall detection process.

5.2.4 Results

Table 4 shows the results of the evaluation for the VAG and RMV datasets. On the

VAG dataset, PDFTables performed significantly worse than the other two extraction

methods. On the RMV dataset, the results of PDFTables are more comparable to

the other two.

VAG Precision Recall F1-score

pdftables 86.84% 57.63% 69.28%

pdf2gtfs-old 99.83% 88.84% 94.01%

pdf2gtfs-new 93.40% 97.78% 95.54%

RMV Precision Recall F1-score

pdftables 94.03% 85.34% 89.78%

pdf2gtfs-old 98.82% 95.94% 97.36%

pdf2gtfs-new 98.97% 91.05% 94.84%

Table 4: The precision recall and F1-score for the different datasets and table-
extraction methods

The biggest problem that occurred with PDFTables was that it often merged cells

in the same row or column using whitespace (either newline or space). Because

PDFTables is proprietary, we do not know how its table extraction works. However,

53

similar problems occurred, when we created the ground truth, or when attempting

to use pdfminer.six ’s advanced layout algorithm. Though the exact reason is unclear

to us, it seemed this happened more frequently when columns or rows were close to

each other.

Comparing the old extraction of pdf2gtfs to the new one in a definitive manner is

difficult, from these results alone. Overall, their performance can be considered

similar for these datasets.

When we manually compared what kind of cells were detected we noticed that no

TimeCell was falsely detected by the new method, while the old method missed a

few TimeCells. Note that we only did this for pdf2gtfs’s extraction methods and

the VAG and RMV datasets. This was somewhat expected, because the algorithms

works by using the TimeCells as base. However, it shows that the splitting of the

LTTextLines works as intended.

As stated in 5.2.2, we had to adjust the maximum distance between lines for the old

algorithm, in order to extract the tables of the bus-line ‘N46’ of the VAG dataset.

In Table 5 the precision, recall, and F1-score of the extraction methods using the

TTT dataset are displayed. The results are clearly worse than the ones for the VAG

or RMV datasets. This is especially true for the old algorithm. The high recall and

low precision of the new extraction algorithm of pdf2gtfs, suggests that too few cells

were extracted. That is, the algorithm appears too restrictive when deciding, which

cells to extract. However, this dataset included the table, where the times could not

be extracted at all.

54

TTV Precision Recall F1-score

pdftables 61.36% 43.12% 50.65%

pdf2gtfs-old 22.87% 8.48% 12.37%

pdf2gtfs-new 49.83% 96.76% 65.79%

Table 5: The precision recall and F1-score for the different datasets and table-
extraction methods

We calculated the mean and weighted mean of the precision, recall and F1-score over

all datasets. We weighted each of the measures using the number of tables in the

respective dataset. The results, shown in Table 6, suggest that the old extraction

algorithm of pdf2gtfs and PDFTables have similar accuracies. However, the low

F1-score of the old algorithm appears to mostly be a coming from the low results of

the TTT dataset. Overall, the new extraction algorithm of pdf2gtfs performed best.

What can be observed, is that the precision of all extraction methods is almost equal.

At the same time, the recall of the new extraction algorithm is significantly higher

than for the other extraction methods. Therefore, we can conclude that the new

extraction method seems to extract fewer incorrect cells, while keeping an equally

high level of precision.

55

mean Precision Recall F1-score

pdftables 80.74% 62.03% 70.16%

pdf2gtfs-old 73.84% 64.42% 68.81%

pdf2gtfs-new 80.74% 95.20% 87.37%

weighted mean Precision Recall F1-score

pdftables 83.90% 63.04% 71.99%

pdf2gtfs-old 84.14% 74.90% 79.25%

pdf2gtfs-new 86.36% 95.56% 90.73%

Table 6: The mean and weighted (by table-count) mean of the precision recall and
F1-score for all datasets and table extraction methods

One final observation: For many of the input files, pdf2gtfs failed to generate GTFS

feeds. This was the case, regardless of which table extraction algorithm we used, and

happened, because pdf2gtfs failed to convert the detected tables into TimeTables.

Currently, if a table does not have a valid DaysCell, no TimeTable can be created

from it, because we need the days to create the GTFSHandler.

5.3 Performance

In this section, we will estimate the performance of individual parts of pdf2gtfs, as

well as the performance, in general.

Overall, PDFTables was the fastest at extracting the tables, closely followed by the

old table extraction algorithm of pdf2gtfs. The new table extraction algorithm was

comparably fast, but still the slowest of the three. We will look at the performance

of the new table extraction in the case of a single table T . In the following R denotes

the total number of rows in T , C denotes the total number of columns in T , and

N = RC denotes the total number of cells in T .

56

For the table expansion, the worst-possible runtime case would occur, for example,

when there is a single time cell and all other cells are in the same row of the time cell.

Further, every cell is in its own column. Then, in each expansion step we have to

check one less node for adjacency than in the previous step. This can be calculated

using the Gaussian Sum Formula, 0.5 · (N2 + N). Finding the neighbor of a cell

can be done in O(1), because the direct neighbor is stored for every cell. For each

expansion step, we need to check for overlaps, link the adjacent cells and insert empty

cells. This can be done in linear time as it only depends on the number of adjacent

cells. As such, the whole expansion can be done in O(N2).

Next, we will estimate the runtime of the basic type inference. We need to check the

content of every cell and compare it to the keywords for the different times. These

checks can be done in O(k) for a single cell, where k is the number of keywords,

because each cell only contains one word. Thus, because usually k ≪ N , the overall

basic type inference takes O(N).

The complexity of the advanced type inference is more difficult to evaluate. Here,

every cell-type check has a different complexity, and we only check the possible types

detected by the basic type inference. Hence, we will simply assume that we need to

check each cell type for each cell. The cell-type check with the highest complexity is

the one for the stop. When checking if a cell is a stop, we need to check the types of

the cells’ row and column. This can be done in O(C + R). The other checks, like the

one to find the relative amount of letters and numbers in the cells’ text, can be done

in O(k), where k is the length of the cells’ text. As with the keyword check from

before, because generally k ≪ N , this can be done in O(1). Thus, the complexity of

the advanced type inference for a single cell is O(N(C + R)). In general, R ∼ C; that

is, the R and C are similar. It follows that R + C ≈ R + R = 2R ≪ R2 ≈ R · C = N

for large R. Hence, we can simplify the complexity to O(N). We need to run the

advanced type inference on all cells, which results in O(N2) to run the advanced

type inference on all cells of T .

57

During the cleanup step of each table, we retrieve all cells of a table with a type.

Given that we do not store the cells by their type in any way, this can only be done

in O(N). We need to iterate over all cells, in order to find out which cell has that

type.

Overall, the table extraction takes at most O(N2).

In general, Dijkstra’s algorithm that we use for the location detection, takes in the

worst case, O(E + V · log V), where, E is the number of edges and V is the number

of vertices, [31]. Because our implementation does not use a Fibonacci heap as is

used in the cited source, the complexity of our implementation can be expected to

be worse, though it should still comparable.

However, the general runtime should be considerably better for our graph. This

stems from the fact that the nodes of our graph are sparsely connected. That is, there

are comparably few nodes for each stop and each node of a stop is only connected to

the nodes of the next stop. The worst case occurs, when multiple consecutive stops

have names that are widely-used terms, like “Bahnhof” (= “station”). In this case,

the overall runtime is considerably and noticeably worse.

We did not see much of a difference in memory usage between the two table extraction

algorithms of pdf2gtfs. Generally it can be said, that the largest impact on the memory

usage was the Python interpreter itself and the reading of the location cache into

memory. On the other hand, when the cache needed to be rebuilt, the memory usage

roughly doubled to 500 MB. This is most probably because of the normalization of

the stop names.

We cannot compare the performance of PDFTables qualitatively with that of pdf2gtfs,

because PDFTables is proprietary. We also have no knowledge about the system

the web service is running on. However, PDFTables was faster than pdf2gtfs when

extracting the tables. This includes the time it took to upload the PDF.

58

6 Conclusion

The results suggest that the new table extraction algorithm is performing better

than the old one. However, more work needs to be done to ensure it works in all

cases at least as good as the old one does.

What we noticed, is that the overall robustness and error-responsiveness of pdf2gtfs

has room for improvement. Many times it was not immediately clear, why a specific

table could not be read. Another problem that occurred was that both table

extraction algorithms were unable to detect times that contain spaces; these times

were recognized as two different cells. This only occurred on the TTT dataset, and

results from the fact that they use a 12-hour clock in the US (e.g., ‘13:42 A’).

Until the aforementioned issues have been addressed, we should hold off the removal

of the previous table detection. Instead, we suggest to use the new algorithm by

default, while improving it, and the old one as a fallback, in case the detection fails,

when using the new algorithm.

Compared to PDFTables, the results of the new table extraction algorithm can be

considered very good. This is expected, because we built pdf2gtfs specifically for

detecting timetables, while PDFTables is able to detect tables in PDFs, in general.

At the same time, the errors made by the new extraction algorithm occurred only in

the cells surrounding a tables’ body, except for the case with split times. These errors

are relatively easy to recover from. Compared to that, the errors made by PDFTables

were a lot more grave, for example the merging of multiple rows or columns.

59

The location detection worked well, when a location was found. If a location was

detected for a stop, in most cases it was within 100 meters of the true location, while

it was never farther than 500 meters away, at least for our datasets. Here, the biggest

difficulty was detecting the correct stop position for a given stop. In rare cases, the

wrong OSM-node was selected, when it had a similar name and was close to the

true node location. For missing locations, the results are spread out far more. In

some cases the interpolated locations had similar accuracy to the detected locations.

However, most interpolated missing locations were within 1000 to 5000 meters from

the real location. In rare cases, they were too far away to be helpful.

One problem that occurred was that sometimes the table detection did not recognize

connections as such. Connections are generally farther away than other stops. Thus,

they were not properly detected, which resulted in more missing locations. In fact,

the highest distances between a missing location and the true location were from

these connections.

In consequence, we can consider the overall results of pdf2gtfs good. At the same time,

there are many improvements we can implement, to improve the overall usability, as

well as the accuracy of the table extraction and location detection.

60

7 Future work

In this chapter, we will provide some ways in which could change pdf2gtfs and

p2g-eval, in order to ensure more accurate results. In Section 7.1 we discuss how

the table extraction and the location detection of pdf2gtfs can be improved. We

include some ideas on how we could develop p2g-eval to increase both its usability

and usefulness in Section 7.2.

7.1 Improvements for pdf2gtfs

We can improve the location detection in two ways. First, we can reduce the number

of missing locations, that is, stops where no location was found. And second, we can

decrease the distance to the true locations.

To begin with, the main reason locations were not detected was that the stop names

used in OSM and in the PDF differ. Otherwise, we would have detected the wrong

location for a stop, instead of no location, at all. One simple solution then, would

be to search a smaller area (< 10 km) around interpolated locations. That way,

we could use more expensive comparisons for the names, without impacting the

performance too much. On the other hand, we could also change the way the nodes

of a specific stop are searched for, in general. For example, we could implement a

fuzzy search, which should be less susceptible to differences in the names than our

current approach. Finally, instead of using QLever, we could allow using a .csv file

containing the stop names and locations, instead. This could improve the results, if

61

the coverage of OSM is suboptimal, or if there is a special naming-scheme of the stops

that is not used by OSM. Overall, these are all comparably simple-to-implement,

or at least straightforward, solutions that should significantly improve the overall

location detection accuracy.

The other way to improve the location detection is to decrease the distance of

detected stop locations to the true stop location. In theory, we could solve this, by

using additional programs to improve the location detection. For example, we could

use a tool like pfaedle [32] or TransitRouter [33]. These tools search for the actual

path a public transport vehicle takes on the map. We could do a rough location

matching using pdf2gtfs first, where we get multiple locations for each stop. Then,

we could use either of these tools to generate the shape for different combinations

of locations. Finally, we would select the locations of the route shape that is best,

by some measure. That measure could be, for example, the length of the route or

its “curviness”. The effectiveness of this approach depends on the measure we use.

Overall, this is more difficult to implement, as we need to completely change the way

we do the location detection.

One way to improve the table detection is to use the graphical hints provided, such

as lines or background color. This would allow us to use the work by Nurminen [10]

as a starting point. We could also use these hints to only complement the existing

table detection, for example, to only detect the outer bounds of the table. On the

other hand, if the detected table has only minor issues, like a typo or a missing cell,

we could also provide the user interface with an option to manually edit detected

tables. This could be done in a way that allows the user to edit, add, or remove

cells; merge and split tables; or change the type of a cell. The downside with this

approach is that it relies on manual intervention. Both of these improvements are

non-trivial to implement, so it might be worthwhile, to look for ways to improve the

type detection and table expansion, first.

As stated in Section 6, the error-responsiveness of pdf2gtfs can be improved. This

62

should at least include the error handling, to show more descriptive error messages,

instead of simply failing the table extraction or the location detection. At the same

time, we could change the TimeTables and GTFSHandler in a way that they work

even if some cells were not detected. For example, if the days on which the service

occurs were not extracted, we could have the user input the missing values, instead.

On the other hand, we could also simply add a single service in the calendar.txt

for each route. While not exactly space-efficient, the GTFS allows this, and it would

enable the user to supply the correct service days.

7.2 Improvements for p2g-eval

The current bottleneck of p2g-eval is the need to create the mapping between the

feeds. If we could map the feeds automatically, we could evaluate pdf2gtfs using more

feeds. The automatic mapping could be done using the stop times. This would only

work, if both feeds contain at least some of the same stop times. However, unless

the stops are given as a .csv file instead of a GTFS feed, as was the case with the

RMV dataset we used, that should always be the case.

We could also evaluate the stop_times.txt, as well as the other parts of the GTFS

feed. This was not possible, due to time constraints.

Another possibility, is to use p2g-eval during development of pdf2gtfs, as part of an

automated test-suite. This could ensure that regressions in the location detection

become apparent immediately. However, extra care needs to be taken to prevent

overfitting.

63

8 Acknowledgments

I would like to thank Patrick Brosi, for getting me into the rabbit hole that is public

transit data and PDF extraction. Additionally, he gave me pointers in the right

direction, whenever I was stuck, and also proofread this thesis.

I would like to thank Prof. Dr. Hannah Bast, for being a great example of a person

I can strive to be like.

Next, I would like to thank my parents, for their support throughout my studies,

regardless of my non-existent time-management skills.

Many thanks to my two sisters, who helped me immensely by proofreading this

thesis.

Finally, I would like to thank the rest of my family and friends, whom I can count

on to be there for me whenever I need them.

64

Bibliography

[1] (2023) VAG Freiburg. Accessed: 2023-05-05. [Online].

Available: https://www.vag-freiburg.de/

[2] (2023) RMV Service Timetables. Accessed: 2023-06-29. [Online].

Available: https://www.rmv.de/c/de/fahrplan/fahrplaene/linienfahrplaene/

fahrplantabellen

[3] (2023) pdfminer.six - converting a pdf file to text. [Online].

Available: https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_

to_text.html

[4] J. Heinzinger. (2023) pdf2gtfs. [Online].

Available: https://github.com/heijul/pdf2gtfs

[5] (2023) OpenStreetMap. Accessed: 2023-05-05. [Online].

Available: https://www.openstreetmap.org

[6] (2023) QLever. Accessed: 2023-06-04. [Online].

Available: https://github.com/ad-freiburg/qlever

[7] GTFS reference. Accessed: 2023-05-07. [Online].

Available: https://developers.google.com/transit/gtfs/reference

[8] (2023) PDFTables. Accessed: 2023-06-29. [Online].

Available: https://pdftables.com/

65

https://www.vag-freiburg.de/
https://www.rmv.de/c/de/fahrplan/fahrplaene/linienfahrplaene/fahrplantabellen
https://www.rmv.de/c/de/fahrplan/fahrplaene/linienfahrplaene/fahrplantabellen
https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_to_text.html
https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_to_text.html
https://github.com/heijul/pdf2gtfs
https://www.openstreetmap.org
https://github.com/ad-freiburg/qlever
https://developers.google.com/transit/gtfs/reference
https://pdftables.com/

[9] J. Heinzinger. (2023) p2g-eval. [Online].

Available: https://github.com/heijul/p2g-eval

[10] A. Nurminen, “Algorithmic Extraction of Data in Tables in PDF Documents,”

Master’s thesis, Tampere University of Technology, Apr. 2013, accessed:

2023-07-03. [Online].

Available: https://trepo.tuni.fi/bitstream/handle/123456789/21520/Nurminen.

pdf

[11] (2023) Camelot. Accessed: 2023-06-04. [Online].

Available: https://github.com/camelot-dev/camelot

[12] (2023) Tabula-java. Accessed: 2023-06-04. [Online].

Available: https://github.com/tabulapdf/tabula-java

[13] M. M. Malik. (2023) Extraction of solar cell data from pdf datasheets. [Online].

Available: https://ad-publications.informatik.uni-freiburg.de/theses/Master_

Moeez_Malik_2023.pdf

[14] (2023) pdfminer.six. [Online].

Available: https://github.com/pdfminer/pdfminer.six

[15] (2023) pdfminer.six faq. [Online].

Available: https://pdfminersix.readthedocs.io/en/latest/faq.html#why-are-

there-cid-x-values-in-the-textual-output

[16] (2023) python chr() builtin. [Online].

Available: https://docs.python.org/3/library/functions.html#chr

[17] (2023) pdfminer.six laparams. [Online].

Available: https://pdfminersix.readthedocs.io/en/latest/reference/composable.

html#laparams

[18] OpenData ÖPNV. Accessed: 2023-05-07. [Online].

Available: https://www.opendata-oepnv.de/

66

https://github.com/heijul/p2g-eval
https://trepo.tuni.fi/bitstream/handle/123456789/21520/Nurminen.pdf
https://trepo.tuni.fi/bitstream/handle/123456789/21520/Nurminen.pdf
https://github.com/camelot-dev/camelot
https://github.com/tabulapdf/tabula-java
https://ad-publications.informatik.uni-freiburg.de/theses/Master_Moeez_Malik_2023.pdf
https://ad-publications.informatik.uni-freiburg.de/theses/Master_Moeez_Malik_2023.pdf
https://github.com/pdfminer/pdfminer.six
https://pdfminersix.readthedocs.io/en/latest/faq.html#why-are-there-cid-x-values-in-the-textual-output
https://pdfminersix.readthedocs.io/en/latest/faq.html#why-are-there-cid-x-values-in-the-textual-output
https://docs.python.org/3/library/functions.html#chr
https://pdfminersix.readthedocs.io/en/latest/reference/composable.html#laparams
https://pdfminersix.readthedocs.io/en/latest/reference/composable.html#laparams
https://www.opendata-oepnv.de/

[19] (2023) OSM Node wiki article. Accessed: 2023-05-05. [Online].

Available: https://wiki.openstreetmap.org/wiki/Node

[20] (2023) OSM Way wiki article. Accessed: 2023-05-05. [Online].

Available: https://wiki.openstreetmap.org/wiki/Way

[21] (2023) OSM Relation wiki article. Accessed: 2023-05-05. [Online].

Available: https://wiki.openstreetmap.org/wiki/Relation

[22] (2023) Sparql. Accessed: 2023-06-04. [Online].

Available: https://www.w3.org/TR/sparql11-query/

[23] (2023) IFOPT standard. Accessed: 2023-05-05. [Online].

Available: https://www.transmodel-cen.eu/ifopt-standard/

[24] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger

Wybe Dijkstra: His Life, Work, and Legacy, 2022, pp. 287–290.

[25] J. Heinzinger. (2023) pdf2gtfs. [Online].

Available: https://ad-blog.informatik.uni-freiburg.de/post/transform-pdf-

timetables-into-gtfs/

[26] Ghostscript. Accessed: 2023-07-02. [Online].

Available: https://www.ghostscript.com/

[27] (2023) pandas. Accessed: 2023-05-11. [Online].

Available: https://www.pandas.pydata.org

[28] (2023) RMV .csv-file containing information about stops. Accessed: 2023-06-29.

[Online].

Available: https://opendata.rmv.de/site/start.html

[29] (2023) Datensatz der VAG Freiburg. Accessed: 2023-06-29. [Online].

Available: https://www.vag-freiburg.de/service-infos/downloads/gtfs-daten

67

https://wiki.openstreetmap.org/wiki/Node
https://wiki.openstreetmap.org/wiki/Way
https://wiki.openstreetmap.org/wiki/Relation
https://www.w3.org/TR/sparql11-query/
https://www.transmodel-cen.eu/ifopt-standard/
https://ad-blog.informatik.uni-freiburg.de/post/transform-pdf-timetables-into-gtfs/
https://ad-blog.informatik.uni-freiburg.de/post/transform-pdf-timetables-into-gtfs/
https://www.ghostscript.com/
https://www.pandas.pydata.org
https://opendata.rmv.de/site/start.html
https://www.vag-freiburg.de/service-infos/downloads/gtfs-daten

[30] (2023) VGN GTFS-feed. Accessed: 2023-06-29. [Online].

Available: https://www.vgn.de/web-entwickler/open-data/

[31] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved

network optimization algorithms,” Journal of the ACM (JACM), vol. 34, no. 3,

pp. 596–615, 1987.

[32] pfaedle. Accessed: 2023-07-05. [Online].

Available: https://github.com/ad-freiburg/pfaedle

[33] Public Transit Map-Matching with GraphHopper. Accessed: 2023-07-02.

[Online].

Available: https://ad-publications.cs.uni-freiburg.de/theses/Bachelor_Michael_

Fleig_2021.pdf

68

https://www.vgn.de/web-entwickler/open-data/
https://github.com/ad-freiburg/pfaedle
https://ad-publications.cs.uni-freiburg.de/theses/Bachelor_Michael_Fleig_2021.pdf
https://ad-publications.cs.uni-freiburg.de/theses/Bachelor_Michael_Fleig_2021.pdf

	1 Introduction
	2 Related Work
	2.1 Algorithmic Extraction of Data in Tables in PDF Documents
	2.2 Camelot and Tabula-Java
	2.3 Solutions Based on Machine Learning
	2.4 PDFTables

	3 Background
	3.1 Bounding Box
	3.2 PDF
	3.3 Tables
	3.3.1 Caveats

	3.4 PDF Extraction
	3.4.1 Caveats

	3.5 GTFS
	3.6 OpenStreetMap
	3.7 Graph Search using Dijkstra's Algorithm

	4 Approach
	4.1 Extraction Tool pdf2gtfs
	4.1.1 Old Table Extraction
	4.1.2 GTFS Creation
	4.1.3 Location Detection
	4.1.4 Export

	4.2 New Table Extraction
	4.2.1 Data Structures
	4.2.2 Character Extraction
	4.2.3 Basic Type Inference
	4.2.4 Table Creation and Splitting
	4.2.5 Table Expansion
	4.2.6 Advanced Type Detection
	4.2.7 Cleanup and TimeTable Creation

	4.3 Evaluation Tool p2g-eval

	5 Experiments
	5.1 Location Detection Evaluation
	5.1.1 Dataset Preparation
	5.1.2 Results

	5.2 Table Extraction Evaluation
	5.2.1 Dataset Preparation
	5.2.2 Configuration
	5.2.3 Evaluation Measures
	5.2.4 Results

	5.3 Performance

	6 Conclusion
	7 Future work
	7.1 Improvements for pdf2gtfs
	7.2 Improvements for p2g-eval

	8 Acknowledgments
	Bibliography

