
Bachelor Thesis: Fast Approximate Title Matching

Bachelor Thesis: Fast Approximate Title Matching

Mirko Brodesser

University of Freiburg, Department of Computer Science
Chair of Algorithms and Data Structures
Prof. Dr. Hannah Bast, Marjan Celikik

21. September 2010

1

Bachelor Thesis: Fast Approximate Title Matching

Problem Definition

Given a large set of clean records (titles) and a query

We want the title with the largest similarity to the query;
in the shortest possible time

We look at some examples...

The different types of errors:

Missing words

Additional words

Spelling mistakes

Concatenations

2

Bachelor Thesis: Fast Approximate Title Matching

Problem Definition

Given a large set of clean records (titles) and a query

We want the title with the largest similarity to the query;
in the shortest possible time

We look at some examples...

The different types of errors:

Missing words

Additional words

Spelling mistakes

Concatenations

3

Bachelor Thesis: Fast Approximate Title Matching

Similarity measures: Jaccard similarity

We need a similarity measure which takes these types of errors into
account.

One possibility: Jaccard similarity:
Q, R are sets of tokens (= either words or n-grams)

J(Q,R) = |Q∩R|
|Q∪R|

Example:

Query: almostfamous trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 8
13 > J(Query ,Record2) = 3

17

4

Bachelor Thesis: Fast Approximate Title Matching

Similarity measures: Jaccard similarity

We need a similarity measure which takes these types of errors into
account.

One possibility: Jaccard similarity:
Q, R are sets of tokens (= either words or n-grams)

J(Q,R) = |Q∩R|
|Q∪R|

Example:

Query: almostfamous trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 8
13 > J(Query ,Record2) = 3

17

5

Bachelor Thesis: Fast Approximate Title Matching

Similarity measures: Jaccard similarity

We need a similarity measure which takes these types of errors into
account.

One possibility: Jaccard similarity:
Q, R are sets of tokens (= either words or n-grams)

J(Q,R) = |Q∩R|
|Q∪R|

Example:

Query: almostfamous trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 8
13 > J(Query ,Record2) = 3

17

6

Bachelor Thesis: Fast Approximate Title Matching

Similarity measures: Jaccard similarity

We need a similarity measure which takes these types of errors into
account.

One possibility: Jaccard similarity:
Q, R are sets of tokens (= either words or n-grams)

J(Q,R) = |Q∩R|
|Q∪R|

Example:

Query: almostfamous trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 8
13 > J(Query ,Record2) = 3

17

7

Bachelor Thesis: Fast Approximate Title Matching

Jaccard similarity

Assume the query has two spellings mistakes:
Example:

Query: almustfamuus trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 2
13 < J(Query ,Record2) = 3

17

Observe: Position of a spelling mistake influences similarity

8

Bachelor Thesis: Fast Approximate Title Matching

Jaccard similarity

Assume the query has two spellings mistakes:
Example:

Query: almustfamuus trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 2
13 < J(Query ,Record2) = 3

17

Observe: Position of a spelling mistake influences similarity

9

Bachelor Thesis: Fast Approximate Title Matching

Jaccard similarity

Assume the query has two spellings mistakes:
Example:

Query: almustfamuus trash Matching 3-grams

Record1: almost famous {alm, lmo, mos, ost,
fam, amo, mou, ous}

Record2: the trash story {tra, ras, ash}

⇒ J(Query ,Record1) = 2
13 < J(Query ,Record2) = 3

17

Observe: Position of a spelling mistake influences similarity

10

Bachelor Thesis: Fast Approximate Title Matching

Weighted Jaccard similarity

3) Our similarity measure, weighted Jaccard similarity:

R = Set of words from the record.
Q = Set of non-overlapping substrings from the ’normalized’ query
with the record, for example:

Query: almostfamous trash
Record: almost famous

Q: {almost, famous}

WJ(Q,R) = W (Q∩R)
W (Q∪R) , where W (S) =

∑
s∈S w(s)

and w(s) = s.length() - punishment(s).

11

Bachelor Thesis: Fast Approximate Title Matching

Weighted Jaccard similarity

3) Our similarity measure, weighted Jaccard similarity:

R = Set of words from the record.
Q = Set of non-overlapping substrings from the ’normalized’ query
with the record, for example:

Query: almostfamous trash
Record: almost famous

Q: {almost, famous}

WJ(Q,R) = W (Q∩R)
W (Q∪R) , where W (S) =

∑
s∈S w(s)

and w(s) = s.length() - punishment(s).

12

Bachelor Thesis: Fast Approximate Title Matching

Weighted Jaccard similarity

3) Our similarity measure, weighted Jaccard similarity:

R = Set of words from the record.
Q = Set of non-overlapping substrings from the ’normalized’ query
with the record, for example:

Query: almostfamous trash
Record: almost famous

Q: {almost, famous}

WJ(Q,R) = W (Q∩R)
W (Q∪R) , where W (S) =

∑
s∈S w(s)

and w(s) = s.length() - punishment(s).

13

Bachelor Thesis: Fast Approximate Title Matching

An existing algorithm: ppjoin

Xiao et al. described an algorithm called ppjoin:

allows to use 3-grams

allows to use Jaccard similarity

has a threshold parameter for the similarity

Basic idea:

Pre-process records: build inverted index over the 3-grams of
the words

Index depends on the threshold. Example: threshold = 1.0 ⇒
Only one 3-gram per record has to be indexed

Create the candidate set from the 3-grams of the query

Apply different filters, for example size filtering to reduce the
candidate set.

Problem in our case: low threshold required large inverted listes
 long running times.

14

Bachelor Thesis: Fast Approximate Title Matching

An existing algorithm: ppjoin

Xiao et al. described an algorithm called ppjoin:

allows to use 3-grams

allows to use Jaccard similarity

has a threshold parameter for the similarity

Basic idea:

Pre-process records: build inverted index over the 3-grams of
the words

Index depends on the threshold. Example: threshold = 1.0 ⇒
Only one 3-gram per record has to be indexed

Create the candidate set from the 3-grams of the query

Apply different filters, for example size filtering to reduce the
candidate set.

Problem in our case: low threshold required large inverted listes
 long running times.

15

Bachelor Thesis: Fast Approximate Title Matching

An existing algorithm: ppjoin

Xiao et al. described an algorithm called ppjoin:

allows to use 3-grams

allows to use Jaccard similarity

has a threshold parameter for the similarity

Basic idea:

Pre-process records: build inverted index over the 3-grams of
the words

Index depends on the threshold. Example: threshold = 1.0 ⇒
Only one 3-gram per record has to be indexed

Create the candidate set from the 3-grams of the query

Apply different filters, for example size filtering to reduce the
candidate set.

Problem in our case: low threshold required large inverted listes
 long running times.

16

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

Our algorithm: atMatch (approximate title Match)

Uses our Weighted Jaccard similarity

Basic idea:

Pre-processing: index all words from the records, except
stopwords

Query: find all valid approximate substrings. Example:

Original query: t h e f a s t f i r i o u s

Approx. substr.: f u r i o u s
Approx. substr.: t h e f t
Approx. substr.: f a u s t
Approx. substr.: f a s t
Approx. substr.: t h e
Approx. substr.: a

17

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

Our algorithm: atMatch (approximate title Match)

Uses our Weighted Jaccard similarity

Basic idea:

Pre-processing: index all words from the records, except
stopwords
Query: find all valid approximate substrings. Example:

Original query: t h e f a s t f i r i o u s

Approx. substr.: f u r i o u s
Approx. substr.: t h e f t
Approx. substr.: f a u s t
Approx. substr.: f a s t
Approx. substr.: t h e
Approx. substr.: a

18

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

Our algorithm: atMatch (approximate title Match)

Uses our Weighted Jaccard similarity

Basic idea:

Pre-processing: index all words from the records, except
stopwords
Query: find all valid approximate substrings. Example:

Original query: t h e f a s t f i r i o u s

Approx. substr.: f u r i o u s
Approx. substr.: t h e f t
Approx. substr.: f a u s t
Approx. substr.: f a s t
Approx. substr.: t h e
Approx. substr.: a

19

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

Candidate set is generated from the inverted lists of the valid
approximate substring, in our example:

Candidate Id Record

C1 the fast and the furious
C2 i am furious
C3 go fast

Then match all valid approximate substrings with the
candidates:

Candidate Id Record

C1 the fast and the furious
C2 i am furious
C3 go fast

Calculate the record with highest weighted Jaccard similarity
from the candidates

20

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

Candidate set is generated from the inverted lists of the valid
approximate substring, in our example:

Candidate Id Record

C1 the fast and the furious
C2 i am furious
C3 go fast

Then match all valid approximate substrings with the
candidates:

Candidate Id Record

C1 the fast and the furious
C2 i am furious
C3 go fast

Calculate the record with highest weighted Jaccard similarity
from the candidates

21

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

Candidate set is generated from the inverted lists of the valid
approximate substring, in our example:

Candidate Id Record

C1 the fast and the furious
C2 i am furious
C3 go fast

Then match all valid approximate substrings with the
candidates:

Candidate Id Record

C1 the fast and the furious
C2 i am furious
C3 go fast

Calculate the record with highest weighted Jaccard similarity
from the candidates

22

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

The valid approximate substrings are tried to match by decreasing
length

Reason: We always want to allow the largest substrings to
match, for example:

Query: casablanca
Valid approx. substrings: casablanca, casa

Candidate record: la casa vianello casablanca

Disadvantage: greedy not optimal. Example:

Query: abcdef
Candidate record: abc abcde def

But: this case is expected to be rare

23

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

The valid approximate substrings are tried to match by decreasing
length

Reason: We always want to allow the largest substrings to
match, for example:

Query: casablanca
Valid approx. substrings: casablanca, casa

Candidate record: la casa vianello casablanca

Disadvantage: greedy not optimal. Example:

Query: abcdef
Candidate record: abc abcde def

But: this case is expected to be rare

24

Bachelor Thesis: Fast Approximate Title Matching

Our algorithm: atMatch

The valid approximate substrings are tried to match by decreasing
length

Reason: We always want to allow the largest substrings to
match, for example:

Query: casablanca
Valid approx. substrings: casablanca, casa

Candidate record: la casa vianello casablanca

Disadvantage: greedy not optimal. Example:

Query: abcdef
Candidate record: abc abcde def

But: this case is expected to be rare

25

Bachelor Thesis: Fast Approximate Title Matching

Experimental results

We compare ppjoin (using Jaccard similarity) with our algorithm
atMatch:

1) IMDB titles, about 1.5 million records, 109 queries (filenames):

Algorithm Average elapsed time Correct assignments
PPJOIN-0.05 468.69 ms 69.72 %
PPJOIN-0.1 201.88 ms 69.72 %
PPJOIN-0.2 107.34 ms 64.22 %
PPJOIN-0.3 60.89 ms 54.13 %
PPJOIN-0.4 39.29 ms 44.59 %
PPJOIN-0.5 22.23 ms 24.77 %
PPJOIN-0.6 10.53 ms 8.25 %
PPJOIN-0.7 4.38 ms 2.75 %
ATMATCH 46.20 ms 78.90 %

Tabelle: Experimental results for IMDB. 26

Bachelor Thesis: Fast Approximate Title Matching

Experimental results: DBLP

2) DBLP titles, about 1.5 million records, 100 randomly chosen
queries with different added types of errors:

1 Typos: For each query, we randomly changed one
letter/number per 10 characters.

2 Adding words: For each query, we randomly added one word
per 12 characters.

3 Removing words: For each query, we randomly removed one
word per 15 characters.

4 Concatenations: For each query, we randomly added a
concatenation of two words per 6 characters.

27

Bachelor Thesis: Fast Approximate Title Matching

Experimental results: DBLP

TE = Typos, AE = Added words, RE = Rem. words, CE = Concat.

Algorithm Avg. time Corr. assignm. TE AE RE CE
PPJOIN-0.1 3541.73 ms 99 % T T F F
PPJOIN-0.2 1758.90 ms 99 % T T F F
PPJOIN-0.3 1103.48 ms 97 % T T F F
ATMATCH 1205.17 ms 100 % T T F F

PPJOIN-0.1 1857.43 ms 48 % T T T F
PPJOIN-0.2 968.91 ms 48 % T T T F
PPJOIN-0.3 553.75 ms 36 % T T T F
ATMATCH 278.51 ms 52 % T T T F

PPJOIN-0.1 1533.88 ms 44 % T T T T
PPJOIN-0.2 782.76 ms 44 % T T T T
PPJOIN-0.3 594.46 ms 34 % T T T T
ATMATCH 272.63 ms 52 % T T T T

28

Bachelor Thesis: Fast Approximate Title Matching

Possible improvements

1) Considering the ordering of the words, for example:

Id Record

R1 date movie 2006
R2 movie date 2006

2) Popularity: For example if two movies have the same similarity,
choose the more popular one

Query: aspirin flyboys Popularity
Candidate 1: aspirin 2006 5 votes
Candidate 2: flyboys 2006 13938 votes

29

Bachelor Thesis: Fast Approximate Title Matching

Possible improvements

1) Considering the ordering of the words, for example:

Id Record

R1 date movie 2006
R2 movie date 2006

2) Popularity: For example if two movies have the same similarity,
choose the more popular one

Query: aspirin flyboys Popularity
Candidate 1: aspirin 2006 5 votes
Candidate 2: flyboys 2006 13938 votes

30

Bachelor Thesis: Fast Approximate Title Matching

Possible improvements

3) Ignore certain valid approximate substrings, for example:

Original query: h a n g o v e r

Valid correct substr.: h a n g o v e r
Valid correct substr.: h a n g
Valid correct substr.: o v e r
Valid approx. substr.: c o v e r

Idea: ignore approximate substrings of “long” (e.g. length ≥ 8)
correct substrings.

31

Bachelor Thesis: Fast Approximate Title Matching

Possible improvements

3) Ignore certain valid approximate substrings, for example:

Original query: h a n g o v e r

Valid correct substr.: h a n g o v e r
Valid correct substr.: h a n g
Valid correct substr.: o v e r
Valid approx. substr.: c o v e r

Idea: ignore approximate substrings of “long” (e.g. length ≥ 8)
correct substrings.

32

Bachelor Thesis: Fast Approximate Title Matching

Thank you for your attention!

33

