
Albert-Ludwig-University Freiburg
Chair of Algorithms and Data Structures

SQL-petrimaps: Visualizing
Geospatial Data using PostgreSQL

and PostGIS

Tobias Bürger

A thesis submitted in Partial Fulfillment
of the Requirements for the Degree of

Bachelor of Science (B.Sc.)

Supervisor:
Prof. Dr. Hannah Bast

Advisor:
Dr. Patrick Brosi

January 14, 2025

Declaration

I hereby declare, that I am the sole author and composer of my thesis and
that no other sources or learning aids, other than those listed, have been used.
Furthermore, I declare that I have acknowledged the work of others by providing
detailed references of said work.

I also hereby declare that my thesis has not been prepared for another exami-
nation or assignment, either in its entirety or excerpts thereof.

. .
Place, Date

. .
Signature

Abstract

petrimaps is a tool developed by the Chair of Algorithms and Data Structures
at the Albert-Ludwig-University of Freiburg. petrimaps is able to visualize
"hundreds of millions of geospatial query results while remaining responsive.
This is in contrast to other tools that slow down or become unresponsive when
the number of objects in the result is large" [1]. While this is a nice property,
petrimaps is not yet a very stable or feature-rich tool. The original paper
[1] proposes to support user-written SPARQL queries, displaying results as a
heatmap or as full objects, and exporting the results as CSV, TSV or GeoJSON.
Later, I implemented a responsive loading bar, additional user interface to
conveniently send requests to the backend and the ability to upload GeoJSON
files. This thesis introduces SQL-petrimaps to close a major gap in the list of
supported features. We look at how we can evaluate the query results of any
SQL query sent to a PostgreSQL database and use petrimaps as the platform
to visualize contained geospatial data. We benchmark SQL-petrimaps using
multiple datasets.

i

Acknowledgements

I would like to thank Prof. Dr. Hannah Bast for supervising this thesis and for
giving me the opportunity to complete it in this line of research. I would also
like to thank Dr. Patrick Brosi for his personal support and for his suggestions.
In addition, I would like to thank Dr. Rainer Ullmann, Thomas Bürger, Manuel
Berger and Sofie Hofmann for proofreading this thesis.

ii

Contents

List of Figures vi

1. Introduction 1
1.1. Motivation . 1
1.2. Problem . 1
1.3. Approach . 2

2. Background 3
2.1. PostgreSQL . 3
2.2. PostgreSQL: OIDs . 3
2.3. PostGIS . 4
2.4. PostGIS: ST_AsText . 4
2.5. SQL queries . 4
2.6. Querying tables . 5
2.7. libpqxx . 5
2.8. Frontend and backend . 5
2.9. GIS . 5
2.10. pgAdmin 4 . 6
2.11. osm2pgsql . 6

3. Related Work 7
3.1. QGIS . 7
3.2. GRASS GIS . 8
3.3. OpenJUMP . 8

iii

Contents

4. Methods 12
4.1. Expanding select statements . 12
4.2. Expanding select statements: Example 14
4.3. SQL queries in petrimaps : General steps 15

4.3.1. Frontend: SQL query input 15
4.3.2. Backend: Server . 16
4.3.3. Backend: SQLCache . 16
4.3.4. Backend: SQLRequestor 16
4.3.5. Backend: Server . 16
4.3.6. Frontend: Map update 17

4.4. SQLCache: General steps . 17
4.4.1. Retrieving table names and column type names 18

Retrieving table names by OIDs 18
Retrieving column type names by OIDs 19

4.4.2. Expanding select statements 20
4.4.3. Building the final query 21
4.4.4. Saving RAM . 21

Parsing the result table in batches 21
Querying non-geometry data 22

4.4.5. Building the geometry count query 22
4.4.6. Parsing the geometry WKTs 23

5. Benchmarking 27
5.1. Execution times . 28

5.1.1. Small-sized dataset . 28
Low-complexity queries 28
Medium-complexity queries 31
High-complexity queries 34

5.1.2. Medium-sized dataset . 37
Low-complexity queries 38
Medium-complexity queries 39
High-complexity queries 41

iv

Contents

5.1.3. Large-sized dataset . 42
Low-complexity queries 43
Medium-complexity queries 45
High-complexity queries 47

5.2. Results . 49

6. Conclusion and Outlook 50
6.1. Conclusion . 50
6.2. Outlook . 50

7. Bibliography 52

Appendix A. Specifications 54
A.0.1. Local Machine . 54
A.0.2. Software . 54

v

List of Figures

3.1. The import dialog to visualize user-written SQL queries in QGIS 9
3.2. The import dialog to visualize tables in GRASS GIS 10
3.3. The import dialog to visualize user-written SQL queries in Open-

JUMP . 11

4.1. Expanding select statements: Example query result table 14
4.2. Sequence diagram displaying the general steps of petrimaps . . . 17
4.3. The result table of the example Table Names query 19
4.4. The result table of the example Column Type Names query . . . 20
4.5. Inspecting a Point geometry by displaying non-geometry data . 25
4.6. Example geometries and their WKTs for all geometry types . . 26
4.7. Example of parsing a MultiPoint 26

vi

1. Introduction

1.1. Motivation

Geospatial analysis has become increasingly popular and important. As more
and more large geospatial datasets become publicly available, the need to
efficiently visualize large amounts of geospatial data has grown. petrimaps
provides this functionality and is easy to use. However, it lacks important
features to be versatile enough. One of these missing features is the use of SQL
queries to retrieve data from an SQL database, as SQL databases have always
been a popular choice for storing data sets of any size in a structured way. My
contribution to this platform, SQL-petrimaps, fills this gap. It is capable of
extracting geospatial data resulting from any valid SQL query and enables
petrimaps to visualize around 30 000 000 geometries in 55 minutes.

1.2. Problem

By allowing the user to enter any valid SQL query, we have to deal with several
problems. If the query returns a result table, we need to find out which of
the selected columns contain geospatial data. We also need to retrieve that
geospatial data in a format that can be parsed into a data structure used
internally by petrimaps. Since the backend is coded in C++ for performance
reasons, we use the official C++ client API for PostgreSQL, libpqxx, to com-
municate with a PostgreSQL database. This PostgreSQL database uses the
PostGIS extension to handle geospatial data. If we send the user-written query

1

1. Introduction

unmodified, the geospatial data in the result table will be encoded as binary
objects that cannot be easily parsed. The official PostGIS workshop suggests
that external programs should not try to use this internal representation and
convert it to another format instead [2]. This means, we have to use one of
the helper functions that PostGIS provides and rewrite the query to get a
parsable representation in the result table. petrimaps uses WKT (Well-Known
Text) by default, so we choose the ST_AsText helper function to convert the
binary objects to their WKT representation. The problem with using these
helper functions is that they can only take a single column as an argument.
This leads to two points: Firstly, we need to know beforehand which columns
contain geometry so that we can restrict calls of ST_AsText to them. Secondly,
and this is the bigger problem, we have to rewrite *-select statements in the
query because a column in the result table selected by a *-select statement can
contain geometry.

1.3. Approach

SQL-petrimaps executes a series of SQL queries in order to write a final query
that returns almost the same result table as the original user-written query.
The only, but important, difference is that this result table of the final query
contains the WKT of the geometries instead. The general idea is to guarantee
that each select statement of the final query maps to exactly one column of
the result table. This way, we can always call ST_AsText on a select statement
whenever it maps to a column that contains geometry. We also know that the
columns in the result table will be in the same order as the select statements
in the user-written query that select them. We can use this to our advantage,
when rewriting the *-select statements. We call the process of rewriting the
*-select statements expanding, because we are expanding one *-select statement
into several new select statements.

2

2. Background

In this chapter we will look at related background and terms and see how they
relate to the work done in this thesis. This way, we can better understand the
tools we use to achieve our goal.

2.1. PostgreSQL

PostgreSQL is a free and open source database system that uses and extends
the SQL language. Because of its long development history and robust feature
set, it has become a popular choice among available SQL database systems [6].
SQL database systems operate with tables consisting of rows and columns that
can be combined to retrieve related data.

2.2. PostgreSQL: OIDs

Object IDentifiers (OIDs) are used internally by PostgreSQL as primary keys
for various system tables [7]. We use them in Sec. 4.4.1 to retrieve a text
representation for the names of tables and column types.

3

2. Background

2.3. PostGIS

PostGIS is an extension for PostgreSQL. It adds support for storing, indexing
and querying geospatial data. This way, geospatial data can be both stored
and processed efficiently. With its rich set of spatial functions, geospatial data
can be analyzed conveniently [10].

2.4. PostGIS: ST_AsText

As mentioned in Sec. 1.2, we have to use a PostGIS helper function to retrieve
geometry in a parsable format. We can choose between the WKB (Well-Known
Binary) and WKT (Well-Known Text) representation. We can also retrieve a
so-called SRID (Spatial Reference IDentifier) for each geometry that tells us how
coordinates within the geometry have to be interpreted in terms of projection
[16]. Because petrimaps uses WKT by default and expects coordinates as
latitude and longitude, we choose the PostGIS helper function ST_AsText

which converts geometry to WKT and omits the SRID [5].

2.5. SQL queries

Using SQL queries, we can communicate with our PostgreSQL database. They
are mostly used to create new tables, alter existing tables or to retrieve data
from existing tables. In SQL-petrimaps we assume that we have a PostgreSQL
database instance running that already stores all the data we need. Thus, we
focus on user-written queries that retrieve data.

4

2. Background

2.6. Querying tables

In order to retrieve data, we have to query tables. This means, that we have to
specify which columns of which tables we want to select under which restrictions.
The SQL standard offers a rich syntax to do this, so that we can always retrieve
the data we want [8]. The retrieved data itself is again represented as a table
that we call result table. We call all statements that select columns select
statements.

2.7. libpqxx

Because petrimaps is being developed using C++, we also need a C++ library
that allows us to send SQL queries to our PostgreSQL database and evaluate
the result table. libpqxx is the official C++ client API for PostgreSQL and thus
an obvious choice [13].

2.8. Frontend and backend

In a piece of software we differentiate between frontend and backend. The
frontend is the part that is presented to the user, while the backend processes
data in the background. In petrimaps we regard the website accessed through
the browser as the frontend and the server we send requests to as the backend
[14].

2.9. GIS

GIS stands for Geographic Information System. Any system that can handle
geospatial data is a GIS [15]. In this thesis we consider a GIS to be a piece of
software.

5

2. Background

2.10. pgAdmin 4

pgAdmin 4 is an open source administration and development platform for
PostgreSQL [12]. It provides a rich user interface to communicate with Post-
greSQL. Within this thesis we use it primarily to execute SQL queries and to
inspect their result tables.

2.11. osm2pgsql

"Osm2pgsql is an open source tool for importing OpenStreetMap (OSM) data
into a PostgreSQL/PostGIS database" [11]. We use it to import the data of
the large-sized dataset into PostgreSQL that we use in Sec. 5.1.3.

6

3. Related Work

There are only a few theses or papers available that are related to querying a
PostgreSQL database in order to visualize the results. They usually also use
other GIS to communicate with an SQL database and thus leave out most of the
information on how the results are being retrieved. So instead, we look at those
other relevant GIS and see how they perform when given the problem we want
to solve in this thesis. There are several GIS available that can communicate
with a PostgreSQL database that uses the PostGIS extension. But many of
them do not allow user-written queries or expect a specific query structure (e.g.
GeoServer and MapServer). Additionally, it is very difficult or impossible to
gather information on how these GIS communicate with PostgreSQL. Most
of them keep all the result data in RAM, which becomes a huge problem if
this data becomes too big. We try to visualize the results of some user-written
queries. Specifically, we try to visualize the table planet_osm_line from
the large-sized dataset we use later on which contains more than 17 million
geometries. Specifications of the local machine used for these tests are listed in
Appx. A.

3.1. QGIS

QGIS allows us to connect to a PostgreSQL database, execute user-written
SQL queries, and view the result table of the query. We can convert the result
table to a new layer so that we can visualize the geometry data it contains.
This conversion requires us to select exactly one column name from which to

7

3. Related Work

extract the geometry. This process allows us to filter out unwanted geometry,
and by creating multiple layers, we can still visualize all of the geometry. The
downside is extra work. By default, SQL-petrimaps wants to assume that all
selected columns are intentionally selected. There is no feedback about the
importing progress and when trying to import planet_osm_line, there was
not enough RAM available. The import dialog can be seen in Fig. 3.1 below.

3.2. GRASS GIS

GRASS GIS also allows us to connect to a PostgreSQL database and execute
user-written SQL queries using db.select. But here, the geometry columns
are omitted. We can create new layers using v.external to visualize entire
database tables. We can see a console that displays the current importing
progress. planet_osm_line was imported after roughly 22 minutes, but the
user interface became too unresponsive after trying to inspect them. Overall,
there is no functionality to visualize user-written SQL queries. The import
dialog to visualize whole tables can be seen in Fig. 3.2 below.

3.3. OpenJUMP

OpenJUMP allows us to connect to a PostgreSQL database and execute user-
written SQL queries. A new layer is created that visualizes the extracted
geometries and we can inspect the result table of individual geometries. When
trying to import planet_osm_line, there was not enough RAM available.
Again, the import dialog can be seen in Fig. 3.3 below.

8

3. Related Work

Figure 3.1: The import dialog to visualize user-written SQL queries in QGIS. We
can see the user-written query in the top field. After we execute the
user-written query, we can see the result table below. Then we can
select a single column that contains geometry and load the geometry on
a new layer.

9

3. Related Work

Figure 3.2: The import dialog to visualize tables in GRASS GIS. After we select a
PostgreSQL database that uses PostGIS, we can see a list of all available
tables. We can now select the tables we wish to visualize.

10

3. Related Work

Figure 3.3: The import dialog to visualize user-written SQL queries in OpenJUMP.
We have to select a connection to a PostgreSQL database that uses
PostGIS, enter a name for the layer that will be created and enter a
user-written query.

11

4. Methods

4.1. Expanding select statements

Our goal is to guarantee that one select statement maps to exactly one column
name. This way, we know that we can safely call ST_AsText on a select
statement if the column it maps to contains geometry. Therefore, we want
to show that given a function 𝑚 that maps the select statements of the user-
written query to possibly multiple columns, we can obtain a new function
that remaps equivalent select statements to exactly one column each. With
equivalent select statements, we refer to select statements that collectively
select the same columns as the select statements in the user-written query.

We define 𝑞 to be a valid user-written query and Sel to be the select statements
within 𝑞. Further, let Col be the column names of the result table we obtain
by executing 𝑞. To stay analogous to vectors used in C++, we define them as
tuples to keep order and to allow duplicates. We see that |Col| ≥ |Sel|, because
each select statement maps to at least one column. Thus, we define 𝑚 to be
a mapping from the index of a select statement in Sel to the indices of the
column names in Col. There exist two cases now:

1. ∀𝑖 ∈ {0, 1, . . . , |Sel| − 1} : |𝑚(𝑖)| = 1:
Every select statement maps to exactly one column name. In this case 𝑚

is the desired mapping.

12

4. Methods

2. ∃𝑖 ∈ {0, 1, . . . , |Sel| − 1} : |𝑚(𝑖)| > 1:
There is at least one select statement that maps to more than one column.
Thus, we have to construct a new mapping �̃�. Because of the case
condition, we know that ∀𝑗 ∈ 𝑚(𝑖) : Col(𝑗) is not an alias. This is
because SQL only allows aliases for select statements that map to a single
column. Thus, we define ℓ𝑖 := |𝑚(𝑖)| and can replace Sel(𝑖) in the query
by Col(𝑚(𝑖)0)), Col(𝑚(𝑖)1), . . . , Col(𝑚(𝑖)ℓ−1). Knowing this, we can
create equivalent select statements S̃el:

∀𝑖 ∈ {0, 1, . . . , |Sel| − 1}:

a) if |𝑚(𝑖)| = 1:
S̃el(𝑖) := (Sel(𝑖))

b) if |𝑚(𝑖)| > 1:
∀𝑗 ∈ 𝑚(𝑖) : S̃el(𝑖)𝑗 := Col(𝑚(𝑖)𝑗)

Please note that a select statement could be prefixed with a table
name that will be omitted in Col. If that is the case, we also add
the table name as a prefix to Col(𝑚(𝑖)𝑗) to prevent ambiguity.

S̃el has the same structure as 𝑚, so we can also regard 𝑚 as a mapping
from Sel to S̃el. Because of how we defined S̃el, we know that every select
statement maps to exactly one column name. We also know that we have
as much select statements in S̃el as we have column names in Col. This
means that we can flatten S̃el to a tuple that does not contain tuples
itself. This process can be seen in Sec. 4.2 below. We obtain our desired
mapping �̃�:
∀𝑖 ∈ {0, 1, . . . , |S̃elflat| − 1} : �̃�(𝑖) := 𝑖.

13

4. Methods

4.2. Expanding select statements: Example

Let us take a simple query 𝑞 as an example:

SELECT "WKT_Points".*, "WKT_Points".geom AS geometry,

"WKT_LineStrings".* FROM "WKT_Points", "WKT_LineStrings";

The result table of 𝑞 can be seen in Fig. 4.1.

Figure 4.1: The result table of the example query 𝑞 shows how select statements
are being expanded.

In this case we have:

Sel = ("WKT_Points".*, "WKT_Points".geom AS geometry,

"WKT_LineStrings".*)

Col = (id, geom, geometry, id, geom)

𝑚 = ((0, 1), (2), (3, 4))

Because we have at least one select statement, two in this case, that map to
more than one column name, we construct our new select statements S̃el:

S̃el = (("WKT_Points".id, "WKT_Points".geom),

("WKT_Points".geom AS geometry),

("WKT_LineStrings".id, "WKT_LineStrings".geom))

14

4. Methods

We flatten S̃el to obtain:

S̃elflat = ("WKT_Points".id, "WKT_Points".geom,

"WKT_Points".geom AS geometry,

"WKT_LineStrings".id, "WKT_LineStrings".geom)

Now we can define the trivial mapping �̃�:
∀𝑖 ∈ {0, 1, . . . , |S̃elflat| − 1} : �̃�(𝑖) := 𝑖.

4.3. SQL queries in petrimaps: General steps

We will now take a closer look at the approach used to obtain the geospatial
data from any user-written query. But first, to understand where this takes
place in the petrimaps architecture, we will take a look at the general steps
that must be taken from receiving a user-written query to displaying the results
on a map in chronological order. Fig. 4.2 also shows a sequence diagram that
visualizes the process. Please note: these steps focus only on the most relevant
aspects. Explaining everything in detail would go beyond the scope of this
thesis.

4.3.1. Frontend: SQL query input

When the user opens the website, a menu will appear with three tabs. One for
SPARQL queries, one for SQL queries and one for uploading GeoJSON files.
By clicking on the SQL query tab, a small text editor and an execute button
show up. When the user clicks on this button, the text inside the editor will
be sent to the petrimaps backend as an SQL query request.

15

4. Methods

4.3.2. Backend: Server

In the backend, an instance of the Server class receives this request and handles
it. A geometry cache SQLCache is created that receives the SQL query.

4.3.3. Backend: SQLCache

On creation, the SQLCache establishes a new connection to the PostgreSQL
database using libpqxx. The credentials needed to establish this connection
are hardcoded. Now, depending on the structure of the received SQL query,
the SQLCache executes additional SQL queries and rewrites the original query
such that it can parse the geometries in the final result table. Afterwards, the
SQLCache uses multiple datastructures to store the parsed geospatial data.
We will take an in-depth look at this step in Sec. 4.4.

4.3.4. Backend: SQLRequestor

The server creates a requestor SQLRequestor with a reference to the SQLCache
that now holds the relevant data obtained from the query. This requestor is
the bridge between the server and the SQLCache. It provides the relevant data
from the SQLCache in a format that the server expects.

4.3.5. Backend: Server

The server returns a session ID to the frontend. This ID is used to reference
the SQLRequestor. The frontend includes this session ID in further requests.

16

4. Methods

4.3.6. Frontend: Map update

Using the session ID, the frontend sends a heatmap request to the server. The
server now renders a PNG image of a heatmap or the full objects and returns
it. The frontend displays this image on top of the map.

Figure 4.2: Sequence diagram displaying the general steps of petrimaps.

4.4. SQLCache: General steps

We will now take a look at the general steps on how the SQLCache processes
the user-written SQL query. This corresponds to Sec. 4.3.3 above.
Our goal is to expand the select statements in the query so that we can build a
new query that uses ST_AsText. But only expanding is not enough, because it
doesn’t tell us which select statements to call ST_AsText on. Thus, we also

17

4. Methods

have to find out which columns in the result table will contain geometry. We
need table names to expand the select statements, and column type names to
know which columns contain geometry. We will also see how we can alleviate
the problem of not having enough RAM to store all the data from the result
table.

4.4.1. Retrieving table names and column type names

Because we want the result table of the final query to contain the same columns
as the result table of the user-written query, we can use the user-written query
to find out which columns in the result table will contain geometry. Thus, we
modify and execute the user-written query such that the result table contains
no rows. We call this query Table OIDs query. For each column in the result
table we can retrieve the OID of the table the column was selected from and
the OID of the column type. For both we have to run an additional query to
obtain a useful text-representation. Thus, we create a vector for each type of
OID which takes linear time in the number of columns in the result table.

Retrieving table names by OIDs

PostgreSQL manages a table called pg_class internally. Using this table, we
can obtain the table name for a given OID. This means that we have to write
a query that results in a result table that contains exactly the table names of
the OIDs we retrieved. We call this query Table Names query:

SELECT oid, relname FROM pg_class WHERE oid IN (OIDs);

This gives us a result table whose first column contains the OID, and second
column the table name it refers to. We can now iterate all rows to create a
mapping that maps an OID to a table name. This takes linear time in the
number of unique OIDs we obtained, which is equivalent to the amount of
unique table columns.

18

4. Methods

Example
Let us say we retrieved the table OIDs 65591, 65558, 65599. Our query then
would be:

SELECT oid, relname FROM pg_class WHERE oid IN (65591, 65558, 65599);

The result table of this example query can be seen in Fig. 4.3.

Figure 4.3: The result table of the example Table Names query.

Retrieving column type names by OIDs

Analogously, PostgreSQL also manages a table called pg_type internally. This
time we write a query to obtain the column type names. We call this query
Column Type Names query:

SELECT oid, typname FROM pg_type WHERE oid IN (OIDs);

This gives us a result table whose first column contains the OID, and second
column the column type name it refers to. Again, we iterate all rows to create
a mapping that maps an OID to a column type name. This also takes linear
time in the number of unique OIDs we obtained.

19

4. Methods

Example
Let’s say we retrieved the column type OIDs 23, 16392 and 1043. Our query
then would be:

SELECT oid, typname FROM pg_type WHERE oid IN (23, 16392, 1043);

The result table of this example query can be seen in Fig. 4.4.

Figure 4.4: The result table of the example Column Type Names query.

4.4.2. Expanding select statements

This corresponds to Sec. 4.1. *-select statements are the only select statements
that can map to several columns in the result table in SQL. Thus, they are the
only ones we have to expand. We filter them out using a regular expression.
Then we build a query to execute them individually, again with zero rows
in the result table, and use the column names in the result table as the new
select statements in the final query. We call each of these queries Expand Select
Statement query.

20

4. Methods

4.4.3. Building the final query

Using the expanded select statements and the column types, we can now build
the final query. We iterate the expanded select statements and wrap ST_AsText

around the ones where the column type is geometry. We keep everything except
the select statements as it was in the user-written query.

Example

SELECT * FROM "WKT_Points";

Sel = (*)

S̃elflat = ("WKT_Points".id, "WKT_Points".geom)

final = SELECT "WKT_Points".id,

ST_AsText("WKT_Points".geom)

FROM "WKT_Points";

4.4.4. Saving RAM

As we have seen in Ch. 3, it is important to save RAM in order to ensure
that even huge amounts of data can be processed. We will take a look at two
measures we take in order to save a lot of RAM while processing a user-written
query.

Parsing the result table in batches

By default, libpqxx creates an object that represents the entire result table of
the user-written query. We use this object to parse the geometries contained
within. But we don’t need the entire result table available at all times in

21

4. Methods

order to parse the geometries. Therefore, we split the result table into several
batches and only keep one batch in memory at a time. We use the class
stateless_cursor libpqxx provides to achieve this.

Querying non-geometry data

When the user wants to inspect a geometry, we have to send the non-geometry
data of the result table row where we obtained the geometry from to the
frontend. If we stored all of this non-geometry data for every geometry in
RAM, we would need a lot of space, especially if we had to deal with millions
of geometries. Instead, we don’t save this data at all and request it from
PostgreSQL on demand. This comes with a problem: when there is no specific
order defined within a query, PostgreSQL does not guarantee that the rows
of the result table will always be in the same order for this query. Therefore,
when we want to query a specific row, we cannot be sure if the row data we
obtain really belongs to the geometry the user wants to inspect.

To solve this problem we add ROW_NUMBER() OVER () to the select statements
of the final query. It adds an extra column to the result table that enables us
to uniquely identify each row by a row number. When we parse the result table
of the final query we can retrieve this row number for every geometry. Later,
when the user wants to inspect a geometry, we can send another query that
filters out the row that contains the row number for that geometry. Each row
always receives the same row number when the final query is executed.

4.4.5. Building the geometry count query

petrimaps displays a loading bar to the frontend that shows how much geometry
we have to load in total and how much we have already loaded. In order to
provide this information, we have to execute an additional query that tells us
the amount of geometry we will load in total. We do this before we execute
the final query. In the result table of any SQL query, all columns will always

22

4. Methods

have the same number of rows. This means we can just count the amount of
rows of the result table of the final query and multiply it by the number of
columns that contain geometry. We do this by using the SQL COUNT function
which counts the rows of a column.

Example

SELECT *, geom FROM "WKT_Points";

𝑞geomCount = SELECT COUNT(*)

FROM (SELECT *, geom FROM "WKT_Points")

AS finalQuery;

In this case we count one row. Because we have two columns containing
geometry, we know that there are two geometries in total.

4.4.6. Parsing the geometry WKTs

After we execute the final query we obtain a result table containing the WKT of
all geometries. For each row we want to parse every WKT into a datastructure
that petrimaps uses internally to represent geometry of a specific type. We do
not use the non-geometry data here, but we still want to be able to retrieve
it with an additional query later on. We call this query Non-geometry query.
This way, we can display it to the user as seen in Fig. 4.5.

There are three types of geometry: Points, LineStrings and Polygons. For every
type of geometry, there is also a corresponding "Multi"-version. It can store
multiple geometries of the corresponding geometry type. Additionally, there is
also GeometryCollection which serves as a collection of geometries of any types.
Within the WKT of a geometry the coordinates are stored in parenthesis, each
axis separated by a whitespace. In petrimaps we only consider 2D-coordinates.

23

4. Methods

A point consists of one coordinate, a linestring of several points and a polygon
of at least one closed linestring. Example geometries and WKTs can be seen in
Fig. 4.6.

We iterate the WKT and parse the coordinates as 2D-points used internally
by petrimaps. For every geometry type we have a method that interprets the
obtained coordinates differently. For a "Multi"-version we reuse the method
that parses a single geometry until we find a closing parenthesis. In the end,
we only have to iterate the WKT once: each method returns the position in
the WKT where it finished parsing a geometry. The next method continues
from there. So the time needed to parse a WKT is linear in its length.

Example
Let us take a look at an example. In Fig. 4.7 we can see a MultiPoint geometry
consisting of 4 coordinates. Because the WKT starts with the substring
"MULTIPOINT", we call the method parseMultiPoint. The "10" corresponds
to the position where this substring ends and thus tells the method where to
start. Because a MultiPoint consists of several Points, we now call the method
parsePoint until we find a closing parenthesis at the very end. parsePoint
tells parseMultiPoint where it stopped parsing.

24

4. Methods

Figure 4.5: Inspecting a Point geometry by displaying non-geometry data. For each
column that does not contain geometry we can see the column name
on the left and the value of that column in the row of the geometry on
the right.

25

4. Methods

Figure 4.6: Example geometries and their WKTs for all geometry types [16].

Figure 4.7: Example of parsing a MultiPoint. On top we can see the methods we
call with the positions in the WKT.

26

5. Benchmarking

We benchmark SQL-petrimaps using different SQL queries on three different
datasets. The queries vary from low complexity to high complexity, while the
datasets vary primarily in the amount of geometries per table. We want to
compare the time PostgreSQL needs to execute all queries with the time needed
to only execute the user-written query. We omit the Geometry Count query,
because it has to be executed in either case. Additionally, we merge the Table
Names and Column Type Names query to save space and also separately include
the Non-geometry query execution time. We use the PostgreSQL statement
EXPLAIN with the arguments ANALYZE and TIMING for the query analysis. This
way, we can retrieve the actual time needed for execution.

Furthermore, we also want to show that SQL-petrimaps remains useable, even
when processing huge amounts of data. For this, we measure the time needed
from when the SQLCache receives the SQL query until the geometries have
been parsed. We do this by comparing two timestamps. We also take a look
at the total RAM usage. Because petrimaps and PostgreSQL run on WSL,
this is the total RAM WSL takes up during that process. Because there are a
lot of other processes within WSL that use RAM apart from petrimaps and
PostgreSQL, the measured values are only supposed to give us an idea on how
the RAM usage scales with the amount of data we query. Before executing
a user-written query we always restart WSL to ensure that there is no RAM
still occupied because of the previous query. During these tests, petrimaps and
PostgreSQL run on the same local machine whose specifications you can find
in Appx. A. The machine used to perform these tests has a major influence on
the results.

27

5. Benchmarking

Please note that the measured execution times are only typical outcomes. The
query execution times can vary for each query execution depending on the
query plan PostgreSQL builds to handle it. This variation scales with the time
measured. Therefore, we have to expect variations from a few milliseconds
for queries that run fast up to variations of a few seconds for queries that run
slow. We also have to keep in mind that the measured execution times for the
SQLCache depend on all query execution times and will therefore accumulate
the variations. In addition, the measured SQL query times are measured
separately and not when the queries are executed through the SQLCache due
to technical reasons.

5.1. Execution times

5.1.1. Small-sized dataset

The small-sized dataset contains a table for each type of geometry and each
table contains a few sample geometries. These are the geometries we used as
examples earlier and which can be found on Wikipedia [16].

Low-complexity queries

SELECT * FROM "WKT_Points";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.006 ms 1.001 ms 0.046 ms 1.001 ms 0.013 ms 2.061 ms 51.08 ms

Total RAM usage: 2.715 GB
Total geometries: 1

Non-geometry query: 0.015 ms

28

5. Benchmarking

SELECT * FROM "WKT_LineStrings";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.006 ms 1.001 ms 0.03 ms 1.001 ms 0.013 ms 2.045 ms 27.09 ms

Total RAM usage: 2.689 GB
Total geometries: 1

Non-geometry query: 0.017 ms

SELECT * FROM "WKT_Polygons";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.004 ms 1.001 ms 0.03 ms 1.001 ms 0.014 ms 2.046 ms 24.97 ms

Total RAM usage: 2.673 GB
Total geometries: 2

Non-geometry query: 0.015 ms

29

5. Benchmarking

SELECT * FROM "WKT_MultiPoints";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.004 ms 1.001 ms 0.027 ms 1.001 ms 0.013 ms 2.042 ms 28.98 ms

Total RAM usage: 2.679 GB
Total geometries: 8

Non-geometry query: 0.015 ms

SELECT * FROM "WKT_MultiLineStrings";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.007 ms 1.001 ms 0.03 ms 1.001 ms 0.015 ms 2.047 ms 18.37 ms

Total RAM usage: 2.639 GB
Total geometries: 2

Non-geometry query: 0.014 ms

30

5. Benchmarking

SELECT * FROM "WKT_MultiPolygons";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.002 ms 1.001 ms 0.032 ms 1.001 ms 0.014 ms 2.048 ms 26.18 ms

Total RAM usage: 2.643 GB
Total geometries: 4

Non-geometry query: 0.018 ms

Medium-complexity queries

SELECT "WKT_Points".*, "WKT_LineStrings".geom FROM "WKT_Points"

JOIN "WKT_LineStrings" ON "WKT_Points".id = "WKT_LineStrings".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.008 ms 2.001 ms 0.061 ms 2.001 ms 0.015 ms 4.078 ms 20.68 ms

Total RAM usage: 2.639 GB
Total geometries: 2

Non-geometry query: 0.018 ms

31

5. Benchmarking

SELECT "WKT_LineStrings".*, "WKT_Polygons".geom FROM

"WKT_LineStrings" JOIN "WKT_Polygons"

ON "WKT_LineStrings".id = "WKT_Polygons".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.01 ms 2.001 ms 0.061 ms 2.001 ms 0.016 ms 4.079 ms 22.8 ms

Total RAM usage: 2.641 GB
Total geometries: 2

Non-geometry query: 0.025 ms

SELECT "WKT_Polygons".*, "WKT_MultiPoints".geom FROM "WKT_Polygons"

JOIN "WKT_MultiPoints" ON "WKT_Polygons".id = "WKT_MultiPoints".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.01 ms 2.001 ms 0.06 ms 2.001 ms 0.026 ms 4.088 ms 24.25 ms

Total RAM usage: 2.639 GB
Total geometries: 10

Non-geometry query: 0.045 ms

32

5. Benchmarking

SELECT "WKT_MultiPoints".*, "WKT_MultiLineStrings".geom

FROM "WKT_MultiPoints" JOIN "WKT_MultiLineStrings"

ON "WKT_MultiPoints".id = "WKT_MultiLineStrings".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.01 ms 2.001 ms 0.059 ms 2.001 ms 0.02 ms 4.081 ms 19.37 ms

Total RAM usage: 2.639 GB
Total geometries: 6

Non-geometry query: 0.02 ms

SELECT "WKT_MultiLineStrings".*, "WKT_MultiPolygons".geom

FROM "WKT_MultiLineStrings" JOIN "WKT_MultiPolygons"

ON "WKT_MultiLineStrings".id = "WKT_MultiPolygons".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.01 ms 2.001 ms 0.06 ms 2.001 ms 0.017 ms 4.079 ms 24.55 ms

Total RAM usage: 2.639 GB
Total geometries: 4

Non-geometry query: 0.034 ms

33

5. Benchmarking

SELECT "WKT_MultiPolygons".*, "WKT_Points".geom

FROM "WKT_MultiPolygons" JOIN "WKT_Points"

ON "WKT_MultiPolygons".id = "WKT_Points".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.011 ms 2.001 ms 0.086 ms 2.001 ms 0.017 ms 4.105 ms 21.5 ms

Total RAM usage: 2.627 GB
Total geometries: 3

Non-geometry query: 0.044 ms

High-complexity queries

SELECT PointsEvenID.*, "WKT_LineStrings".geom

FROM (SELECT * FROM "WKT_Points" WHERE id % 2 = 0)

AS PointsEvenId FULL JOIN "WKT_LineStrings"

ON PointsEvenID.id = "WKT_LineStrings".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.015 ms 2.001 ms 0.076 ms 2.001 ms 0.029 ms 4.122 ms 19.31 ms

Total RAM usage: 2.635 GB
Total geometries: 2

Non-geometry query: 0.051 ms

34

5. Benchmarking

SELECT LineStringsEvenId.*, "WKT_Polygons".geom

FROM (SELECT * FROM "WKT_LineStrings" WHERE id % 2 = 0)

AS LineStringsEvenId FULL JOIN "WKT_Polygons"

ON LineStringsEvenId.id = "WKT_Polygons".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.04 ms 2.001 ms 0.063 ms 2.001 ms 0.03 ms 4.095 ms 27.07 ms

Total RAM usage: 2.631 GB
Total geometries: 3

Non-geometry query: 0.133 ms

SELECT PolygonsEvenId.*, "WKT_MultiPoints".geom

FROM (SELECT * FROM "WKT_Polygons" WHERE id % 2 = 0)

AS PolygonsEvenId FULL JOIN "WKT_MultiPoints"

ON PolygonsEvenId.id = "WKT_MultiPoints".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.017 ms 2.001 ms 0.062 ms 2.001 ms 0.023 ms 4.087 ms 19.35 ms

Total RAM usage: 2.629 GB
Total geometries: 9

Non-geometry query: 0.074 ms

35

5. Benchmarking

SELECT MultiPointsEvenId.*, "WKT_MultiLineStrings".geom

FROM (SELECT * FROM "WKT_MultiPoints" WHERE id % 2 = 0)

AS MultiPointsEvenId FULL JOIN "WKT_MultiLineStrings"

ON MultiPointsEvenId.id = "WKT_MultiLineStrings".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.017 ms 2.001 ms 0.062 ms 2.001 ms 0.024 ms 4.088 ms 17.18 ms

Total RAM usage: 2.631 GB
Total geometries: 6

Non-geometry query: 0.068 ms

SELECT MultiLineStringsEvenId.*, "WKT_MultiPolygons".geom

FROM (SELECT * FROM "WKT_MultiLineStrings" WHERE id % 2 = 0)

AS MultiLineStringsEvenId FULL JOIN "WKT_MultiPolygons"

ON MultiLineStringsEvenId.id = "WKT_MultiPolygons".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.017 ms 2.001 ms 0.068 ms 2.001 ms 0.025 ms 4.095 ms 30.92 ms

Total RAM usage: 2.629 GB
Total geometries: 6

Non-geometry query: 0.057 ms

36

5. Benchmarking

SELECT MultiPolygonsEvenId.*, "WKT_Points".geom

FROM (SELECT * FROM "WKT_MultiPolygons" WHERE id % 2 = 0)

AS MultiPolygonsEvenId FULL JOIN "WKT_Points"

ON MultiPolygonsEvenId.id = "WKT_Points".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.018 ms 2.001 ms 0.092 ms 2.001 ms 0.023 ms 4.117 ms 21.92 ms

Total RAM usage: 2.627 GB
Total geometries: 3

Non-geometry query: 0.053 ms

5.1.2. Medium-sized dataset

The medium-sized data set uses data from the data bundle obtained from
the official PostGIS Workshop [3]. This data bundle contains data about
New York City. We import it into PostgreSQL and obtain three tables called
nyc_subway_stations, nyc_streets and nyc_neighborhoods. nyc_streets
approximately contains 19 000 geometries.

37

5. Benchmarking

Low-complexity queries

SELECT * FROM "nyc_neighborhoods";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.028 ms 1.001 ms 0.078 ms 1.001 ms 0.613 ms 2.693 ms 31.07 ms

Total RAM usage: 2.629 GB
Total geometries: 159

Non-geometry query: 0.549 ms

SELECT * FROM "nyc_streets";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

1.609 ms 1.002 ms 0.087 ms 1.001 ms 15.2 ms 17.29 ms 0.254 s

Total RAM usage: 2.637 GB
Total geometries: 19 091

Non-geometry query: 19.21 ms

38

5. Benchmarking

SELECT * FROM "nyc_subway_stations";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.044 ms 1.001 ms 0.069 ms 0.002 ms 0.222 ms 1.294 ms 23.05 ms

Total RAM usage: 2.643 GB
Total geometries: 491

Non-geometry query: 0.508 ms

Medium-complexity queries

SELECT "nyc_neighborhoods".*, "nyc_streets".geom

FROM "nyc_neighborhoods" JOIN "nyc_streets"

ON "nyc_neighborhoods".id = "nyc_streets".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.101 ms 2.002 ms 0.106 ms 2.001 ms 0.669 ms 4.778 ms 26.44 ms

Total RAM usage: 2.641 GB
Total geometries: 288

Non-geometry query: 0.696 ms

39

5. Benchmarking

SELECT "nyc_streets".*, "nyc_subway_stations".geom

FROM "nyc_streets" JOIN "nyc_subway_stations"

ON "nyc_streets".id = "nyc_subway_stations".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

3.287 ms 2.002 ms 0.1 ms 2.002 ms 3.829 ms 7.993 ms 34.56 ms

Total RAM usage: 2.643 GB
Total geometries: 982

Non-geometry query: 4.046 ms

SELECT "nyc_subway_stations".*, "nyc_neighborhoods".geom

FROM "nyc_subway_stations" JOIN "nyc_neighborhoods"

ON "nyc_subway_stations".id = "nyc_neighborhoods".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.167 ms 2.001 ms 0.118 ms 2.002 ms 0.666 ms 4.787 ms 24.89 ms

Total RAM usage: 2.645 GB
Total geometries: 284

Non-geometry query: 0.756 ms

40

5. Benchmarking

High-complexity queries

SELECT NeighborhoodsEvenId.*, "nyc_streets".geom

FROM (SELECT * FROM "nyc_neighborhoods" WHERE id % 2 = 0)

AS NeighborhoodsEvenId FULL JOIN "nyc_streets"

ON NeighborhoodsEvenId.id = "nyc_streets".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

3.357 ms 2.003 ms 0.099 ms 2.001 ms 18.89 ms 22.99 ms 0.251 s

Total RAM usage: 2.641 GB
Total geometries: 19 160

Non-geometry query: 18.639 ms

SELECT StreetsEvenId.*, "nyc_subway_stations".geom

FROM (SELECT * FROM "nyc_streets" WHERE id % 2 = 0)

AS StreetsEvenId FULL JOIN "nyc_subway_stations"

ON StreetsEvenId.id = "nyc_subway_stations".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

3.234 ms 2.003 ms 0.11 ms 2.002 ms 11.1 ms 15.22 ms 0.147 s

Total RAM usage: 2.637 GB
Total geometries: 10 036

Non-geometry query: 11.532 ms

41

5. Benchmarking

SELECT SubwayStationsEvenId.*, "nyc_neighborhoods".geom

FROM (SELECT * FROM "nyc_subway_stations" WHERE id % 2 = 0)

AS SubwayStationsEvenId FULL JOIN "nyc_neighborhoods"

ON SubwayStationsEvenId.id = "nyc_neighborhoods".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.35 ms 2.002 ms 0.101 ms 2.001 ms 0.836 ms 4.94 ms 25.12 ms

Total RAM usage: 2.635 GB
Total geometries: 406

Non-geometry query: 0.872 ms

5.1.3. Large-sized dataset

Last but not least, we use the South America dataset from GeoFabrik as
the third dataset [9]. It contains a lot of data from the OpenStreetMap
database. This data is available under the Open Database License [4]. We
import the data into PostgreSQL using osm2pgsql and obtain four tables called
planet_osm_line, planet_osm_point, planet_osm_polygon and planet_osm_roads.
planet_osm_polygon approximately contains 25 million geometries.

42

5. Benchmarking

Low-complexity queries

SELECT * FROM "planet_osm_line";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

18.42 s 1.001 ms 0.084 ms 1.001 ms 44.21 s 44.21 s 8 m 13 s

Total RAM usage: 23.252 GB
Total geometries: 17 383 566

Non-geometry query: 48.55 s

SELECT * FROM "planet_osm_point";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.63 s 1.001 ms 0.108 ms 1.001 ms 5.49 s 5.49 s 1 m 3 s

Total RAM usage: 5.730 GB
Total geometries: 10 682 528

Non-geometry query: 5.82 s

43

5. Benchmarking

SELECT * FROM "planet_osm_polygon";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

18.27 s 1.001 ms 0.07 ms 1.001 ms 48.46 s 48.46 s 53 m 58 s

Total RAM usage: 23.116 GB
Total geometries: 25 351 494

Non-geometry query: 1 m 6 s

SELECT * FROM "planet_osm_roads";

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

0.14 s 1.001 ms 0.112 ms 1.001 ms 6.85 s 6.85 s 1 m 25 s

Total RAM usage: 6.238 GB
Total geometries: 1 193 908

Non-geometry query: 6.28 s

44

5. Benchmarking

Medium-complexity queries

SELECT "planet_osm_line".*, "planet_osm_point".way

FROM "planet_osm_line" JOIN "planet_osm_point"

ON "planet_osm_line".id = "planet_osm_point".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

16.69 s 2.001 ms 0.15 ms 2.001 ms 35.02 s 35.02 s 6 m 39 s

Total RAM usage: 21.867 GB
Total geometries: 21 365 056

Non-geometry query: 1 m 56 s

SELECT "planet_osm_point".*, "planet_osm_polygon".way

FROM "planet_osm_point" JOIN "planet_osm_polygon"

ON "planet_osm_point".id = "planet_osm_polygon".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

40.17 s 2.001 ms 0.291 ms 2.001 ms 47.73 s 47.73 s 13 m 14 s

Total RAM usage: 20.337 GB
Total geometries: 21 365 056

Non-geometry query: 2 m 26 s

45

5. Benchmarking

SELECT "planet_osm_polygon".*, "planet_osm_roads".way

FROM "planet_osm_polygon" JOIN "planet_osm_roads"

ON "planet_osm_polygon".id = "planet_osm_roads".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

1.48 s 2.001 ms 0.143 ms 2.001 ms 10.38 s 10.39 s 9 m 12 s

Total RAM usage: 16.151 GB
Total geometries: 2 387 816

Non-geometry query: 11.79 s

SELECT "planet_osm_roads".*, "planet_osm_line".way

FROM "planet_osm_roads" JOIN "planet_osm_line"

ON "planet_osm_roads".id = "planet_osm_line".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

10.37 s 2.001 ms 0.071 ms 2.001 ms 18.6 s 18.6 s 2 m 18 s

Total RAM usage: 14.379 GB
Total geometries: 2 387 816

Non-geometry query: 21.69 s

46

5. Benchmarking

High-complexity queries

SELECT LineEvenId.*, "planet_osm_point".way

FROM (SELECT * FROM "planet_osm_line" WHERE id % 2 = 0)

AS LineEvenId FULL JOIN "planet_osm_point"

ON LineEvenId.id = "planet_osm_point".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

30.88 s 2.001 ms 0.114 ms 2.001 ms 50.23 s 50.23 s 5 m 35 s

Total RAM usage: 19.837 GB
Total geometries: 19 374 311

Non-geometry query: 57.8 s

SELECT PointEvenId.*, "planet_osm_polygon".way

FROM (SELECT * FROM "planet_osm_point" WHERE id % 2 = 0)

AS PointEvenId FULL JOIN "planet_osm_polygon"

ON PointEvenId.id = "planet_osm_polygon".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

1 m 51 s 2.001 ms 0.09 ms 2.003 ms 2 m 31 s 2 m 31 s 55 m 32 s

Total RAM usage: 24.668 GB
Total geometries: 30 692 758

Non-geometry query: 3 m 35 s

47

5. Benchmarking

SELECT PolygonEvenId.*, "planet_osm_roads".way

FROM (SELECT * FROM "planet_osm_polygon" WHERE id % 2 = 0)

AS PolygonEvenId FULL JOIN "planet_osm_roads"

ON PolygonEvenId.id = "planet_osm_roads".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

24.6 s 2.001 ms 0.172 ms 2.002 ms 56.1 s 56.1 s 42 m 17 s

Total RAM usage: 22.449 GB
Total geometries: 13 869 655

Non-geometry query: 1 m 21 s

SELECT RoadsEvenId.*, "planet_osm_line".way

FROM (SELECT * FROM "planet_osm_roads" WHERE id % 2 = 0)

AS RoadsEvenId FULL JOIN "planet_osm_line"

ON RoadsEvenId.id = "planet_osm_line".id;

User-
written

Table
OIDs

Names Expand Final Total SQL
Cache

36.6 s 2.001 ms 0.106 ms 2.001 ms 1 m 39 s 1 m 39 s 9 m 49 s

Total RAM usage: 24.751 GB
Total geometries: 17 980 520

Non-geometry query: 1 m 42 s

48

5. Benchmarking

5.2. Results

As we can see from the queries we used to benchmark SQL-petrimaps, we are
able to visualize all sorts of SQL queries. The execution times we measured for
the SQL queries suggest that apart from the final query, there is no query that
has a significant impact on the total time needed. Depending on the query, the
final query can take much longer than the user-written query because we have
to convert all geometries to their corresponding WKTs.

The large difference between the time the SQLCache needs in total and the
total SQL query execution time arises mostly from how the geometries are
being parsed. The SQLCache has to iterate every WKT, retrieve the points
that make up a geometry for every geometry and also project every point.
Additionally, petrimaps also densifies all lines in a geometry. During the tests I
found that an SQLCache would sometimes be stuck on a single geometry for
minutes.

49

6. Conclusion and Outlook

6.1. Conclusion

We have successfully implemented support for visualizing SQL queries that can
be used to query a PostgreSQL database that uses the PostGIS extension. We
have seen that we can efficiently rewrite the user-written query and retrieve
the data contained within the result table in a parseable format without using
tons of RAM. We have also seen how we can achieve this without having to
make any assumptions on how the user-written query has to look like. This
is in contrast to other GIS that provide similar functionality where we either
ran out of RAM or weren’t able to properly inspect the results because the
app became too unresponsive. Still, especially if we have to deal with millions
of geometries, this whole process can take up both a lot of RAM and a lot of
time.

6.2. Outlook

There can still be done a lot, mostly in terms of stability and usability. The
main goal should be trying to speed up the processing process of the SQLCache,
especially the parsing of geometries. For this, we should look into retrieving
and parsing the WKB representation of geometries instead of the WKT repre-
sentation, because it stores the information more compact. Alternatively, we
could also try to parse the representation PostGIS uses internally. This way,
we would also not have to expand *-select statements, because we could read

50

6. Conclusion and Outlook

the geospatial data from the result table of the user-written query directly.
This would require more maintenance, because the representation could vary
in different versions. Additionally, we would also have to figure out how to
parse the data in the first place. Furthermore, we should also look into how
a PostgreSQL database can be set up to manage huge amounts of data more
efficiently. Maybe there is also a way to preprocess the tables within a database
in order to be able to retrieve the results faster.

For usability the main issue is that the user currently has no feedback on what
data they are able to query. They don’t even know the names of the available
tables. We should provide a list of those table names and add a way to visualize
sample rows of the result table of a user-written query. This way, the user
could easily understand the data they can work with by writing simple queries
in advance. Additionally, it would also make sense to allow the user to query
multiple databases. This way, we would not have to put every table in the
same database.

51

7. Bibliography

[1] Hannah Bast, Patrick Brosi, Johannes Kalmbach, and Axel Lehmann. “Effi-
cient Interactive Visualization of Very Large Geospatial Query Results”. In:
SIGSPATIAL. 2023.

[2] Boundless, subsequent revisions by Paul Ramsey, and others. Geometry
Input and Output. https://postgis.net/workshops/postgis-intro/
geometries.html#geometry-input-and-output. Accessed: 2024-04-12.

[3] Boundless, subsequent revisions by Paul Ramsey, and others. Introduction to
PostGIS. https://postgis.net/workshops/postgis-intro. Accessed:
2024-10-07.

[4] Copyright and License. https://www.openstreetmap.org/copyright/en.
Accessed: 2024-10-16.

[5] The PostGIS Development Group. ST_AsText. https://postgis.net/
docs/ST_AsText.html. Accessed: 2024-10-03.

[6] The PostgreSQL Global Development Group. About PostgreSQL. https:
//www.postgresql.org/about. Accessed: 2024-10-01.

[7] The PostgreSQL Global Development Group. Object Identifier Types. https:
//www.postgresql.org/docs/14/datatype-oid.html. Accessed: 2024-
10-03.

[8] The PostgreSQL Global Development Group. Querying a Table. https:
//www.postgresql.org/docs/14/tutorial-select.html. Accessed:
2024-10-02.

52

https://postgis.net/workshops/postgis-intro/geometries.html#geometry-input-and-output
https://postgis.net/workshops/postgis-intro/geometries.html#geometry-input-and-output
https://postgis.net/workshops/postgis-intro
https://www.openstreetmap.org/copyright/en
https://postgis.net/docs/ST_AsText.html
https://postgis.net/docs/ST_AsText.html
https://www.postgresql.org/about
https://www.postgresql.org/about
https://www.postgresql.org/docs/14/datatype-oid.html
https://www.postgresql.org/docs/14/datatype-oid.html
https://www.postgresql.org/docs/14/tutorial-select.html
https://www.postgresql.org/docs/14/tutorial-select.html

7. Bibliography

[9] OpenStreetMap Data Extracts. https://download.geofabrik.de. Ac-
cessed: 2024-10-23.

[10] PostGIS PSC & OSGeo. About PostGIS. https://postgis.net. Accessed:
2024-10-01.

[11] OSM2PGSQL. https://osm2pgsql.org. Accessed: 2024-10-23.

[12] pgAdmin. https://www.pgadmin.org. Accessed: 2024-10-16.

[13] The C++ connector for PostgreSQL. pqxx.org/libpqxx. Accessed: 2024-
10-02.

[14] Wikipedia volunteers. Frontend and backend. https://en.wikipedia.
org/wiki/Frontend_and_backend. Accessed: 2024-10-02.

[15] Wikipedia volunteers. Geographic information system. https://en.wikipedia.
org/wiki/Geographic_information_system. Accessed: 2024-10-02.

[16] Wikipedia volunteers. Well-known text representation of geometry. https:
//en.wikipedia.org/wiki/Well-known_text_representation_of_

geometry. Accessed: 2024-10-03.

53

https://download.geofabrik.de
https://postgis.net
https://osm2pgsql.org
https://www.pgadmin.org
pqxx.org/libpqxx
https://en.wikipedia.org/wiki/Frontend_and_backend
https://en.wikipedia.org/wiki/Frontend_and_backend
https://en.wikipedia.org/wiki/Geographic_information_system
https://en.wikipedia.org/wiki/Geographic_information_system
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

Appendix A. Specifications

We list the specifications of the hardware and software used within this thesis.

A.0.1. Local Machine

1. Processor: AMD Ryzen 5 5600 6-Core 3.50 GHz

2. Installed RAM: 32 GB

3. WSL usable RAM: 28 GB

4. Graphics Card: NVIDIA GeForce RTX 3060

5. Operating System: Windows 11 Pro

A.0.2. Software

1. PostgreSQL database: Version 14.13

2. PostGIS: Version 3.4

3. libpqxx: Version 6.4.5

4. pgAdmin 4: Version 8.9

5. QGIS: Version 3.34.8-Prizren

6. GRASS GIS: Version 8.3.2

7. OpenJUMP: Version 2.3.0

8. osm2pgsql: Version 1.6.0

54

	List of Figures
	Introduction
	Motivation
	Problem
	Approach

	Background
	PostgreSQL
	PostgreSQL: OIDs
	PostGIS
	PostGIS: ST_AsText
	SQL queries
	Querying tables
	libpqxx
	Frontend and backend
	GIS
	pgAdmin 4
	osm2pgsql

	Related Work
	QGIS
	GRASS GIS
	OpenJUMP

	Methods
	Expanding select statements
	Expanding select statements: Example
	SQL queries in petrimaps: General steps
	Frontend: SQL query input
	Backend: Server
	Backend: SQLCache
	Backend: SQLRequestor
	Backend: Server
	Frontend: Map update

	SQLCache: General steps
	Retrieving table names and column type names
	Retrieving table names by OIDs
	Retrieving column type names by OIDs

	Expanding select statements
	Building the final query
	Saving RAM
	Parsing the result table in batches
	Querying non-geometry data

	Building the geometry count query
	Parsing the geometry WKTs

	Benchmarking
	Execution times
	Small-sized dataset
	Low-complexity queries
	Medium-complexity queries
	High-complexity queries

	Medium-sized dataset
	Low-complexity queries
	Medium-complexity queries
	High-complexity queries

	Large-sized dataset
	Low-complexity queries
	Medium-complexity queries
	High-complexity queries

	Results

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix Specifications
	Local Machine
	Software

