Annotating OpenStreetMap data with elevation data

Bachelor’s Thesis

Urs Spiegelhalter
Department of Computer Science
Chair of Algorithms and Data Structures
March 16, 2022
OpenStreetMap (OSM) contains map data of the whole planet

Map features are stored in the objects

- Nodes: Single locations as (Longitude, Latitude)
- Ways: List of nodes
- Relations: List of nodes, ways, other relations

All objects can have tags as key=value strings where any additional information can be stored

The tag ele=* is used to denote the elevation above sea level in meters of an object.
Problem: Situation

Annotating OpenStreetMap data with elevation data

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of objects with (ele=\ast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.09%</td>
</tr>
<tr>
<td>Node</td>
<td>1.20%</td>
</tr>
<tr>
<td>Way</td>
<td>0.63%</td>
</tr>
<tr>
<td>Relation</td>
<td>1.45%</td>
</tr>
</tbody>
</table>

Table 1: Tag \(ele=\ast \) usage in OSM objects. Data provided by taginfo [1].
© OpenStreetMap contributors

⇒ Elevation data in OSM very lacking
Problem: OpenStreetMap data

Annotating OpenStreetMap data with elevation data

<table>
<thead>
<tr>
<th>Number of nodes</th>
<th>Number of ways</th>
<th>Number of relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,468,758,706</td>
<td>832,784,309</td>
<td>9,611,640</td>
</tr>
</tbody>
</table>

Table 2: Total number of objects in OSM. © OpenStreetMap contributors

⇒ Elevation data for billions of objects have to be added
Problem: Elevation data

- We use elevation data from the NASA Digital Elevation Model (NASADEM)
- NASADEM has near-global coverage and a horizontal resolution of 1 arc-second, which is approximately 30 meters

<table>
<thead>
<tr>
<th>Number of files</th>
<th>Total size compressed</th>
<th>Total size uncompressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,520</td>
<td>109 GB</td>
<td>376 GB</td>
</tr>
</tbody>
</table>

Table 3: NASADEM elevation dataset size.

⇒ Combination of the OSM and elevation data sizes result in large amounts of data
Problem: Elevation data errors

- Errors can be observed when looking at the elevation data of map features in OSM

- Obvious errors can occur due to the horizontal resolution of NASADEM of approx. 30 meters not being accurate enough
 - Roads suddenly dropping or rising by multiple meters
 - Rivers flowing uphill

- Elevation data that is not captured by NASADEM
 - Tunnels
 - Bridges
Figure 1: Geologic cross-section of a railroad [2]. The red line represents the railroad (elevation). Yellow lines indicate the incorrect NASADEM elevation data when applied to the railroad.
Problem definitions

1. Annotate OSM data with elevation data by adding a tag `ele=*` to each node.
2. Perform corrections on elevation data in OSM data. The corrections are based on linear map features like roads, rivers. By corrections affected nodes get their `ele=*` tag updated.
The elevation data from the NASADEM dataset are provided by 14,520 tiles of size 1 degree longitude by 1 degree latitude, each tile is stored in a compressed file.

Figure 2: NASADEM elevation data tiles over southern Europe.

https://dwtkns.com/srtm30m/
Each tile has a horizontal resolution of 1 arc-second, which is approximately 30 meters.
This corresponds to 3601×3601 cells in each tile.

Figure 3: Individual cells of an elevation data tile. Maps data: Google, ©2020 Image Landsat / Copernicus
We add a tag \textit{ele=*} to each node in OSM

To get the elevation for a single node, the complete elevation data tile, where the node is located in, has to be loaded into main-memory

A single uncompressed elevation data tile has a size of \(\approx 26 \text{ MB} \)

The nodes in the input OSM data do not have any geographical clustering

\(\Rightarrow \) To retrieve the elevation of each node from NASADEM in the original order is not feasible
Adding elevation data: Geographic partitions

- We perform multiple passes over all nodes
- In a single pass, only nodes that are located in a geographic partition get processed
- A geographic partition is a rectangular on the map defined by its bottom-left and upper-right coordinates
- This introduces a geographic clustering of the nodes over all passes
- We can directly control the main-memory consumption of elevation data tiles by changing the size of the geographic partitions
Adding elevation data: Geographic partitions

Figure 4: Geographic partitions of size 5. Only elevation data tiles inside a geographic partition get loaded into main-memory at once.
Adding elevation data: Retrieving elevation data

- The elevation of a node is stored in the cell where the node’s location lies in
- We additionally use interpolation with the surrounding cells
- We use inverse distance weighting as the interpolation algorithm
- The importance of a data point decreases as distance increases
- The center of the cells represent the known data points
Adding elevation data: Retrieving elevation data

Figure 5: Inverse distance weighting for a point P with surrounding cells. D1 – D9 represent the known data points (centers of the cells).
Correcting elevation data: Routes

- Routes are linear map features in OSM that can be traveled by car, train, bike, foot, or ship
- Short-term fluctuations in elevation along routes should not occur
- Rivers should not flow uphill
- Routes going through tunnels/bridges should not have the elevation of the mountain/valley they cross
Correcting elevation data: Routes data

- Routes are stored in OSM ways and relations, specific tags are used like `type=route`, `waterway=river`, `highway=footway`
- At the lowest level, a route is a linestring of nodes
- The data needed for a route in a way:
 - The data of the nodes of the way
- The data needed for a route in a relation:
 - The data of the ways of the relation
 - The data of the nodes of the ways

⇒ Not feasible to have all data in main-memory at once
Correcting elevation data: Routes ranges

- Routes range: Specify how many routes and their data are loaded into main-memory at once and subsequently corrected

<table>
<thead>
<tr>
<th>Relation 1</th>
<th>type=route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation 2</td>
<td></td>
</tr>
<tr>
<td>Relation 3</td>
<td>type=route</td>
</tr>
<tr>
<td>Relation 4</td>
<td>type=route</td>
</tr>
<tr>
<td>Relation 5</td>
<td></td>
</tr>
<tr>
<td>Relation 6</td>
<td>type=route</td>
</tr>
<tr>
<td>Relation 7</td>
<td></td>
</tr>
<tr>
<td>Relation 8</td>
<td>type=route</td>
</tr>
</tbody>
</table>

- Routes ranges of size 2:
 - First iteration: Relation 1 & 3
 - Second iteration: Relation 4 & 6
 - Third iteration: Relation 8
To remove short-term fluctuations in elevation along routes, we apply a smoothing algorithm [3] to the linestrings of nodes.

Figure 6: Smoothening of a short-term fluctuation in the elevation profile of a linestring of nodes.
The elevation of each node along the linestrings gets averaged over the integral of the 30 meters before and after the node.

Figure 7: The area (yellow) for the average of the blue node at (60, 20). The average (red node at (60, 13.33)) results from dividing the yellow area by 60.
- We span a plane between the start and the end of the tunnel/bridge
- To get the correct elevation of a node along a tunnel/bridge, we sample the z-coordinate from the plane using the x- and y-coordinates (longitude and latitude) of the node
- The plane allows for non-straight tunnels/bridges
Correcting elevation data: Tunnels/bridges

Figure 8: The plane spanning between the start and end (red dots) of a bridge. Maps data: Google, ©2020 Image Landsat / Copernicus
Correcting elevation data: Rivers

- To make sure that rivers do not flow uphill, we simply iterate over the linestrings of nodes of the rivers.
- The linestrings of rivers are ordered in the direction of the flow.
- If a subsequent node has a higher elevation, we set that elevation to the previous node’s elevation.
Figure 9: Uncorrected and corrected elevation profile of ascending road (part of Hexental road near Freiburg). Plot generated from data of the OSM ways 19794411, 30354354, 319722236, 143661523.
Figure 10: Uncorrected and corrected elevation profile of road crossing a bridge over a valley (Kocher viaduct). Plot generated from data of the OSM ways 403909403, 320517373, 320517370, 24625636, 24625669.
Evaluation: Correcting tunnel

Figure 11: Uncorrected and corrected elevation profile of road going through a tunnel (Gotthard road tunnel). Plot generated from data of the OSM ways 304476718, 4214708, 49124512, 431339440, 29736069.
Evaluation: Runtime adding elevation data

<table>
<thead>
<tr>
<th></th>
<th>germany</th>
<th>planet</th>
</tr>
</thead>
<tbody>
<tr>
<td>runtime tool</td>
<td>2 minutes</td>
<td>102 minutes</td>
</tr>
<tr>
<td>runtime writing output OSM</td>
<td>4 minutes</td>
<td>61 minutes</td>
</tr>
<tr>
<td>maximum used main-memory</td>
<td>10 GB</td>
<td>94 GB</td>
</tr>
</tbody>
</table>

Table 4: Runtimes of different input OSM sizes when adding elevation data. Run on machine with *AMD Ryzen 3700X 8-Core/16-Threads and 128 GB Ram*. Data was read from and written to *2TB NVME Samsung 970 Evo+*.
Evaluation: Runtime correcting elevation data

<table>
<thead>
<tr>
<th></th>
<th>germany</th>
<th>planet</th>
</tr>
</thead>
<tbody>
<tr>
<td>runtime tool</td>
<td>4 minutes</td>
<td>111 minutes</td>
</tr>
<tr>
<td>runtime writing output OSM</td>
<td>4 minutes</td>
<td>83 minutes</td>
</tr>
<tr>
<td>maximum used main-memory</td>
<td>9 GB</td>
<td>95 GB</td>
</tr>
</tbody>
</table>

Table 5: Runtimes of different input OSM sizes when correcting elevation data. Run on machine with *AMD Ryzen 3700X 8-Core/16-Threads and 128 GB Ram*. Data was read from and written to *2TB NVME Samsung 970 Evo+*.
We provide a tool to annotate the complete OSM data with elevation data

We provide a second tool that performs the following corrections on elevation data in OSM:

- Smooth short-term fluctuations in elevation along routes
- Correct the elevation of tunnels and bridges
- Make sure that rivers do not flow uphill

Source code (GPLv3):
https://github.com/us58/osmelevation
References

Inverse distance weighting interpolation

- For a finite number N of known data points D_i, $d[P,D_i]$ denotes the distance of a point P to a known data point D_i
- z_i denotes the value of a known data point D_i
- The interpolated value of P can be calculated with the function

$$f(P) = \begin{cases} \frac{\sum_{i=1}^{N} d[P,D_i]^{-u} z_i}{\sum_{i=1}^{N} d[P,D_i]^{-u}} & \text{if } d[P,D_i] \neq 0 \text{ for all } D_i \\ z_i & \text{if } d[P,D_i] = 0 \text{ for some } D_i \end{cases}$$

- Greater values of $u > 0$ increase the influence of known data points closest to P (we use $u = 2$)

Spanning plane between two coordinates

(1) \(\text{startVector} = (\text{plane start lon}, \text{plane start lat}, \text{plane start elevation}) \)
(2) \(\text{endVector} = (\text{plane end lon}, \text{plane end lat}, \text{plane end elevation}) \)
(3) \(\text{directionVector1} = \text{endVector} - \text{startVector} \)
(4) \(\text{directionVector2} = (-1 \times \text{directionVector1.y}, \text{directionVector1.x}, 0) \)
(5) \(\text{planeNormalVector} = \text{directionVector1} \times \text{directionVector2} \)
(6) \(d = -1 \times (\text{planeNormalVector} \cdot \text{startVector}) \)

Then,

\[
\begin{align*}
\hat{z} &= \frac{-d - \text{planeNormalVector}.x \times x - \text{planeNormalVector}.y \times y}{\text{planeNormalVector}.z} \\

\end{align*}
\]

yields the elevation \(\hat{z} \) for given x- and y-coordinates on the plane.