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Abstract

Wikidata is a massive knowledge graph with millions of entities, each associated with

multiple types through the properties instance of (P31) and subclass of (P279). However,

it lacks a single, intuitive type for each entity (e.g., “Einstein is a person”, “Germany is

a country”, “Mona Lisa is a painting”). To address this gap, we propose a supervised

machine learning approach to automate the process of assigning types. Our method first

pre-selects valid type candidates from existing properties, then leverages large language

models (LLMs) to generate large-scale training data. Various machine learning models,

including a Feedforward Neural Network, GraphSAGE, and R-GCN, are used for type

prediction. A masking strategy ensures predictions remain within pre-selected types.

Results on two human-annotated benchmarks demonstrate the e�ectiveness of our method

in determining an entity’s most natural type, achieving up to 86% top-1 accuracy.
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1. Introduction

In the digital age, the ability to organize and structure knowledge e�ciently has become

increasingly important. With the advent of the World Wide Web, an innovation that

sparked exponential growth of digital data, the need for structured information has

become even more evident.

The Semantic Web [1], a concept introduced by Tim Berners-Lee in 2001, envisioned the

creation of a web of structured, machine-readable information. This vision has played

a key role in numerous Natural Language Processing (NLP) applications, including

Named Entity Recognition, text summarization, search engines, and question answering.

Consequently, the demand for structured information has driven the development of

large-scale collaborative knowledge bases, such as DBpedia (2007), Freebase (2007; now

inactive), and most prominently, Wikidata (2012).

Launched in 2012, Wikidata has evolved into one of the largest open knowledge bases,

now containing over 109 million entities. It represents knowledge using the Resource

Description Framework (RDF) [2] as Subject-Predicate-Object triples, which are referred

to as statements in Wikidata. To construct these statements, Wikidata employs over

12,000 properties, such as date of birth (P569), gender (P21), given name (P735), and

many more. Among these, two properties are particularly important for Wikidata’s

knowledge organisation: instance of (P31) and subclass of (P279). These properties

establish a hierarchical classification where entities are either instances of other entities

(P31), subclasses of other entities (P279), or both. This hierarchical structure enables
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e�cient navigation and querying of the knowledge base, for example through SPARQL

[3] queries, and facilitates the inference of relationships between entities.

Despite its rich coverage of all kinds of topics, Wikidata faces a persistent challenge:

it lacks a straightforward, single natural type for each entity. In this thesis, we define

a natural type as the most intuitive and broadly applicable category a typical person

would use to classify an entity in everyday language. For example, Einstein is a person,

Germany is a country, and the Mona Lisa is a painting.

Existing properties do not su�ciently address this issue. P31 and P279 are intentionally

flexible. While this simplifies the task of adding new entities to Wikidata in a collaborative

way, it leads to inconsistent and overly broad/specific types. Some classes are so broad

and abstract (body of water, living thing) that they provide little practical utility, while

others are highly specific (small municipality in Germany, civil parish in Ireland), which

fragments similar entities into countless narrow subcategories. Defining and assigning a

natural type - a type most intuitively recognizable by humans - is an open problem this

thesis aims to address.

This task is not only di�cult due to the sheer size of Wikidata, but also because of the

inherent complexity of categorizing real-world entities. Philosophers like Wittgenstein

and Rosch have pointed out that human categorization is flexible, and often based

on overlapping similarities and typical examples (prototypes) rather than strict rules.

Wittgenstein’s concept of family resemblance [4] and Rosch’s prototype theory [5] show

that there is not always a single, universally “correct” category - or, in our case, type -

since categorical boundaries can’t be strictly defined in the real world. Instead, human

intuition allows for some uncertainty, which makes it di�cult to formalize the notion of

what constitutes a natural type.

Rather than searching for a single, context-free “correct” type, this thesis aims to find

the classification that best matches human intuition. Having such types would greatly

enhance the practical usefulness of Wikidata.
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1.1. Motivation

Many NLP tasks depend on natural, intuitive labeling of entities. This would allow

for better information extraction/summarization, text categorization, and question

answering. For instance, consider a text summarization system processing news articles.

If it recognizes Berlin merely as a location or a place, and not as a city, it might miss

the core context of an article. Similarly, a question like “What city is the capital of

Germany?” can be handled more e�ectively if the underlying knowledge base clearly

labels Berlin as a city, and Germany as a country (instead of a geographical location).

Likewise, search engines can improve their results with precise entity types. Querying

Google often results in a “knowledge panel” on the right side of the search results,

including, among other things, the type of the entity that was searched for.

Now consider a scenario where you need all Wikidata entities that qualify as churches.

You’d want to include not only cathedrals, but also chapels, basilicas, and other types

of churches. The current state of Wikidata doesn’t allow for this. Overly specific types

fragment the category, and overly general ones o�er little di�erentiation, so there is a gap

between user expectations (“all churches”) and the actual structure of Wikidata. The

lack of natural types significantly reduces Wikidata’s potential for many applications.

1.2. Problem Statement

Wikidata’s flexible class structure is both a strength and a weakness. In Wikidata, every

entity can act as a class for any other entity. While this allows to add new entities in a

flexible way, it also leads to incredibly diverse and nested class hierarchies. Conventions

exist for common entities, for example, all humans are instances of human (Q5) and

all scientific articles are instances of scholarly article (Q13442814). However, these

conventions are not enforced, and they do not exist for all types of entities.

3



Nile (Q3392)

river (Q4022)

watercourse (Q355304)

P279

open water (Q2479431)

P279

P31

Figure 1.: Ontological Structure of Nile (Q3392). Nile is directly classified as river
via P31.

Contributors have di�erent perspectives and di�erent priorities regarding how to connect

new entities, so inconsistencies are bound to happen. The task of categorizing real-world

entities is inherently complex, and discrepancies naturally arise when adding new entities,

even with expert contributors. This makes the task of assigning consistent natural types

challenging.

The concept of a natural type is central to this thesis. It should align with human

intuition and reflect how humans naturally group the world around them. But types

should also be useful for practical applications. Overly broad types such as entity o�er

little information. On the other end, low-level types such as church in Berlin, tall building,

or waterfall in Africa are too narrow for most tasks.

Consider Nile (Q3392). Figure 1 shows its ontological structure. The nodes represent

entities, and the edges indicate relationships. In particular, an edge from Nile to river

indicates that there is a statement (triple) where the starting node is the subject (Nile),

the edge label is the predicate (P31), and the target node is the object (river).

As shown in the figure, Nile is directly classified as river (Q4022) through P31, which

represents its natural type. Here, there is no need to traverse a chain of subclasses to

find this fundamental classification.

Now, consider Saturn (Q193): Many applications simply need to know that Saturn (Q193)

is a planet (Q634). However, in Wikidata, this seemingly basic fact is not directly stated.

Instead, more specific types are directly assigned via P31, and the natural type planet
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Saturn (Q193)

gas giant (Q121750)

giant planet (Q21857994)

planet (Q634)

P279
P279

P31

outer planet (Q30014)

giant planet (Q21857994)

planet (Q634)

P279

P279

superior planet (Q844911)

P279

P31

Figure 2.: Ontological Structure of Saturn (Q193). The natural type planet can
only be inferred indirectly via P279 relations.

can only be inferred by traversing several connections. Specifically, Saturn is linked to

planet (Q634) indirectly through P279 connections via gas giant (Q121750) and outer

planet (Q30014), as shown in Figure 2. Programmatically identifying planet as the most

fitting natural type presents a significant challenge.

The complexity increases even further when entities have multiple instance of relationships,

like London (Q84), shown in Figure 3. London (Q84) is an instance of several types,

including metropolis (Q200250), financial centre (Q1066984), city (Q515), and megacity

(Q174844) among others. While city (Q515) may be the most appropriate natural type,

the presence of other, more or less specific types highlights the challenge in automatically

determining the most natural type.

London (Q84)

city
(Q515)

P31

metropolis
(Q200250)

P31

financial
centre

(Q1066984)

P3
1

national
capital

(Q108178728)

P31

megacity
(Q174844)

P31

global city
(Q208511)

P31

Figure 3.: Ontological Structure of London (Q84). London is associated with
multiple instance-of relationships, which complicates determining its natural
type.
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Furthermore, the natural type of an entity can be context-dependent. Mount St. Helens

(Q4675) is an instance of both mountain (Q8502) and stratovolcano (Q169358). Its natural

type could be mountain (Q8502) in certain contexts, and volcano (Q8072) (superclass

of stratovolcano (Q169358)) in others. This thesis does not consider context-dependent

type assignment, so the result must be the most generally applicable type given the

information available. In this example, volcano would probably be what most people

immediately think of when hearing Mount St. Helens.

The examples show something important: there is no single, universally applicable rule

by which the natural type of a Wikidata entity can be determined. The structure of

relationships and the distribution of properties vary drastically across the knowledge

graph. One might initially consider simple heuristics such as “the class with the highest

in-degree across all entities is the natural type” or “the most common class across all

entities is the natural type”. However, counterexamples can always be found. The

sheer diversity in Wikidata prevents a simple, rule-based approach. Similarly, manually

assigning a natural type to each Wikidata entity is infeasible due to the immense amount

of data. Therefore, an automated approach capable of inferring the most natural type

based on existing properties and relationships is needed.

This thesis introduces a novel approach to determining the natural type of each Wikidata

entity.

1.3. Outline

Chapter 2 provides the basic knowledge necessary to understand this thesis. In chapter 3,

existing approaches to the problem are shown and discussed in their relevance to our

task. Then, in chapter 4, the data and methods used in this work are presented in detail.

The results of our approach are evaluated in chapter 5. Finally, chapter 6 highlights the

limitations of our approach as well as possible directions for future research.
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2. Background

This section provides a high-level overview of some of the concepts and technologies that

are relevant to understanding this thesis.

2.1. Semantic Data and Ontologies

The Semantic Web, introduced by Tim Berners-Lee in 2001 [1], extends the traditional

web by structuring data so that computers can interpret and process it. At its core, the

Semantic Web relies on standards such as the Resource Description Framework (RDF)

and the Web Ontology Language (OWL) to represent data in a machine-understandable

way.

RDF, a model for representing information on the web, was recommended by the World

Wide Web Consortium (W3C) in 1999 [2]. It represents knowledge as a collection

of triples, consisting of a subject, a predicate, and an object. These triples can be

visualized as graphs, where nodes represent entities and edges correspond to properties

that define relationships between them. By using standardized vocabularies, RDF

provides a framework that allows data to be defined and linked in a consistent way.

Key RDF elements include rdf:type, which assigns a class to a resource (an entity), and

rdfs:subClassOf, which defines hierarchical relationships between classes.

OWL is a more expressive language that enables the creation of new classes and properties,

allowing for complex reasoning and inference tasks.
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Several ontologies have been developed to provide a standardized vocabulary for various

domains. Early e�orts like WordNet organized words into synsets (sets of synonyms)

and established lexical relationships, while later projects such as DBpedia, Freebase,

and Schema.org aimed to represent real-world entities with varying degrees of strictness

and flexibility. These projects represent di�erent approaches to ontology design. While

DBpedia has a fixed set of 800 classes and Schema.org follows a structured vocabulary,

Wikidata, using P31 and P279, o�ers a dynamic and continuously evolving classification

system.

This enables users to create new classes with minimal restrictions, as there are no enforced

constraints on how entities are classified. While this flexibility makes Wikidata highly

adaptable and suitable for representing evolving knowledge across various domains, it

also introduces challenges such as overlapping classes and inconsistent granularity in

classifications.

2.2. Wikidata

Wikidata began in 2012 as a Wikimedia Germany project, aiming to create a publicly

available, collaboratively built knowledge base. Unlike Wikipedia, which stores infor-

mation in articles, Wikidata stores information in structured form matching the RDF

model [6]. This structured form allows for easy querying and linking of data, for example

through SPARQL queries [3].

We will mostly follow the o�cially outlined terminology [7], with one exception: In

Wikidata, everything is considered an entity. There are six di�erent kinds of entities, the

most common ones are items (QIDs), properties (PIDs), and lexemes (LIDs). For typing,

our work focuses exclusively on items, i.e. entities that have a QID and are connected

through the P31 and/or P279 properties. Since Entity Typing is the standard term, we

will use it throughout this work. For consistency, we will also refer to Wikidata items as

entities, except in this section.

8



Items represent all kinds of things in the world, and they are clearly defined by a QID.

Some examples are Universe (Q1), Human (Q5), Chair (Q146), Ei�el Tower (Q243), Moon

landing (Q495307), Attention Is All You Need (Q30249683), etc. Wikidata also defines

properties to capture relationships among items. Properties, uniquely defined by a PID,

describe how one item relates to another [8]. Examples include properties like instance of

(P31), subclass of (P279), sex or gender (P21), place of birth (P19), and part of (P361).

Together, items and properties form statements, represented as triples of the form subject,

predicate, object (as in RDF).

Some examples of statements are:

• Douglas Adams (Q42) – instance of (P31) – human (Q5)

• Reinhold Messner (Q189307) – place of birth (P19) – Brixen (Q185541)

• The Lord of the Rings (Q15228) – genre (P136) – fantasy (Q132311)

• iPhone (Q2766) – developer (P178) – Apple (Q312)

• Europe (Q46) – part of (P361) – Eurasia (Q5401)

Wikidata imposes no strict ontology. While constraints exist, violating them results in

only a warning [9]. For example, it would be possible to add e.g. the Universe (Q1) as the

head of government (P6) of another entity. Collaborators are highly encouraged, however,

to follow the given constraints and best practices.

2.2.1. Basic Membership Properties (P31, P279)

For our work, two properties are especially relevant:

• P31 (instance of) roughly corresponds to rdf:type, indicating that an entity is a

member of a certain class.

9



• P279 (subclass of) corresponds to rdfs:subClassOf, indicating hierarchical

relationships between classes. This property is transitive: If A is a subclass of B

and B is a subclass of C, then A is a subclass of C.

Because of the transitivity of P279, every instance of a subclass is also an instance of

all its superclasses 4.1.1. If A is an instance of B and B is a subclass of C, then A is also

an instance of C. This transitivity is key when identifying the natural type of an entity.

Multiple layers of subclass relationships may stand between an entity and its natural

type.

This transitivity means entities like Moon (Q405) can have many valid types, like regular

moon (Q1086783) and natural satellite (Q2537). This allows entities to have dozens of

valid types through inheritance. Combined with the collaborative nature of Wikidata, this

creates a di�cult environment for choosing a single, most natural type for an entity.

2.3. NLP and Entity Typing

Natural Language Processing (NLP) is a subfield of Computer Science, artificial intelli-

gence, and linguistics that focuses on enabling computers to understand, interpret and

generate human language. It involves a wide range of tasks, such as Part-Of-Speech tag-

ging, Sentiment Analysis, Machine Translation, and Named Entity Recognition (NER).

More recently, NLP has become an area of intense research due to the rise of large

language models.

A specialized task within NLP is Entity Typing, which focuses on classifying mentions of

entities in text into types. While it is closely related to NER, which involves first identi-

fying entities in text and, in some cases, assigning types to them, Entity Typing focuses

solely on type assignment. It often involves working with a predefined ontology such as

DBpedia or Wikidata, and existing systems vary significantly in terms of methodology

and type definitions.

10



3. Related Work

This chapter reviews related work in the field of entity typing, and where it di�ers from

our approach. We conclude by identifying the current research gaps that our work aims

to address.

3.1. Types and Wikidata

The idea of assigning a type to each Wikidata entity is not entirely new. Discussions

about adding a dedicated property for this purpose, P107, date back to 2013 [10]. Various

suggestions for the property name were proposed, such as “item type”, “main item type”,

or “entity type”.

During these heated discussions, one proposal was to classify entities using the integrated

authority file (GND—Gemeinsame Normdatei), an ontology maintained by the German

National Library. It provides six main types, which are divided into around 50 subtypes.

The proposed implementation of P107, however, planned to only use the six main types

of GND.

Ultimately, P107 was deprecated in favor of P31, which o�ers much greater flexibility.

Accommodating the diverse and evolving range of entities in Wikidata is a di�cult task,

and P31 allows for a more nuanced and adaptable approach. This flexibility however

comes with the cost of consistency, and it doesn’t allow for obtaining a uniform view of

an entity’s type.
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3.2. Entity Typing

The broader field of entity typing has seen considerable research during the last decade.

This section reviews key contributions to the field.

In 2012, [11] introduced Tipalo, a system that automatically assigns types to DBpedia

entities by leveraging their natural language (NL) descriptions from Wikipedia. First, a

short description of an entity was extracted from its corresponding Wikipedia page. Then,

they used their tool FRED, which produces a graph representation from NL text using

computational semantics. This produces an OWL representation including a taxonomy

of types, a process which is referred to as taxonomy induction. Relevant types were

then selected based on graph patterns. The last step involved transferring this type

hierarchy to classes (e.g. chess piece) as well as instances (e.g. pawn). The result was a

complete Wikipedia ontology, which, however, is no longer accessible online. Evaluations

on a human-annotated gold standard dataset showed good precision and recall. While

Tipalo focused on creating a new ontology from Wikipedia descriptions to assign types

to DBpedia entities, our goal is to assign the most natural type to each Wikidata entity

based on existing classes. Tipalo focused on typing DBpedia entities, while our work

focused on Wikidata entities.

In 2013, [12] introduced TRank, a system that ranks entity types based on context.

The goal of their work was to improve search engine result pages, faceted browsing,

and document summarization by providing the most contextually relevant entity types.

For this purpose, they created a large-scale type hierarchy, combining multiple sources

such as Freebase, DBpedia, and Wikipedia. This was done by combining subclass

relationships, resolving cycles and gaps with equivalence mappings, as well as manual

adjustments. Their work focused on assigning types to entities extracted from web

pages and mapped to a knowledge base. It employs entity-centric, context-aware, and

hierarchy-based methods to rank types. The system was evaluated using crowd-sourced

relevance judgments across four distinct datasets: Entity Only (EO), Entity Collection
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(EC), Paragraph (PG), and 3-Paragraphs (3PG). Building on the work of TRank[12],

[13] introduced TRank++, an extension and refinement of the original TRank system for

journal publication. They built on the previous work by adding new ranking approaches

and features. While they also created a context-independent dataset (EO), TRank’s

primary goal was context-dependent type ranking, whereas our approach aims to identify

a single, context-independent, natural type for each Wikidata entity. Their approach

relied on a manually adjusted type hierarchy derived from several sources, while our work

focuses solely on Wikidata and its existing entities.

[14] addressed the entity ranking problem by leveraging knowledge-graph (KG) em-

beddings, treating the task as a special case of KG completion. They introduced a

new relevance property connecting entities and their types, creating triples in the form

<entity, relevance, entity_type>. Relevance judgments for entity type pairs, which

serve as the training data, were created via anonymous crowdsourcing. They considered

two scenarios: (1) Using only the entity and its structural context in the KG, and (2)

adding textual context (from New York Times articles) for the entity. The relevance of

entity-type pairs was determined by crowd-sourced votes. The evaluation was done on

the four datasets introduced in [12]. While their approach is a notable contribution, it

di�ers from ours in several aspects. First, they used a di�erent dataset. Second, while

their approach focuses on ranking types based on context, our method identifies the

single most natural type for each entity. Finally, they crowdsourced training data, while

we leveraged modern language models to select relevant types.

[15] introduced ManyEnt, a benchmark for few-shot entity typing, and evaluated a

BERT-based model on it. Based on the FewRel dataset, their goal was to predict the

type of an entity positioned in a sentence, given only a limited number of examples.

ManyEnt uses a manually created set of 256 specific and 56 general types from Wikidata.

Training data and benchmarks were created via a breadth-first search (BFS) starting

from the entity, assigning the first matching type from the set as the entity’s type. For

classification, they used BERT, a pre-trained language model, both with and without
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fine-tuning. Prediction was based on each entity’s embeddings created by BERT, and

their distances to prototype embeddings of each type. The type with the smallest

distance was chosen as the predicted type. Prototype embeddings were computed by

averaging the embeddings of the support set of entities. They evaluated the model on

two benchmarks, ManyEnt-256 and ManyEnt-56, using 1-shot and 5-shot settings. They

achieved accuracies of up to 90% on ManyEnt-256 and 92% on ManyEnt-56 in a 5-shot,

5-way, fine-tuned setting. While their approach shares the use of Wikidata with ours, it

di�ers in several aspects: The inclusion of context, i.e. the sentences in which the entities

appear, the manual creation of a pre-defined set of types, and the use of BFS-based

ground-truth labels. In contrast, our method employs a large language model (LLM) to

generate training data, and we predict types based solely on the entity itself, without

incorporating textual context.

Another interesting work is [16], a recent (2024) approach to refine the Wikidata Taxonomy

using LLMs, introducing a method to clean up and simplify its structure. They propose

a new, automatically refined taxonomy called WiKC, produced by methodically merging

classes, cutting inaccurate or irrelevant links, and reducing inconsistencies through zero-

shot LLM prompts. Their evaluation also involves an entity typing task, where they

leverage their refined taxonomy to classify entities more reliably. Those type assignments

are then judged by another LLM, based on context about the entity, and compared to the

original Wikidata types. They reported an accuracy of 37.5% on the original Wikidata

types and 75% on the WiKC types. Our work di�ers in two key ways. First, rather than

modifying Wikidata’s structure at the class level, we focus on selecting the single most

natural type for each entity based on all existing classes. Second, while their LLM usage

primarily involves predicting the correct relation (e.g., subclass-of vs. irrelevant) between

classes, we generate large-scale training data via an LLM to directly train models. Even

though our ultimate goal is very di�erent from theirs, both approaches address challenges

imposed by Wikidata’s complexity. They prune and refine the taxonomy, while we aim

to assign each entity its most intuitive and natural type.
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3.3. Research Gaps

While entity typing is a well-researched topic in NLP, several gaps remain. Existing

approaches primarily focus on predicting an entity’s type in a specific context, often

ranking types based on context in a few-shot setting. However, our work introduces a

new perspective by aiming to identify the most natural and intuitive type for each entity,

rather than a context-dependent one. As a result, there are no established baselines or

benchmarks for this task.

Most existing research has focused on knowledge bases such as DBpedia, with only a

few approaches considering Wikidata. However, even those that do focus on Wikidata

typically do not address natural typing.

Furthermore, while many approaches rely on small-scale crowdsourced training data or

few-shot learning, we leverage modern LLMs to generate large-scale training data which

we use to train traditional machine-learning models.

In the following chapter, we describe our approach in detail and how it addresses these

gaps.
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4. Methodology

This work focuses on supervised entity typing in Wikidata. While unsupervised, rule-

based approaches exist, such as selecting the superclass of an entity with the highest

in-degree, they were not suitable for this task. Such methods, while potentially accurate

and not uncommon, require more consistency than what Wikidata provides, and early

experiments regarding those approaches were quickly abandoned.

Therefore, this work adopts a supervised approach, using a large set of labeled data to

develop machine-learning models. While this approach o�ers great potential, it requires

a careful methodology for data selection and model training, which is described in the

following sections.

4.1. Data

4.1.1. Candidate Types

To determine which types are eligible for each entity as natural type candidates, existing

connections through the properties P31 and P279 were used. This was done for two

reasons:

1. Entities as Types: Assigning types that are not Wikidata entities (e.g., “Person”,

“Location”) could introduce unnecessary complexity. It is standard practice to use

an existing ontology for this purpose.
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2. Consistency: Using Wikidata entities as types enables a selection of a well-defined

set of candidate types through existing connections. This ensures consistency and

allows for easier evaluation, as the search space will be limited to a set of pre-defined

types.

However, as noted by [16], the rules for usage of P31 and P279 are not always followed

in Wikidata. Sometimes, P31 is used in place of P279, and vice versa. Our approach

assumes the proper application of these properties, and we used the following criteria to

determine which types are allowed for each entity:

• Layer 1: For a given entity, types directly reachable through P31 are allowed.

• Layer 2 and beyond: From the second layer onward, types reachable through

P279 are allowed.

• Exception 1: If an entity has no outgoing P31 edge, P279 is allowed in the first

layer.

• Exception 2: If no types are reachable through P279 at the second layer, and

there is only one valid connection in the first layer, P31 is used again at the second

layer.

Consider the entity excavator (Q182661) as an example, shown in Figure 4. In the first

layer, heavy equipment (Q874311) is discarded as a potential type, as it is only reachable

through P279. In the second layer, first-order class (Q104086571) is discarded, as it is

only reachable through P31. In this example, potential type candidates are physical

tool (Q39546), appliance (Q1183543), machine (Q11019), converter (Q35825432), and

mechanical device (Q1882685).

Our approach is designed to be intuitive. If an entity is an instance of another entity,

then due to the transitivity of P279, it is also an instance of all superclasses of that

entity.
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excavator (Q182661)

mechanical device (Q1882685)

machine (Q11019)

appliance (Q1183543)

physical tool (Q39546)

P279

P279

converter (Q35825432)

P279

first-order class (Q104086571)

P31

P279

P31

heavy equipment (Q874311)

P279

Figure 4.: Ontological Structure of Excavator (Q182661). Candidate types are
indicated with solid lines, while discarded types are indicated with dashed
lines.

Of course, there exist many entities that have no outgoing P31 connections, but only P279.

Whether or not to assign a type to an entity that is solely a subclass of other entities is a

di�cult question; Exception 1 allows for this possibility. Instances and classes are not

always clearly separated in Wikidata. While there exist some general guidelines about

when an entity is a class or an instance, they are not strictly enforced, and there are

exceptions. For example, P31 is typically used to connect instances to classes. However,

some entities are meta-classes, meaning that each of their instances is a class themselves.

Also, some entities are both an instance and a class, as described in [17]. To maintain a

balance between accuracy and simplicity, we decided to allow traversing P279 in the first

layer if no P31 edge is present.

The second exception is designed to handle a rare case where an entity is an instance or

subclass of only one entity in the first layer, which itself is not connected to any other

entities through P279. For example, 1993 Asian Athletics Championships (Q596452) is an

instance of Asian Athletics Championships (Q1138826). Q1138826 has no outgoing P279

connections but is connected through P31 to, for instance, sports competition (Q13406554),

which would be a more appropriate type for Q596452. Similarly, CSE-CSPG5 [lysosomal

18



lumen] (Q50686512) is an instance of Chondroitin Sulfate Proteoglycan 5 (Q21172743),

which also doesn’t have an outgoing P279 connection. However, Q21172743 is connected

via P31 to protein (Q8054), which is a much better type for Q50686512 than Chondroitin

Sulfate Proteoglycan 5 (Q21172743), which would be the only type candidate without

this exception. This scenario is infrequent and usually triggers a warning in Wikidata,

such as a “value-requires-statement constraint” which indicates that, for instance, Asian

Athletics Championships (Q1138826) should have a subclass of statement, since it is used

as a class. In practice, this exception is rarely needed, but it is included to handle such

edge cases.

4.1.2. Training Data

Now that we have established candidate-type selection criteria, the next step is to obtain

training data. Getting high-quality, labeled training data is notoriously di�cult. To

automate this process, which is traditionally a manual, labor-intensive task, we used a

large language model (LLM) to label entities.

Small versions of frontier LLMs (e.g., GPT-4o-Mini or Gemini Flash) are both capable

and inexpensive, costing around $0.075 per million input tokens and $0.3 per million

output tokens at the time of writing [18]. The drastic reduction in cost and improved

capabilities over the last two years enabled us to generate thousands of labeled entities

quickly and for only a few dollars.

However, when using a LLM, type assignments cannot be controlled directly. Instead,

the LLM needs to be guided to select the correct type. The only way to do this is

through prompt engineering. In practice, this involves a so-called “system-string” which

is provided to the LLM with each API call. The system-string we used is included in the

Appendix A. It consists of a series of instructions for the LLM, such as detailed criteria

for type selection, preferred output format, and examples of valid type assignments.
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LABEL: Andromeda Galaxy
DESCRIPTION: barred spiral galaxy within the Local Group

POSSIBLE TYPES:
deep-sky object (Q249389)
independent continuant (Q53617489)
material entity (Q53617407)
natural physical object (Q16686022)
galaxy (Q318)
concrete object (Q4406616)
disc galaxy (Q1371025)
entity (Q35120)
spiral galaxy (Q2488)
astronomical object (Q6999)
continuant (Q103940464)

Figure 5.: Example of LLM Input for an Entity. The input provides the LLM
with an entity’s label, description, and list of candidate types (including
Label and QID), which were randomly shu�ed and separated by line breaks.

For each entity, the model was then provided with both its label and description, as

well as with the selection of candidate types (see Section 4.1.1). As instructed in the

system-string, the model had to select a single type from the list of candidates. Types

were provided in the format “Label (Q1234567)”, shu�ed randomly, and separated by

line breaks. One such example is shown in Figure 5.

Deciding which entities to include in the training data is not trivial. Selecting entities

randomly without filtering would yield a narrow coverage of structural positions within

Wikidata, as entities with certain structural positions (e.g., humans or scientific articles)

would be overrepresented. Moreover, entities that share the same natural type can be

connected very di�erently in the graph.

To ensure broad coverage of structural positions and variety in the training data, entities

were selected as illustrated in Figure 6.

For each entity, a string was created which reflects its structural position in the Wikidata

graph. All entities directly connected to the entity through P31 and P279 were prefixed
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Sample Entities

Filter Missing
Label/Description

Create Struc-
tural String

Unique?

Discard Keep (max 3)

Label Using LLM

~200k La-
beled Entities

No Yes

Figure 6.: Flowchart of the Training Data Generation Process. Entities are
sampled from Wikidata, filtered for missing labels/descriptions, and assigned
a unique structural string based on their P31 and P279 relations. Up to
three entities per unique string are kept and subsequently labeled using an
LLM, resulting in approximately 200,000 labeled entities.

with either “i” or “s” (“i” for P31, “s” for P279), sorted alphabetically and concatenated.

This way, each structural position in the ontology is represented by a unique string.

For example, for Earth (Q2), which is an instance of terrestrial planet (Q128207) and

an instance of inner planet of the Solar System (Q3504248), the resulting string would

be “iQ128207iQ3504248”. Non-coding RNA (Q427087), which is only a subclass of RNA

(Q11053), has “sQ11053” as its string.

Next, we sampled a few million entities randomly from Wikidata, filtered those out that

had no label or description, and created a structural string for each entity. A maximum of

3 entities per unique string were kept, while all others were discarded. From the original
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millions of entities, only ~180,000 remained, which were then labeled using the LLM, one

by one.

The large number of entities is beneficial for two main reasons:

1. Rarity of certain types: Some types (e.g., ocean (Q9430) for Atlantic Ocean

(Q97)) apply to very few entities. Similarly, obtaining a diverse set of entities for

volcano (Q8072) requires scanning through millions of entities.

2. Structural variations even for common types: For example, both Apple

(Q312) and BMW (Q26678) are of the type enterprise/company (Q6881511), but

their connections di�er significantly. Similarly, Saturn (Q193) and Uranus (Q324)

share the type Planet (Q634), but have very di�erent structural positions in the

graph. Covering a wide range of structural positions in the graph is crucial for

training a well-generalizing model.

4.1.3. Evaluation Data

Following standard practice in natural language processing, we evaluated our system’s

performance using benchmark datasets. Two evaluation sets were created, each addressing

di�erent aspects of representation.

• First Dataset (500 entities): These entities were selected in the same way as

the training data but restricted to one entity per unique structural representation

string (as described in Section 4.1.2).

• Second Dataset (300 entities): These entities were deliberately chosen by hand

to cover a diverse and well-known set of entities.

All 800 entities were carefully labeled by a human annotator, in accordance with the

criteria described in Section 4.1.1. In most cases, a single type was designated as correct.
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However, for certain entities, two or (in rare instances) three types were accepted, resulting

in an average of 1.1 valid types per entity across both datasets.

This strategy was used to avoid penalizing the model for minor variations in specificity

or phrasing. For example, family name (Q101352) and surname (Q121493679) were

considered to be equally valid for the entity Simpson (Q2800825). This ensures that

only clearly incorrect predictions are penalized, rather than minor variations that even

humans might disagree on.

4.2. Feature Extraction

Machine learning models require numerical input. Therefore, to predict entity types, we

must convert attributes of each entity into numerical feature vectors.

Generally speaking, a feature is a measurable property that can be used for a prediction

task. For instance, the weight of a car is a feature that can be used to predict its fuel

consumption, while the location and size of a flat can be used to estimate its price. In

the context of Wikidata, however, feature extraction is more complex since entities have

multiple textual and structural attributes, rather than numerical properties.

Wikidata entities are commonly characterized by a variety of attributes, such as labels

(e.g. Q42 corresponds to “Douglas Adams”), brief descriptions (like “English author and

humorist”), statements, sitelinks to pages on other Wikimedia projects, and alternative

names (aliases). Each of these information sources can help to identify an entity’s type.

In this work, we combined three types of features to form a comprehensive feature vector

for each entity.

1. Node Degrees (Section 4.2.1): in-degree, out-degree, and their ratio with

respect to di�erent properties.
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2. RDF2Vec Node Embeddings (Section 4.2.2): embeddings capturing an

entity’s structural position in the Wikidata graph, generated using RDF2Vec.

3. Universal Sentence Encoder (Section 4.2.3): sentence embeddings that

capture semantic information from entity descriptions.

4.2.1. Node Degrees

A simple feature for each node - requiring no additional precomputation - is its in-

degree and out-degree, meaning the number of incoming and outgoing edges, respectively.

Because a small number of nodes have extremely high in- or out-degrees, while the

vast majority have relatively low degrees, we applied a logarithmic transformation.

Additionally, the ratio of in-degree to out-degree was calculated. Using only P31 and

P279, these steps yield a total of 5 features for each node (in-degree P31, in-degree P279,

out-degree P31, out-degree P279, and the ratio, each transformed logarithmically). We

also incorporated additional edge types, namely part of (P361), has use (P366), and day

of week (P2894), in the degree calculations.

4.2.2. Node Embeddings

Since P31 and P279 make a concrete statement about the type of an entity, they should

provide highly valuable information for determining the type of an entity.

The simplest possible embedding is one-hot encoding, where each entity (node) is

represented as a binary vector of length equal to the total number of entities, with a

1 at the position corresponding to that entity and 0 everywhere else. However, this

would result in count(items) ◊ count(items) parameters, which is infeasible. Also, such

embeddings are very sparse and do not capture information about the similarity of

entities.
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Instead, more sophisticated approaches, such as DeepWalk [19], Node2Vec [20] and

RDF2Vec [21], have been developed to generate node embeddings. These methods

perform random walks on the graph, treating the resulting sequences as sentences, with

nodes acting like words. Then, Word2Vec [22] is used to learn embeddings for each

entity.

To incorporate edge information, the random walks can integrate edge labels, as proposed

by [21] for RDF graphs. Although pre-trained RDF2Vec embeddings are available for

Wikidata [21], we generated them ourselves to ensure they are up-to-date and to have

full control over the training process.

For each entity, 10 random walks of length 8 were generated. Figure 7 shows examples of

such walks.

Q100000004 i Q3914 s Q5341295 s Q43229 s Q106668099

Q104044591 i Q13433827 i Q223393 i Q19478619 i Q19868531

Q102329267 i Q13442814 s Q30070590 s Q191067 s Q4263830

Q100801691 i Q5 i Q55983715 i Q19478619 i Q23958852

Figure 7.: Examples of Wikidata Walks for RDF2Vec. Random walks of length
8 are generated using membership properties P31 and P279, represented by
“i” and “s”, respectively.

Only P31 and P279 edges were added to the walks (“i” and “s” for P31 and P279,

respectively, to save space), since these are the type-defining properties. Among all

possible connections through P31 and P279, the next step in the walk was selected

randomly.

To create embeddings from these walks, we used Skip-Gram [22]. Skip-Gram employs a

shallow neural network with one hidden layer to predict surrounding words (nodes) given

a target word. As illustrated in Figure 8, the dimensionality of the input and output

layer is equal to the vocabulary size (number of nodes/entities), while the dimensionality
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Input (dim v)

W

(v ◊ n)

Hidden (dim n)

W
Õ

(n ◊ v)

Output (dim v)

Softmax

Figure 8.: Skip-Gram Model Architecture. A one-hot encoded input (dim v) is
projected to a hidden layer (dim n) via weight matrix W (v ◊ n), then
mapped to the output (dim v) through W

Õ (n ◊ v) with a softmax function.
After training, the rows of W serve as word embeddings.

of the hidden layer is equal to the embedding size, 32 in our case. The weight matrix W

has dimensionality v(vocabularysize) ◊ n(embeddingsize).

Training Skip-Gram involves learning pairs of words (nodes) that occur together within

a specified window size. For example, for a given sequence of nodes and properties

Q3914 æ i æ Q5341295 æ s æ Q43229

and a window size of 2, the pairs for the target node Q5341295 are:

• (Q5341295, Q3914) (two steps back)

• (Q5341295, i) (one step back)

• (Q5341295, s) (one step forward)

• (Q5341295, Q43229) (two steps forward)

This means that the window size directly influences the context distance the model

considers. During training, the model learns to predict the context node given the target

node, each one-hot encoded. The input vector is multiplied with W , zeroing out all rows of

W except for the row corresponding to the input word. Then, the hidden layer activations
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are multiplied with the output weight matrix (size n ◊ v) and passed through a softmax

function, which results in a probability distribution over the vocabulary. Cross-entropy

loss is then minimized between predicted probabilities and the one-hot encoded target

word, using backpropagation to update W and W
Õ. After training, the rows of W serve

as word embeddings.

Intuitively, W is optimized to map target words to embeddings that are useful for

predicting their context words. At the end of training, each node has a 32-dimensional

vector, where semantically or structurally similar nodes end up close to each other in the

embedding space.

We used Gensim to train the embeddings with a window size of 4, a vector size of 32,

and a minimum count of 1, meaning that all nodes were included in the vocabulary.

While a dedicated Node2Vec python package exists, we generated the random walks

separately since Gensim, through the PathLineSentences functionality, allows training

from sentences in a streaming fashion rather than having to load them into memory.

4.2.3. Description Embeddings

Another important feature for type prediction is the entity description. According to

Wikidata guidelines, it should consist of two to twelve words [23]. Descriptions are not

full sentences but rather small bits of information that provide additional context about

the entity. The entity description exists to disambiguate entities with the same or similar

labels (although, two entities can have the same description).

Some descriptions o�er limited discriminative power for type prediction. For example,

the description of the entity Q107294393, a Russian princess from the 17th century, is

“died 1721”, which isn’t informative at all, and many entities lack descriptions altogether.

Still, combined with other features, they should provide valuable information.

To create rich feature vectors from entity descriptions, we used Universal Sentence Encoder

(USE) [24]. While traditional sentence embedding methods such as Bag of Words, Term

27



Frequency-Inverse Document Frequency [25] or averaging Word2Vec embeddings capture

limited semantic information and ignore word order, USE overcomes these limitations.

USE is available in two variants: one based on a transformer architecture [26] and another

using a deep averaging network (DAN) [27]. In our work, we used the transformer-based

version accessible via TensorFlow Hub [28], which produces a 512-dimensional embedding

that captures both semantics and word order.

A simplified illustration of how USE works is shown in Figure 9.

Input: "Earth’s only
natural satellite."

Tokenization/
Embedding

Encoder
(Transformer)

Sentence
Embedding u œ R

D

Figure 9.: Universal Sentence Encoder (USE). The input sentence is tokenized and
embedded, then passed through the encoder to obtain a sentence embedding.

In this process, an input sentence is first tokenized, meaning the sentence is split into

individual tokens (words or subwords). Each token is then converted into a numeric vector

using a pre-trained lookup table. These token embeddings are then passed through an

encoder, which in our case uses a transformer architecture, as described in [26], to capture

contextual relationships among tokens. The output of the encoder is then used to generate

a sentence embedding, which typically involves pooling operations, such as averaging the

token embeddings or using a weighted combination. The final output, u œ R
D, represents

the sentence embedding, where D (512 in our case) is its dimensionality.

Unlike the pre-trained RDF2Vec embeddings, USE embeddings were generated in real-

time during training and inference. Storing 512-dimensional vectors for ~90 million

descriptions would be infeasible (requiring approximately 400 GB of storage), and

attempts to precompute and store them using dimensionality reduction techniques, such

as incremental PCA, did lead to a slight reduction in performance.
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4.3. Machine Learning Models

4.3.1. Candidate Masking

The final training dataset contains over 4,000 types. However, as stated in Section 4.1.1,

only a subset of these types is actually allowed for each entity. To enforce this constraint

on the machine learning models, we used a masking mechanism, both during training

and inference, on the output layer. This mask consists of a binary vector with a length

equal to the number of types. It contains a 1 for allowed types and 0 otherwise. During

the forward pass, this mask is applied to the model’s Logits, as shown in Figure 10.

1 class MaskedFNN (nn. Module ):
2 def __init__ (self , input_dim , output_dim ):
3 # shortened , exemplary implementation
4 self. layers = nn. Sequential (
5 nn. Linear (input_dim , output_dim )
6 )
7

8 def forward (self , x, mask=None):
9 logits = self. layers (x)

10 if mask is not None:
11 logits = logits + torch.log(mask + 1e -9)
12 return logits

Figure 10.: Exemplary Implementation of a Masked Neural Network. The
mask is applied on the logits in the forward pass, prior to the softmax
activation.

Here, “Logits” refers to the raw output of a neural network prior to any activation

function. Adding torch.log(mask + 1e-9) to the logits leaves allowed types (where

the mask is 1) unchanged, since log(1) = 0. The small value 1e ≠ 9 is deliberately chosen

to avoid a�ecting the probabilities of allowed types while preventing log(0) for disallowed

types. For disallowed types (where the mask is 0), this operation pushes them to large

negative values, because log(1e ≠ 9) ¥ ≠20.72.

The whole process is illustrated in Figure 11. As can be seen, after the mask is applied, the

model’s output is passed through a softmax function to obtain a probability distribution.
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Logits:

Mask:

Masked
Logits:

Probabilities:

Types:

0.11 0.84 0.19 -0.23 0.42 1.10 -0.20 0.99 0.01 -0.75

1 0 0 0 1 0 0 1 0 0

0.11 -20.72 -20.72 -20.72 0.42 -20.72 -20.72 0.99 -20.72 -20.72

0.209 0.000 0.000 0.000 0.285 0.000 0.000 0.505 0.000 0.000

Work Dog Lake Cat Artwork Print Wall Painting Fruit Car

Logits + log(Mask + 10
≠9

)

Softmax

Figure 11.: Visualization of the Logit Masking Process. Logits corresponding to
disallowed types (i.e., where the mask is 0) receive a large negative o�set.
After applying the softmax function, these logits yield probabilities close to
zero.

In the example, Painting has a probability of 0.505, Artwork 0.285, and Work 0.209,

while all other types have a probability of 0.

When the masked logits are processed by the softmax function, the exponentiation causes

large negatives (assigned to disallowed types) to become probabilities near zero. The

function is defined as:

‡(z)i = e
zi

qK
j=1 ezj

, for i = 1, . . . , K

Each Logit zi is exponentiated using e as the base. When zi is a large negative number

(like -20.72 in our case), e
zi becomes very small, as e

≠20.72 is equivalent to 1
e20.72 , and

e
20.72 is very large.

This constrains the model to predict from only the pre-selected set of allowed types,

rather than from all types. Using the mask during inference is straightforward, as it

ensures that only allowed types achieve a high probability. The e�ect during training

is more subtle. The mask ensures that no meaningful gradient is backpropagated for

disallowed types, so the model learns to focus solely on the allowed ones. Without the
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mask, the model has to learn to suppress wrong types, but due to the mask, disallowed

types automatically receive a probability close to zero. Therefore, the model can solely

focus on distributing probabilities among allowed types.

Comparable masks have been applied in various contexts, such as hierarchical image

classification [29] and other applications requiring constrained output spaces. More

broadly speaking, masking is a common technique in machine learning for a variety of

tasks. Our approach extends this concept to entity typing in Wikidata.

4.3.2. Class Weights

Another important consideration in training is class imbalance. Although the training

dataset was created in a way that ensures broad coverage of structural positions in

Wikidata, some types are naturally overrepresented. For example, type of chemical entity

(Q113145171) appears over 7,000 times in the finished training set, while volcano (Q8072)

appears only 23 times. In order to allow for balanced training, we applied class weighting

via Smoothed Inverse Frequency, as seen in the following formula:

wj =
A

max(ck)
cj + ‘

B–

This is a commonly used technique for imbalanced datasets. wj is the weight assigned

to class j, cj is the number of occurrences of class j, max(ck) is the highest occurrence

count among all classes, and ‘ is a small constant to prevent division by zero. – controls

the di�erence between high and low weights.

A value for – of 1.0 results in pure inverse frequency, while a value like 0.5 (square root)

makes the weighting less aggressive. In our case, 0.07 was chosen as the exponent, as it

led to the highest validation accuracy.
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4.3.3. Feedforward Neural Network

The simplest neural network architecture is the Feedforward Neural Network (FNN), also

known as a Multi-Layer Perceptron (MLP). It consists of an input layer with the same

dimensionality as the feature space, one or more hidden layers, and an output layer. The

dimensionality of the output layer corresponds to the number of classes in the training

data. In our case, we implemented a typical design for classification tasks, featuring

fully connected layers, batch normalization, non-linear activation functions (ReLU), and

dropout. Batch normalization normalizes the output of each layer, ensuring a mean of

0 and a standard deviation of 1. Dropout, on the other hand, randomly sets a certain

percentage of neurons to zero during training to prevent overfitting.

Training was done using cross-entropy loss, which is a common choice for multi-class

classification tasks, along with the Adam optimizer.

4.3.4. GraphSAGE

To incorporate information not only from individual nodes but also from their neighbors,

we experimented with various graph neural networks (GNNs). While RDF2Vec already

creates embeddings based on graph structure, it is trained in an unsupervised manner

and does not account for the target task. In contrast, GNNs generate new embeddings

for each node by aggregating information from its neighbors in a way that is fine-tuned

for the specific task (i.e., supervised learning).

The first GNN we tested was GraphSAGE [30], a method for inductive representation

learning on homogeneous graphs.

In contrast to transductive methods, which require the entire graph (and all node features)

to be present during training, inductive methods can generalize to nodes not seen during

training. To achieve the highest accuracy, we integrated RDF2Vec embeddings as node
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features within GraphSAGE (and other GNNs), rather than relying solely on standard

inductive features.

GraphSAGE creates a task-specific embedding for each node by aggregating information

from its neighbors. This process is usually referred to as graph convolution. Although

the term “convolution” might indicate some similarity to convolutional neural networks

(CNNs), GraphSAGE’s approach is quite di�erent. In a CNN, a convolution aggregates

information from spatially adjacent pixels, while in GraphSAGE, the convolution aggre-

gates information from a node’s neighbors in the graph. Several aggregation functions

can be used, such as mean, max, or LSTM-based aggregation.

Figure 12 shows the architecture of a simple GraphSAGE convolution. The learnable

part of each convolutional layer is the weight matrix W
(k), which is applied after the

aggregation step to transform the combined features into a new embedding, as well as the

root weight W
(k)
r . Each GraphSAGE layer uses its own weight matrix, which is shared

among all nodes. The root weight W
(k)
r is used to directly transform the central node’s

features before aggregation, allowing the model to preserve the original node information

better.

For our implementation, we used the GraphSAGE module from PyTorch Geometric, a

library designed for graph-based learning in PyTorch. While the original GraphSAGE

described in [30] does not inherently support multiple edge types, the PyTorch Geometric
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implementation provides this functionality through HeteroConv [31]. This wrapper allows

for heterogeneous graphs (i.e., graphs with multiple edge types) by first aggregating node

embeddings per edge type (using mean in our case) and then performing a cross-type

aggregation step (also using mean).

Another essential factor in GraphSAGE, and GNNs in general, is the number of layers.

Each additional layer increases the receptive field, meaning that information can propagate

across more hops. With a single layer, only immediate neighbors are considered. With

two layers, neighbors of neighbors are accounted for, since a neighbor’s embedding

already integrates information from its own neighbors. This pattern continues with each

additional layer. In our experiments, we used two GraphSAGE convolutional layers and,

following common practice, added a final linear layer on top for classification.

4.3.5. Graph Attention Network

One limitation of GraphSAGE and many other GNNs is that by using pooling functions

(such as mean or max), all neighbors receive the same importance [32]. A Graph Attention

Network (GAT) [33] addresses this limitation by computing attention coe�cients for each

neighbor of a node, e�ectively assigning di�erent importance to di�erent neighbors.

Like GraphSAGE, GAT is an inductive method for learning node embeddings. We used

the implementation from PyTorch Geometric [34].

Conceptually, GAT’s approach can be broken down into three main steps [33]:

1. Scoring Function

e(hi, hj) = LeakyReLU
1
a€ · [Whi Î Whj ]

2

e(hi, hj) is the attention score between nodes i and j, and hi and hj are the

current node embeddings. The node features are transformed by a weight matrix

W , concatenated, and then passed through a learnable weight vector a. This
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vector a determines which features in the concatenated vector indicate a stronger

relationship between nodes.

2. Attention Coe�cients

–ij = softmaxj (e(hi, hj)) = exp (e(hi, hj))
q

jÕœNi
exp

!
e(hi, hjÕ)

"

The softmax function normalizes the attention scores so that they can be used

as weights for aggregation. After this step, –ij is a value between 0 and 1 and

indicates the relative importance of neighbor j for node i.

3. Aggregation

h
Õ
i = ‡

Q

a
ÿ

jœNi

–ij · Whj

R

b

This equation describes how a new embedding h
Õ
i is computed for node i by

aggregating information from its neighbors. For each neighbor j, its feature vector

is multiplied by the matrix W and weighted by the attention coe�cient –ij . As

described in equation 2, –ij represents the importance of neighbor j for node i.

These weighted features are then summed up across all neighbors. This results in a

single vector that represents the aggregated, attention-weighted information from

the neighborhood. Finally, the vector is passed through a non-linear activation

function ‡, which results in the new node embedding h
Õ
i.

In practice, GAT uses multiple attention mechanisms (“heads”) in parallel, each with its

own learnable parameters (W and a). The outputs from these heads are then concatenated

or averaged to produce the final node representation, which allows the model to capture

di�erent aspects of node relationships simultaneously.

Similar to GraphSAGE, each layer in a GAT updates node features by aggregating

information from neighbors, meaning the number of layers determines the receptive field

(i.e., how many hops in the graph the model can observe). We tried di�erent numbers
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of layers and eventually settled on two GAT layers and a third linear layer for the final

classification.

4.3.6. R-GCN

The Graph Neural Networks described above are primarily designed for inductive learning

on homogeneous graphs. While they can be adapted for heterogeneous graphs, they are

not specifically designed for them. GAT, for example, takes an incredibly large amount

of memory when used on a graph with multiple edge types, since it creates a separate

attention mechanism (including parameters and adjacency-like structures) for each edge

type, which causes memory usage to scale quickly with the number of relation types.

Relational Graph Convolutional Networks (R-GCN) [35] are a type of graph convolutional

network specifically designed to handle multi-relational graphs. While originally designed

to be transductive, meaning that the whole graph should be present during training, it

can be used inductively, as we do in this work. In this case, it’s important to ensure

consistency for edges used during training and inference.

R-GCNs work by aggregating information from neighboring nodes, separated by edge

types. Therefore, similarly to the mentioned GraphSAGE and GAT models, the number

of layers directly a�ects the receptive field of the model. Node embeddings are updated

according to the following formula, as described in [35]:

h
(l+1)
i = ‡

Q

a
ÿ

rœR

ÿ

jœN r
i

1
ci,r

W
(l)
r h

(l)
j + W

(l)
0 h

(l)
i

R

b

Here, h
(l)
i is the embedding of node i at layer l, and h

(l+1)
i is the updated embedding at

layer l + 1. R is the set of edge types, such as P31, P279, P361, etc. N r
i is the set of

neighbors of node i connected by edge type r, and W
(l)
r is the weight matrix for edge

type r at layer l. To weight self-loops di�erently, W
(l)
0 is the weight matrix for self-loops

at layer l. Additionally, R-GCNs use normalization by the number of neighbors ci,r for
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node i under relation (edge type) r. The ‡ (sigma) in the formula represents a non-linear

activation function, such as ReLU, applied element-wise to the aggregated neighborhood

information.

Intuitively, at each layer, neighbors are aggregated, transformed by a weight matrix, and

then summed up, separated by edge type. While this might seem similar to GraphSAGE,

the explicit handling of relation-specific normalization and transformation makes R-GCNs

particularly well-suited for graphs with multiple edge types. Because of this, we trained

R-GCN using the same features as GraphSAGE and GAT, but with additional, common

Wikidata edge types (properties), such as part of (P361), has use (P366), and day of week

(P2894), and we used two layers as well as a third linear layer for the final classification.

4.3.7. Hyperparameter Tuning

Hyperparameters of all machine learning models were tuned using a standard procedure.

We split the training dataset 80/20 into training and validation sets and then performed

a grid search over a range of hyperparameters (such as dropout, weight decay, hidden

layer size, and class weights). The combination of hyperparameters yielding the best

performance on the validation set was then selected for the final model.

4.3.8. Baseline Neural Network (Natalie Prange)

In addition to the models presented above, a neural network developed by my supervisor,

Natalie Prange, was evaluated on the benchmark datasets.

This neural network employs a feature set that is notably distinct from our other

approaches. In particular, it integrates type name embeddings and entity description

embeddings with multiple scalar features, including inverse type frequency, predicate

variance, and boolean indicators that check for the presence of the type name within the

entity description or label.
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The architecture is based on a feed-forward neural network, and it was trained on the

same dataset generated for this work (although a smaller subset than the one used for

the other models).

This common training ground enables a direct comparison of performance across di�erent

feature sets and modeling approaches. This architecture is part of Natalie’s forthcoming

doctoral thesis.

4.3.9. Large Language Models

Just like LLMs were used to generate training data, we also evaluated their performance

on the benchmark datasets. Each LLM was provided with the instruction string described

in Section 4.1.2, the label and description of the entity, and the pre-selected types. We

evaluated a selection of LLMs for this task: GPT-4o-Mini, GPT-4o, Gemini Flash, and

Gemini Pro.
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5. Evaluation

5.1. Performance

As noted in Chapter 3, there exists no prior work regarding entity typing in Wikidata that

can be used for benchmarking. Therefore, we created two custom datasets to evaluate

our approach:

• Random 500 Dataset: 500 randomly sampled entities, each manually labeled.

These entities were selected similarly to the training set: one entity per unique

ontology string (see Section 4.1.2) was chosen and then labeled.

• Handpicked 300 Dataset: 300 manually labeled entities chosen to cover a diverse

set of types (e.g., continents, volcanoes, deities, etc.).

Figure 13 shows the results on both benchmarks comparing Accuracy@1 and Mean

Reciprocal Rank (MRR). Accuracy@1 is the percentage of correctly classified entities,

while MRR is the mean reciprocal rank of the first correct prediction. While Accuracy@1

only takes the top-1 prediction into account, MRR considers the rank of the correct

prediction. For example, if the correct answer is ranked first, the RR is 1; if it is ranked

second, the RR is 0.5; if it is ranked third, the RR is 0.33, and so on. In our case, the

MRR is then calculated as the average of all individual reciprocal ranks across all entities

in the benchmark.
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Figure 13.: Performance Comparison Across Models. Included are Accuracy@1
(percentage of correct top predictions) and MRR (mean reciprocal rank) for
two datasets. DS1 - Random 500. DS2 - Hand-Picked 300. Higher values
indicate better performance.

The R-GCN model leads with an average Accuracy@1 of 87% and an average MRR

of 0.917, followed closely by the GAT, GraphSAGE, and FNN models, which show

only marginal di�erences among them. Notably, the MaskOnly model—despite not

incorporating node embeddings—delivers respectable accuracies of 84% and 82% on the

Random 500 and Hand-Picked 300 benchmarks, respectively.

In contrast, LLMs show weaker overall performance. In particular, Gemini Flash, which

was used to generate the training data, has an Accuracy@1 5% lower than the R-GCN for

both benchmarks. GPT-4o, while performing better than Gemini Flash on the Random

500 dataset, falls short on the Hand-Picked 300 dataset. Additionally, the baseline

model by Natalie Prange, which relies on traditional NLP features such as type name

embeddings and entity description embeddings, yields the lowest accuracy among the

tested methods. It is important to note that this model was trained on a smaller dataset
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than the other approaches. Consequently, its lower accuracy is not solely a reflection of

the feature set but also likely stems from the reduced volume of training data.

A likely reason the machine-learning models outperform Gemini Flash—the same system

used to generate the training data—is that they consolidate multiple Gemini Flash

outputs and thus smooth out individual errors. While Gemini Flash might correctly

predict the type 83% of the time in single runs, the aggregated knowledge captured by

the models leads to more consistent and accurate predictions.

The FNN was trained without using the RDF2Vec embeddings, only relying on the

USE embeddings, degrees, and the mask. Adding the RDF2Vec embeddings did not

improve the performance. Furthermore, more complex models like GraphSAGE and

R-GCN did barely outperform the FNN. This suggests that the most critical information

for type prediction may already be captured by the description embeddings and the

mask. The additional information contained in graph embeddings such as RDF2Vec or

GraphSAGE did not seem to provide substantial value here, and the performance ceiling

might be limited by the quality of training data rather than the model’s architecture itself.

Discrepancies in performance between the benchmarks might be coincidental. However,

they could also stem from the absence of descriptions (and thus USE embeddings) for 16

entities in the Random 500 dataset, while all entities in the Hand-Picked 300 dataset

have descriptions.

Two plausible reasons for why the mask alone performs so well are: (1) Entities inheriting

the same candidate types likely share similar positions in the hierarchy, which means they

often also share the same natural type. (2) The candidate-type masks are not always

unique for each entity because of transitive subclass relationships. For instance, Mount

St. Helens (Q4675) is explicitly an instance of both mountain (Q8502) and stratovolcano

(Q113947). Stratovolcano (Q113947) is a subclass of volcano (Q8072), which is a subclass

of mountain (Q8502). Meanwhile, Mount Egon (Q385596) is only explicitly stated to be

an instance of stratovolcano (Q113947). Despite these di�erences, both entities end up

with the same set of type candidates via transitive closure—and thus share the same
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mask. In this case, volcano (Q8072) is arguably the most natural type for both entities, so

having the same mask is beneficial. Performance without the mask is shown in Figure 14.

It can be seen that performance drops significantly without the mask.

Figure 14.: Performance Comparison Without
Mask. Included are FNN, GraphSAGE,
GAT, and R-GCN.

All models without the mask were

trained using RDF2Vec embed-

dings, USE embeddings, and de-

grees. Without the mask, Graph-

SAGE and GAT performed worse

than the FNN and R-GCN. This

likely stems from the fact that

GraphSAGE and GAT were orig-

inally designed for homogeneous

graphs, while R-GCN was specif-

ically designed for heterogeneous graphs. Surprisingly, the FNN achieved the highest

performance among all models, even surpassing R-GCN in average accuracy. The exact

reasons for this are di�cult to pinpoint. The FNN received structural information from

the RDF2Vec embeddings, and perhaps the unprocessed RDF2Vec embeddings were

more beneficial for the task than the neighborhood aggregation performed by the GNNs.

During training, R-GCN achieved a validation accuracy around 3% higher than the

FNN and it outperformed FNN on the Random 500 dataset by over 2%. However,

FNN outperformed R-GCN on the handpicked 300 dataset. Since the main method

presented in this work involves using the mask, these results were not further investigated.

They show, however, that refining embeddings or model architecture alone could not

compensate for the large search space of over 4000 types.

Figure 15 shows training and validation accuracy (train-test split 80/20) of the FNN

under various configurations (with and without the mask, with and without RDF2Vec).

While hyperparameters were carefully tuned to maximize validation accuracy, there still

existed a clear gap between training and validation accuracy. This discrepancy was likely
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Figure 15.: Training and Validation Accuracy for FNN. Top left: Only USE
embeddings. Top right: USE and RDF2Vec embeddings. Bottom left: USE
embeddings with masking. Bottom right: USE and RDF2Vec embeddings
with masking.

due to noise in the training data. Notably, the mask on its own yields higher validation

accuracy than using USE + RDF2Vec without the mask, further reinforcing that the

entity-specific candidate type constraint drives the majority of the predictive power.

Interestingly, the performance of the models on the benchmark datasets is significantly

higher than the validation accuracy. Noise in the training data is likely the largest

contributor to this discrepancy. For instance, the model might still be able to capture

the broader pattern even if 10% of the training data is mislabeled. However, the presence

of incorrect labels in the training set will naturally lead to a lower validation accuracy.

Additionally, some entities in the benchmark were allowed to have multiple equally valid

types (see Section 4.1.3), making it easier to predict their type. On average, each entity

in the benchmark has 1.1 valid types, which is a small number, but it surely contributes

to the discrepancy. While the impact of this multi-type allowance on this discrepancy is
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likely minor compared to the noise in the training data, it is worth noting.

Results strongly suggest that the combination of a straightforward FNN, Universal Sen-

tence Encoder embeddings, and the masking mechanism can achieve accuracy surpassing

the results presented here. While 87% accuracy is already a strong result, it still means

that 13% of entities are misclassified. Achieving higher levels of performance would likely

involve refining the training data to better align with user preferences, as outlined in

Chapter 6.

5.1.1. Natural Type Analysis

Table 1 shows a few predictions from the masked FNN. These unfiltered examples

illustrate the model’s typical performance. As shown, the model is highly accurate in

predicting each entity’s most appropriate type. Although the top-1 probability can be

modest—for example, for baseball cap (Q639686) —the most fitting type remains the top

prediction, often by a wide margin.

Despite the model’s strong performance, incorrect predictions do occasionally occur, as

shown in Table 2.

The exact reasons for these errors varied. In some instances, errors arise because the

training data underrepresents certain entities. In other cases, the entity’s description

may be an outlier, or the entity may be uniquely complex in its connections.

Kreuzberg (Q308928) is predicted as a locality of Berlin (Q35034452) rather than a

neighborhood (Q123705), which is too specific for our purposes. This error is easy

to pinpoint: All neighborhoods of Berlin do have the description “locality of Berlin”.

Therefore, the LLM, during training data generation, always chose locality of Berlin

(Q35034452) for any Berlin neighborhood, instead of following the criteria for selecting a

fitting natural type outlined in the system string. As a result, this classification appears

several times in the training data.
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Entity (Wikidata ID) Predicted Type (Wikidata ID) Probability (%)

Mona Lisa (Q12418) painting (Q3305213) 98.4

work of art (Q838948) 0.6

drawing (Q93184) 0.3

visual artwork (Q4502142) 0.2

sculpture (Q860861) 0.1

Craig (Q2671794) given name (Q202444) 98.4

male given name (Q12308941) 0.7

name (Q82799) 0.7

surname (Q121493679) 0.1

family name (Q101352) 0.0

baseball cap (Q639686) clothing (Q11460) 24.6

headgear (Q14952) 6.5

hat (Q80151) 6.0

helmet (Q173603) 4.3

accessory (Q362200) 3.1

Costa Concordia (Q190542) shipwreck (Q852190) 67.8

ship (Q11446) 5.9

boat (Q35872) 4.8

accident (Q171558) 3.2

yacht (Q170173) 3.2

Mount St. Helens (Q4675) volcano (Q8072) 66.9

mountain (Q8502) 23.4

landform (Q271669) 1.3

cli� (Q107679) 1.0

valley (Q39816) 0.8

American football (Q41323) type of sport (Q31629) 74.1

sport (Q349) 11.1

game (Q11410) 5.6

sports discipline (Q2312410) 1.9

team sport (Q216048) 0.8

Table 1.: Examples of Correct Predictions. Top-5 predictions for various entities
using the FNN.

This behavior highlights a critical issue: the LLM over-relies on description-matching

entity labels rather than adhering to the instruction to choose more general, intuitive

types. Whenever the description contains a specific label of one of the candidate types,

the model tends to select it, even if this leads to an overly specific assignment.

The case of cinnamon (Q28165) illustrates another type of challenge: sometimes, what

would be considered the most fitting natural type is not part of the candidate types.

While spice (Q42527) would arguably be the most fitting type, it is not included among

the candidate types. Cinnamon is connected via P31 to crude drug (Q735160), food

ingredient (Q25403900), and herbal medicinal product (Q95997873), and from there, spice

(Q42527) is not reachable via P279. In the benchmark, food ingredient (Q25403900) was

determined to be the most fitting type, but the model failed to predict it, likely due to
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Entity (Wikidata QID) Predicted Type (Wikidata QID) Probability (%)

Kreuzberg (Q308928) locality of berlin (Q35034452) 72.6

populated place (Q123964505) 12.8

neighborhood (Q123705) 9.7

human settlement (Q486972) 2.5

ortsteil (Q253019) 2.2

Wilhelma (Q679067) garden (Q1107656) 80.2

botanical garden (Q167346) 17.1

park (Q22698) 0.4

museum (Q33506) 0.3

arboretum (Q272231) 0.2

cinnamon (Q28165) substance (Q378078) 12.3

material (Q214609) 11.6

fiber (Q161) 11.3

dye (Q189720) 8.9

type of wood (Q1493054) 6.0

quadrate bone (Q589072) class of anatomical entity (Q112826905) 98.1

class (Q5127848) 1.5

entity (Q35120) 0.1

Table 2.: Examples of Bad Predictions. Top-5 predictions for various entities using
the FNN. Selected errors illustrate common issues.

cinnamon’s unique structural position within the knowledge graph.

Another example is Quadrate bone (Q589072), which, due to candidate type selection,

can’t be classified as a bone (Q3968). This is because its only P31 connection is to

anatomical entity (Q112826905), which is a metaclass, making Quadrate bone (Q589072)

a class itself (although it’s never used as a class). Still, bone (Q3968) would be a more

fitting natural type than class of anatomical entity (Q112826905), but it is not part of

the candidate types.

These unusual cases require a solid familiarity with Wikidata to e�ectively leverage our

natural types in downstream tasks. While the model’s predictions may be optimal within

the available candidate types, they are not always the most intuitive or natural choice.

Overall, the models show strong predictive performance. Unfitting classifications often

reflect Wikidata’s unique structure rather than the models’ limitations. However, there

are cases where the models fail to predict the most fitting type, despite it being part of

the candidate types, indicating areas for further improvement.
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5.2. E�ciency

In this section, we describe the most time-consuming components of the pipeline, discuss

their computational complexities, and explain the practical trade-o�s made.

5.2.1. Data I/O

For many of the components, all existing P31 and P279 edges (and sometimes, more)

needed to be available. For this purpose, all corresponding edges were stored in a sparse

row (CSR) matrix format. Since internal strings and integers are quite large in Python,

this was done using csr_matrix from the SciPy library, which utilizes a C++ backend.

This way, memory usage was reduced by a factor of ≥ 10 compared to using a dictionary

with strings as keys and sets of strings as values. Using Python integers instead of strings

didn’t make much of a di�erence, as Python dictionaries still have a lot of memory

overhead per entry. Using csr_matrix on the other hand with dtype=np.int8 only uses

1 byte per edge, and the final matrix only takes about 2 GB of memory.

5.2.2. Candidate Masking

A relevant step of our approach is the creation of the candidate-type mask. This step

requires iterating over all entities N where a mask must be generated. Within this loop,

the most time-consuming operation is the pre-selection of allowed type candidates, which

involves a slightly modified Breadth-First Search (BFS), as explained in Section 4.1.1.

The worst-case time complexity of BFS is O(V + E), where V is the number of nodes and

E is the number of edges. Although typically only a small subset of the graph is traversed

for any given entity, the worst-case time complexity remains O(V + E). Therefore, the

overall time complexity of mask creation is O(N · (V + E)).
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In practice, however, this step is much faster than the theoretical worst-case. Because

Wikidata is a sparse, directed graph, most nodes have shallow branching, and, as

mentioned earlier, the average number of candidate types per entity is only about 32.

5.2.3. Embedding Generation

Since storing millions of 512-dimensional feature vectors is infeasible, and dimensionality

reduction methods slightly decreased performance, we generate the full 512-dimensional

USE embeddings in real time during both training and inference. This requires loading

all necessary descriptions from disk and passing them through USE. Since USE is fairly

lightweight, this step is quite fast and doesn’t take significantly longer than loading the

RDF2Vec embeddings from disk.

Generating RDF2Vec embeddings to capture the structural position of entities involves two

main steps: (1) random-walk generation and (2) training Skip-Gram (see Section 4.2.2).

These steps took approximately three days on a 2021 M1 MacBook Pro with 16 GB RAM.

The generated random walks were stored in a 100 GB file. The final embeddings occupied

26 GB of storage. In retrospect, the added computational cost was not justified, as our

experiments showed no performance improvement over using only USE embeddings plus

the mask.

For walk generation, 10 walks of length 8 (counting nodes and edges) were generated per

entity. Each step in a walk involves retrieving the entity’s neighbors by iterating over

each edge type (P31 and P279). If a node has an average out-degree of d and there are K

edge types, this step is O(K + d). Hence, a single walk of length w takes O(w · (K + d)).

Let total entities be N and total walks per entity be T , then the total time complexity is

O(N · T · w · (K + d)). In practice, T , w, and K are small constants, so the practical

time complexity is closer to O(N · d).
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5.2.4. Runtime Performance

Training time across the models on a M1 MacBook Pro (2021) with 16 GB of RAM

varied significantly. While the FNN took a few minutes to train, the GNNs all took

>1 hour. As is the case with the RDF2Vec embeddings, the added complexity of these

models did not lead to a significant performance improvement, so training them was not

worth the additional time cost.

Once trained, inference is very e�cient for all models, as they have relatively few

parameters and can be run quickly on a CPU. If the goal is to label the entirety of

Wikidata, the speed bottleneck isn’t model inference, but rather data loading. Labeling

all of Wikidata requires batch processing, as loading all embeddings into memory at

once is infeasible on most machines. The adjacency matrix can be kept in memory

during this process, requiring only a single load. However, embeddings need to be loaded

for each batch, which is the most time-consuming part of the pipeline, as it involves

iterating through a file with more than 90 million lines. This also applies to the USE

embeddings, which are generated in real-time but still require reading descriptions from

disk. Using more e�cient data storage could significantly reduce this time. However,

since the processing time is still manageable, optimizing this was not a priority. This

way, processing all of Wikidata only takes a few hours.
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6. Future Work

The task of assigning a natural type to each Wikidata entity is not merely a technical

challenge but also a conceptual one. There is an inherent subjectivity in type assignment.

For instance, is Mt. St. Helens a mountain or a volcano? Is an excavator a machine

or a tool? What one person considers a natural type may di�er significantly from

another’s perspective, which makes evaluating model performance extremely challeng-

ing. Acknowledging this subjectivity was essential to approach the task with realistic

expectations.

These challenges were reinforced by inconsistencies in Wikidata itself. Not all entities

which should have the same natural type are connected uniformly, which required the

generation of a large and diverse training set. Large language models allowed us to tackle

the task in a brute-force manner by generating large, though noisy, training data. Despite

the noise, the achieved results are promising.

Simple models, such as an FNN, achieved surprisingly high accuracy, while models

intended to capture more complex relationships, like GraphSAGE, GAT, and R-GCN,

underperformed. Notably, a surprisingly high accuracy was achieved even without using

any node features, only relying on the probability distribution across candidate types.

Both RDF2Vec and the USE embeddings proved highly e�ective at capturing relevant

information for entity typing, but only the USE embeddings were able to significantly

improve the performance beyond masking.

Nevertheless, the quality of the training data remains a limitation. The only way to refine

50



this data was to craft a carefully tailored system string to guide the LLM in assigning the

most suitable type to each entity. However, while modern LLMs perform extremely well

on a wide range of tasks, they currently fail to follow instructions consistently. Smaller

LLMs, like Gemini Flash, struggle particularly with long contexts and frequently fail to

follow all instructions. Even when instructions are followed, inconsistencies are prone to

occur, resulting in a noisy training set.

However, due to the sheer scale of the training data, the models were able to generalize

e�ectively, surpassing even the performance of the LLMs on the evaluation benchmarks.

Looking ahead, there are several promising directions for future work.

1. Training Data Curation: Improving the overall quality of the training data

would likely yield the most significant improvements. Human annotators could,

for example, remove overly general labels and map overly specific labels to more

general ones. This human-in-the-loop curation process would yield a more refined

dataset, likely leading to enhanced model performance, more in line with human

expectations.

2. Using a More Advanced LLM: Generating the training data with a more

advanced (but potentially more expensive) LLM might reduce noise and improve

the overall quality of training data. As LLM capabilities continue to evolve,

future LLMs could potentially produce significantly better training data with fewer

inconsistencies. Eventually, LLMs could become cost-e�ective enough to label the

entirety of Wikidata.

3. Human Feedback on Benchmarks: A straightforward approach to improve the

evaluation benchmarks would be public feedback. A web interface could be used to

gather feedback by asking individuals to select the most suitable type from a list of

candidates. This would improve the quality of the evaluation dataset and make it

less subjective.
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4. Proposing a Dedicated Wikidata Property: Ultimately, a new Wikidata

property could be introduced for an entity’s natural type. While Wikidata allows for

property proposals [36], past e�orts to create such a property faced challenges [10],

as achieving consensus for such a topic is notoriously di�cult. Previous proposals

eventually failed due to disagreements over whether types should be pre-selected

(from a given ontology) or not, and about the appropriate level of granularity. For

a proposal to succeed, careful consideration of these issues would be necessary, as

well as a strong dedication to the proposal process.

In conclusion, this work successfully demonstrated the feasibility of automated prediction

of natural types for Wikidata using large LLM-generated training sets, carefully selected

models, and a simple but e�ective masking approach. These results provide a solid

foundation for further research on entity typing in Wikidata, o�ering both benchmarks

and baseline findings to guide and inspire future work.
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A. LLM System String

SYSTEM_STRING = (

"Objective:

From a pre-selected list, choose the most natural,

everyday-language type for a Wikidata item based on its label

and description.

Rules:

- Your choice **must** be one of the provided

pre-selected types.

- Generally, choose the broadest category that still represents a

natural and commonly understood everyday term (e.g. choose

’Disease’ over ’Infectious Disease’, ’RNA’ over

’Non-coding RNA’, ’Star’ over ’Variable Star’, etc.).

- However, if a more specific category is a **very commonly

recognized and understood** everyday category, choose it.

Think about what a typical person would call it (e.g., ’Lake’

rather than ’Body of Water’, ’Village’ rather

than ’Human Settlement’, etc.).

- Again, avoid too much specificity (e.g. choose ’Surname’

over ’Japanese Surname’, ’Monument’ over ’Heritage

Monument’, etc.).

- Generally speaking, a good type is short and intuitive, while
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a bad type is long and overly specific.

- Return only the type (with label and QID).

- Do not output JSON.

Examples:

- Berlin -> City

- Albert Einstein -> Person

- T-Shirt -> Clothing

- Germany -> Country

- Carbon Dioxide -> type of chemical entity

- Breaking Bad -> Television Series

- Jazz -> Musical Genre

- Sagrada Família -> Church

- Green Tea -> Drink

- FC Bayern Munich -> Sports Club (Football Club would be too

specific)

Important: A type as long and specific as e.g. ’civil parish in

Ireland’ will **almost never** be a good choice (just ’civil

parish’ would be much better). Remember, a type should be

short, intuitive, and represent a commonly understood category."

)
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