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Hiermit erkläre ich, dass ich diese Abschlussarbeit selbstständig verfasst habe, keine
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Abstract

We examine a way to extend routing using transfer patterns – a state of the art route
planning approach for fast routing in public transportation networks – to a multi-modal
scenario that allows using public transport, cars, and walking. We specifically exam-
ine how to precompute transfer patterns for multi-criteria, multi-modal route planning.
When done naively with a Pareto cost model, this leads to a large number of undesirable
route variations that render precomputation computationally infeasible. We identify rea-
sons why these variations appear and present ways to reduce the number of variations
with appropriate graph models and by applying limits during search. Our results indi-
cate that precomputing multi-modal transfer patterns on large datasets is feasible with
such a restricted model.

Zusammenfassung

Wir untersuchen eine Möglichkeit, Routenplanung mit Transfer-Pattern – ein aktueller
Ansatz für schnelle Routenplanung auf öffentlichen Verkehrsnetzen – an ein multi-modales
Szenario anzupassen, das die Benutzung von öffentlichen Verkehrsmitteln, Autos und
Laufen erlaubt. Namentlich untersuchen wir, wie sich Transfer-Pattern für multi-modale
Routenplanung bezüglich multiplen Kriterien vorberechnen lassen. Macht man dies auf
naive Art mit einem Pareto-Kostenmodell, führt dies zu einer großen Vielzahl von un-
sinnigen Variationen von Routen, was die Vorberechnung vom Berechnungsaufwand her
unmöglich macht. Wir identifizieren Gründe weshalb solche Variationen entstehen und
präsentieren Möglichkeiten, die Anzahl von Variationen durch entsprechende Graph-
Modelle und durch Anwendung von Limits während der Suche zu reduzieren. Unsere
Ergebnisse deuten darauf hin, dass die Vorberechnung von multi-modalen Transfer-
Patterns auf großen Datensätzen mit einem solchen, eingeschränkten Modell vom Berech-
nungsaufwand her machbar ist.
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1 Introduction

Probably most of us are facing the question how do I get from here to some target location
on a somewhat regular basis. When it comes to using public transportation, we’ve got
used to being instantly provided with answers to that question by our mobile devices.
Some of us would probably not even know any more how to figure out a non-trivial
public transportation route without using a route planning system. Yet these systems
still have limitations. One evident limitation is, that they are not designed for handling
multiple modes of transportation. So even if there exists a preferable route that includes
using a taxi or car sharing service, they will just not find it.

In this thesis, we investigate adapting Routing using Transfer Patterns [5] – a state
of the art algorithm for routing on public transportation networks – to a multi-modal
setting. We develop a better understanding for challenges that arise from such a setting
and show ways to address them.

1.1 Motivation

Great progress has been made in developing very fast algorithms for routing on road
networks, as well as on public transportation networks. These algorithms allow query
times of only a few milliseconds or even microseconds even on huge networks and have
proven their practical usefulness on real-world systems like Google Maps that answer
millions of queries daily.

Yet there is still room for improvement. One issue is the limitation to one mode of
transportation. When looking up a route for example on Google Maps, you are offered
multiple options for the mode of transportation. You can choose if you want to walk,
go by bike, use a car or use public transportation. This choice might be an over-
simplification of the problem you are actually trying to solve. For example you might
want to take your bike with you in public transportation. While you can obviously still
do this with the routes offered when choosing public transportation, the route planner
does not consider that you have a bike with you. There might exist a much faster route
that includes a transfer between two somewhat distant train stations that only make
sense to take when having a bike available. The route planner will just not find such
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1 Introduction

connections. As there are often bikesharing services available in big cities, it might
not even be necessary to take your own bike for such a route to be advantageous. If
you riding a bike appears like a completely unrealistic scenario to you, let’s consider
the following example. It can make perfect sense to take a train to the airport, take a
flight from there and finally take taxi to your destination. This includes three modes of
transportation (not counting walking), is a completely realistic, quite common scenario
and nevertheless no existing route planning algorithm fully covers it.

One important characteristic of routing in public transportation networks is the lack of
a single meaningful optimization criteria in real world scenarios. While for routing on
road networks, travel time alone already makes up a quite good objective, for public
transportation things turn out not to be so easy. Let’s assume you want to go from
Freiburg to Berlin by train. There is a direct train that takes six and a half hours and
goes directly from Freiburg to Berlin. But there is also a connection that requires to
transfer in Mannheim but takes only six hours. Is half an hour saving in travel-time
worth one more transfer? This cannot be answered in general but depends on the users
individual preference. For example when travelling with a lot of luggage, the zero-transfer
connection will probably be preferable, while when being under time-pressure, the faster
connection will be it. Considering multiple modes of transportation adds even more
options to go to Berlin. For example one could also take a taxi to Basel and take a flight
to Berlin from there. While this the fastest option, it requires at least two transfers (at
the airports) and using an airplane. It is easy to see, that for multi-modal route planning,
a single optimization criteria makes even less sense than for public transportation alone.

In this thesis, we investigate multi-criteria, multi-modal route planning. Specifically we
stick with walking, car and public transportation as modes of transportation. While
other modes of transportation like planes or bicycles are inarguable of practical impor-
tance, we believe that this setting is a good staring point that already covers many
challenging aspects of multi-modal route planning.

1.2 Background

1.2.1 Route Planning in Road Networks

A basic approach to route planning in road networks models it as graph search problem.
The road network is represented as a weighted graph, nodes correspond to geographical
locations and edges to roads that connect them. Costs are assigned to edges, for example
travel-time or the distance between two adjacent nodes on the road. The problem of
finding a route then compiles down to finding a path with minimal costs (sum of edge
weights) between a designated source and target node. It is also called the shortest path
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problem.

One of the simplest algorithms that solves the shortest path problem is Dijkstra’s
algorithm. Dijkstra claims to have invented it in about 20 minutes in his head, without
pencil and paper, while sitting tiredly in a café in Amsterdam with his fiancée [16]. It
was published three years later [13] and there was little interest in the shortest path
problem at that time, as Dijkstra stated in an interview:

Now, at the time, an algorithm for the shortest path was hardly considered
mathematics: there was a finite number of ways of going from A to B and
obviously there is a shortest one, so what’s all the fuss about? [16].

Dijkstra’s algorithm computes the shortest path from a single source node to all other
nodes in the graph. It is commonly implemented by maintaining tentative distances
to all nodes and a priority queue, that is initialized with zero for the source node and
infinity for all other nodes. Then, iteratively, the node with minimal tentative distance
is taken out of the priority queue (settling a node) and its incident edge weights are used
to update tentative distances of adjacent nodes (relaxing edges). Whenever a tentative
distance improves, it is added to the priority queue together with its respective node.

Route planning in road networks has received much research attention since to speed
up query times. Most of the algorithms rely on some sort of preprocessing step, that is
computed offline and helps to speed up actual shortest path queries. The performance
of such algorithms is usually stated in terms of speed-up achieved in comparison with
Dijkstra’s algorithm at query time. An trivial example for such a precomputation scheme
would be to compute a complete distance table between all pairs of nodes. Queries can
then be answered by simple table lookups. Obviously, this is intractable for most real-
world graphs due to the quadratic time and space requirement.

Contraction Hierarchies [15] is a simple and yet effective state of the art speed-up
technique. It works by incrementally contracting nodes in order of importance, while
assuring that shortest paths between all yet uncontracted nodes are preserved by adding
shortcut edges between adjacent nodes, if necessary. The order of contraction induces an
ordering of the nodes. It is guaranteed that in the resulting graph shortest paths exist,
consisting of only two types of node sequences. One with strictly increasing node order
and one with strictly decreasing node order. These shortest paths can be found by a
bidirectional Dijkstra search in the so called upward and downward graph (ignoring all
edges with non-increasing or non-decreasing node order). This limits the search space
dramatically. The authors achieved query times of only a few hundred microseconds
for a road network of Western Europe with over 18 million nodes and 42 million edges.
The order of node contraction is an important ingredient for this algorithm. During the
contraction phase, a priority queue is used to determine the node to be contracted next.
A linear combination of several terms is used as priority, for example Edge Difference
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(number of shortcuts introduced when contracting a node minus number of incident
edges) or the number of already contracted neighbours. We refer to the original work
for a more detailed discussion.

Transit Node Routing [7, 6, 8] is based on the intuitive observation that when driving
somewhere far away, the current location is left through only a few important traffic
junctions. A complete distance table is computed between such junctions called transit
nodes, which allows to answer queries between far-away nodes in only a few microseconds
by a few table lookups. The set of transit nodes that are first encountered when starting
from a specific node are called its access nodes. The number of access nodes is small
on road networks (about 10), so they can be explicitly stored. In order to compute the
shortest-path distance between a source and target node, their respective access nodes
are looked up to together with their pairwise distances. The shortest path distance is
just the minimum of these distances plus the distance to the access nodes. Local queries
can be answered using any existing technique.

A more detailed overview of routing algorithms can be found in the PhD thesis of
Geisberger [14].

1.2.2 Route Planning in Public Transportation Networks

Modelling We have seen that modelling a road network as a graph is quite easy. For
public transportation networks, this is a bit more complicated. Public transportation
networks are inherently time-dependent and a route typically does involve transfers
between vehicles. Transfers from one vehicle to another can not happen instantly but
require a minimum amount of time to get off the first vehicle, walk to the other vehicle
and board it. This time required to switch vehicles is called the minimum transfer
duration.

We assume that a public transportation network is given as timetable data that consists
of a set of stations S (train stations, bus stops etc.) and a set of trips. A trip is given as
the sequence of stations served by a single vehicle ((s1, ta1), (s1, td1), (s2, ta2), (s2, td2), . . . )
where tai is the arrival time and tdi is the departure time of the vehicle at station si. We
call ((s1, td1), (s2, ta2)) an elementary connection from s1 to s2 (a train connects both
stations without intermediate stops).

One way to model a public transportation network as a graph, is the time-expanded
model. For each arrival and departure event (i. e. the event of a train arriving or
departing from a station) an arrival node or departure node is added to the graph. Edges
between these nodes either correspond to travelling on a train between two stations or
waiting at a station. At a station, it is possible to transfer between trains, as long as the
minimum transfer duration is respected. One way to achieve this is to add a transfer
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node next to each departure node at the same time and connect it to the departure node
with a zero-cost edge. Transfer nodes at a station are connected in increasing order of
time using the associated waiting time as costs. Finally arrival nodes are connected with
the first transfer node that respects the minimum transfer duration. Please note that
this yields a static graph, that in principle all graph search methods like Dijkstra’s can
be used on without any modification. An example is shown in Figure 1.1.

An alternative model is the time-dependent model which has a node for each station
and edges between two stations if there is an elementary connection between them. This
yields a much smaller graph than the time expanded model but requires non-trivial
treatment to handle minimum transfer durations. An example is shown in Figure 1.2.

The line model also called train-route-model consists of a node for each station and an
additional node for each line-station-pair, for stations served by the respective line. A
route or line is a set of trips that share the same sequence of stops. This yields a small
graph and handling transfers correctly is easy. An example is shown in Figure 1.3.

Please refer to the work of Pyrga et. al. [18] for a more detailed discussion on modelling.

Algorithms It has been observed that methods which yield great speed-ups on road
networks, generally do not perform well on public transportation networks [4]. This is
especially the case when considering large municipal areas with poor structure. One
reason for this is that there is hardly any hierarchy in public transportation networks,
at least not within a city area. Methods like contraction hierarchies only work well if
there actually is hierarchy they can exploit. Transit node routing does not work well due
to the lack of efficient local search algorithms. A detailed discussion on the difference
between routing on road and public transport networks can be found in an article by
Hannah Bast [4].

A multi-label variant of Dijkstra’s algorithm can be used to compute a set of multi-
criteria shortest paths on any of the models described earlier. It maintains a set of labels
for each node in the graph. A label carries a cost-tuple with multiple components instead
of just a scalar cost. For example the tuple (t, p) can be used as cost where t is the total
travel-time (including time for transfers and waiting) and p is the number of transfers.
We say cost a dominates cost b in the Pareto sense if it is strictly better in at least one
component ∃i : ai < bi and not worse in all other components ai ≤ bi∀i. Note that this
definition is not restricted to two components. Two labels that do not dominate each
other are called incomparable. Initially all but the starting label sets are empty. Just
like in the scalar version of Dijkstra’s algorithm, yet unprocessed labels are added to
a priority queue. In every step a minimal label is taken from the priority queue and
the incident edges of the associated node are relaxed. An edge is relaxed by calculating
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Figure 1.1: Time-expanded model showing three trips. The first two trips t1, t2 go from
Freiburg to Basel. The last trip t3 goes from Freiburg via Basel to Zürich.
Circle shaped nodes are transfer nodes. Nodes denoted with a and d are
arrival and departure nodes. Labels on edges denote the travel-time along
an edge.
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ct(e1, t) =


10:00− t + 0:35 t ≤ 10:00

11:00− t + 0:35 10:00 < t ≤ 11:00

12:00− t + 0:35 11:00 < t ≤ 12:00

Figure 1.2: Time dependent model showing a connection from Freiburg via Basel to
Zürich. This can either be a direct connection or one with a transfer in Basel.
The example cost function for e1 shows the travel-time component from
Freiburg to Basel, for trains leaving at 10:00, 11:00 and 12:00 at Freiburg
and take 0:35 to Basel.
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Figure 1.3: Line model with three lines and a minimum transfer duration of 0:05. Line
l1 goes from Freiburg to Basel, l2 from Basel to Zürich and l3 from Freiburg
via Basel to Zürich.
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n0 n1 n2 n3 . . .

(0,1) (0,2) (0,4)

(1,0) (2,0) (4,0)

{(0,0)} {(0,1), (1,0)} {(0,3), (2,1),
(1,2), (3,0)}

{(0,7), (2,5),
(1,6), (3,4),
(4,3), (6,1),
(5,2), (7,0)}

Figure 1.4: Example graph and associated label sets for paths starting at n0 with cost
(0, 0). The number of Pareto-optimal labels grows exponentially as each path
yields a disjunct label. At node ni the number of labels is 2i. The usage
of double edges is not of importance for this example. The same effect can
be achived with single edges by adding an intermediate node between two
nodes instead.

the sum of the cost of the label that is currently being processed and the cost on the
edge. If the resulting cost c is dominated by any cost in label set of the head, no update
is required. Otherwise c is added to the set of labels and to the priority queue. If c
dominates any of the existing labels, they are removed from the label set. This ensures
that all remaining labels are pairwise incomparable.

It is important to note that in theory, the number of Pareto-optimal labels is not bound
polynomially by the size of the input graph. This already holds for costs with two
components and can easily be seen by considering the example given in figure 1.4. In
this example, the number of labels grows exponentially with the size of the graph. As
the result of the output can already grow exponentially, obviously no algorithm with
polynomial runtime exists. So with a Pareto cost model, the size of the output (and
runtime of any algorithm) essentially depends on the actual graph and cost structure.
For public transportation networks, travel-time and the number of transfers (t, p) have
been observed to behave well. Intuitively, this is because the number of transfers is
discrete and bound by a small constant for the fastest routes. For example if the fastest
route from A to B requires 3 transfers, then the number of labels for routes from A can
be at most 4 (assuming a single departure-time).

Routing using Transfer Patterns [5] has been proposed as a method that achieves
fast query times of only a few milliseconds even on very large transportation networks.
This is achieved by precomputing optimal transfer patterns, i. e. sequences of transfer
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stations on a shortest path. For a given source and target station, the number of optimal
transfer patterns is small. Given the set of optimal transfer patterns from a source to a
target station, a query can be quickly answered with few direct connections lookups.

Consider the following example from the original paper that we reproduce here for the
sake of completeness: Assume we want to find shortest paths from Freiburg to Zürich,
departing at 10:00. Further assume that we are given the information that any optimal
path from Freiburg to Zürich, no matter on which time or day, either goes directly
from Freiburg to Zürich, or has exactly one transfer at Basel. Further assume that we
can quickly look up direct connections between two stations. With this information,
answering the query is easy. Find direct trains from Freiburg to Zürich, that leave no
earlier than 10:00. Let’s assume there is a train that leaves Freiburg at 12:55 and arrives
in Zürich at 14:52. Also find the next direct connections from Freiburg to Basel that
departs no earlier than 10:00. Say it leaves at 10:02 and arrives in Basel at 10:47. Then
find the next direct connection from Basel to Zürich at 10:47. Say it leaves at 11:07 and
arrives in Zurück at 12:00. In the cost model used in the paper, these two connections
are incomparable (one is faster, one has less transfers) and thus are reported both. It is
guaranteed that the found connections are the only optimal ones, as no other optimal
transfer pattern exists. The set of optimal transfer patterns is very little information
and yet it decreases the search space dramatically.

Transfer patterns for a given station A are computed by running a multi-label Dijkstra
profile query from all transfer nodes of station A in the time-expanded model. Then for
each target station B, a set of dominant labels is computed for all arrival times at B.
This is done by reading off the labels at the individual arrival nodes, while taking into
account that it can be better to arrive at an earlier node and just wait at the target
station. Then all resulting labels are tracked back, yielding the set of optimal transfer
patterns from A to B. Transfer patterns are stored space-efficiently in a DAG, exploiting
the fact many shortest paths share similar transfer patterns.

In order to evaluate a query from station A to B, the corresponding transfer patterns
are used to build a query graph. The query graph is a DAG that consists of nodes
for stations A and B and all stations that occur in any transfer pattern from A to B.
Edges represent direct connections as given by the transfer patterns. So for example the
two transfer patterns (Freiburg, Basel, Zürich) and (Freiburg, Zürich) would result in a
query graph with edges from Freiburg to Basel, from Basel to Zürich and from Freiburg
to Zürich. A query is then evaluated by running a multi-criteria Dijkstra on the query
graph, asking a special direct connection structure for the appropriate edge costs.

The direct connection data structure consists of:

• A set of lines. A line is list of trips that share the same sequence of stops, sorted
by departure time, with the additional requirement that they do not overtake it
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other. The latter ensures the FIFO property of a line, meaning it is never better
to depart with a later trip. A line is stored in a 2D array like this:

Line ICE 123 Basel Freiburg Karlsruhe Mannheim

trip 1 14:22 14:55 14:57 15:58 16:00 16:22
trip 2 15:22 15:55 14:57 16:58 17:00 17:23
· · · · · · · · · · · · · · · · · · · · ·

• A sorted list of incident lines for each station with the associated stop position(s)
of the line on the station. So for example consider a line ICE 123 with stop
sequence Basel, Freiburg, Karlsruhe, Mannheim, Frankfurt and a line ICE 321
with stop sequence Stuttgart, Mannheim, Karlsruhe, Freiburg, Basel. Then the
list of incident lines for Freiburg are: (ICE 123, 2), (ICE 321, 4) as ICE 123 has
its second stop in Freiburg and ICE 321 has its 4th stop in Freiburg.

A direct-connection query from station A to station B at departure time t is answered
by:

1. Intersecting the incident lists of A and B. Please note that this can be done
efficiently as the incident lists are sorted. It yields all lines that have stops at A as
well as on B with associated stop positions. It is only necessary to consider lines
that have a stop with earlier stop position on A (otherwise they only go in the
wrong direction).

2. For each such line, reading of the costs for the earliest feasible trip (departing no
earlier than t at A) and returning the minimum one.

Please refer to the original work [5] for more details.

RAPTOR [11] is an approach to multi-criteria public transport routing. It does not rely
on preprocessing, which allows to use it in dynamic scenarios. Opposed to most other
routing methods, it is not based on Dijkstra but instead operates in rounds. Starting
at a source station at a given time, it computes the earliest arrival time any other stop
can be reached by using at most k trips. This is repeated for increasing numbers of k
until no improvement is achieved anymore. In each round, each route is scanned at most
once. The authors have achieved speedups of about one order of magnitude compared
to a multi-label Dijkstra implementation on large metropolitan datasets like London or
New York.

1.2.3 Multi-Modal Route Planning

Multi-modal route planning combines multiple modes of transportation into a single
problem. Delling, Pajor et. al. [10, 17] proposed Access-Node Routing that adapts
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the idea of transit-node routing to a solve a multi-modal label constrained shortest
path problem, with road usage restricted to the beginning and end of a path. This
separates routing in the road and public transportation networks into two problems.
In their experiments the authors use a simple single-criteria Dijkstra implementation to
compute routes in the public transportation network, but they point out that a speed-up
technique could be used instead. The approach is limited to long-range queries, for local
queries a separate algorithm has to be used.

Dibbelt et. al. [12] describe an approach to speed up single-criteria label constrained
shortest path queries based on contraction hierarchies. It does not fix the constraints
during precomputation but sees them as input that is individually given by the user
at query time. Graphs for the individual modes are contracted independently while
ensuring that transit nodes (where mode change occurs) are not contracted. This way,
a shortcut never includes a modal change. Opposed to Access-Node Routing, it also
supports local queries.

Besides label constrained approaches, it has been proposed to use linear combinations of
multiple criteria to compute multi-modal shortest paths using a single-criteria routing
algorithm [19, 3]. This requires to choose a set of weights upfront, which we think is
undesirable. While one could argue that one could run such an approach with multiple
different weights to generate a diverse set of route suggestions, this still implies trade-
offs, like 30 minutes of travel time equals one transfer or taking a taxi is like taking two
buses in the actual routing, which seems a bit arbitrary. It is unclear if not doubtable if
one can guarantee not to miss interesting routes which such an approach.

In a very recent work, Delling et. al. [9] describe an approach to multi-modal, multi-
criteria route planning. The authors describe an algorithm based on RAPTOR [11]
that computes a full Pareto set of optimal costs of multiple criteria such as travel time,
number of transfers, walking duration and costs for using a taxi. As this set can get very
large, they introduce a generalized definition of domination using fuzzy logic, which is
then used in a post processing step to filter it. They also introduce some heuristics, for
example already using a fuzzy definition of domination during search or discretization of
costs. Using these heuristics results in giving up optimality. The authors have observed,
that including taxis (i. e. costs of using them) in the multi-modal scenario, renders
computation infeasible without heuristics. They have achieved query times of about
one second on big metropolitan datasets (London) in the heuristic version with taxis
enabled.
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1 Introduction

1.3 Outline

In chapter 2, we describe the initial approach of this thesis, to adapt the idea of rout-
ing with transfer patterns to road networks. There has been much work on adapting
methods that work well on road networks to public transportation networks with little
success. This chapter follows the idea of going the other way round. Chapter 3 then
describes our work in trying to compute multi-modal transfer patterns that could be
used for routing like in the transfer patterns approach described earlier. After an initial
introduction motivating the general idea behind this, we describe various approaches for
the computation and try to understand their problems, hopefully resulting in a deeper
insight into characteristics of multi-criteria, multi-modal route planning. We finally show
some experiments on real-world datasets in chapter 4 and conclude with chapter 5.
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2 Routing in Road Networks with Transfer
Patterns

2.1 Motivation

It has been reported that algorithms that where engineered for road networks, and per-
form very well there, do not perform well on realistically modelled public transportation
networks at all [4]. Up to our knowledge the other way round, running an algorithm
that performs well on a public transportation network on a road network, has not been
reported yet. However, if this was possible with good performance, we would have an
algorithm that works well on both, road and public transportation networks – probably a
good foundation on the way to multi-modal route planning. In this chapter, we describe
our approach to adapt routing with transfer patterns to road networks.

The concept of transfers is central to routing with transfer patterns, as the name implies.
In road networks however, there is no such thing as a transfer. No matter how a route
looks like, there is never a need to change vehicles. But consider the actual query
algorithm for routing with transfer patterns. It basically relies on asking a fast data
structure for costs between predetermined pairs of locations (direct connections). In
principle, this isn’t restricted to direct train connections. The fast data structure could
be anything that can be implemented sufficiently efficient. Also, patterns do not have to
correspond to transfers, they could be anything that can compactly describe a path as a
sequence of subproblems. For road networks, a pattern could be a sequence identifying
independent subgraphs of the whole graph. Asking the fast data structure would then
correspond to solving a shortest path problem in such a subgraph.

2.2 Implementation

When looking at route directions for cars within Germany at Google Maps between two
arbitrary locations, we observed that they are usually constituted by a relatively low
number of items (around 20). One item (sometimes a few) correspond to the name of a
street that is used. So the number of street names involved in an optimal car-route seems
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2 Routing in Road Networks with Transfer Patterns

to be low. It’s typically a few local roads to leave the city of the source location, using
a few highways to get near the target location, and finally using a few local roads again.
We won’t make use of this hierarchy here, but just stick with the fact that the number
of street names is low. Please note that when considering lower speeds like walking, the
number of involved street names is much higher, so we restrict ourselves to cars.

As a first approach, we’ve implemented a translation of a road network to a public
transportation network. We’ve worked with data from OpenStreetMap (OSM). A OSM
dataset contains nodes (geographical locations) and ways (edges between multiple nodes)
that yield a graph. Ways (edges) carry various additional tags, among them the name
of the street. In the following we refer to a street as the largest connected subgraph
with identical name tags on all edges. Typically a street is just a linear graph, but it
can also contain forks or even loops. The translation we’ve implemented takes an OSM
dataset as input and creates a line-model graph and a direct connection data structure
as output.

The actual translation from OSM to a public transportation network works in the
following way:

1. Create a station for each OSM node.

2. For each street, create a time-independent line. If a street contains forks, split
it into multiple lines. Store these lines in a direct connection data structure as
described in section 1.2.2 with the only exception that a line is stored in a 1D array
with only one entry for departure and arrival time (they are equal). As times, use
the relative travel-time of a car on the street starting from the first station. Travel-
time is calculated by travelled distance along the street divided by an average speed
depending on the road type. The road types are given as tags in the OSM input
data.

3. From the lines and stations, build a line-graph (line model) as described in sec-
tion 1.2.2. Note, that costs of edges between line nodes are time-independent and
can be can be stored directly on the edges.

After this translation, we can now run the transfer patterns algorithm on road networks.

2.3 Observations

In our translation, we create a station for every OSM node. In public transportation
networks, the number of stations is quite low. The number of OSM-nodes of a road
network is higher by orders of magnitudes. For example in Texas, the public transporta-
tion network has less than 12000 stations while the largest connected component of the
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2 Routing in Road Networks with Transfer Patterns

OSM-graph covering the same region already contains over 1 million nodes. Transfer
patterns are precomputed by running a Dijkstra search from every station. So for a large
number of stations, precomputation is very expensive.

The authors of the original work [5] on transfer patterns have introduced the concept
of hub stations to reduce precomputation costs. They compute global searches into the
whole network only from a preselected set of important hub stations. For all other
stations, only a local search is performed that is terminated as soon as all open paths
are covered by hub stations. Transfer patterns for non-hub stations only need to be
stored up to hub stations. They select hub stations with a sampling-based approach on
a time-independent graph. The usage of hub stations reduces precomputation costs and
the size of the output far enough for transit networks. However precomputation still
remains quite expensive, mainly due to the local searches.

For our naive translation of OSM-nodes to stops, this is a severe issue as stations are
large in numbers. In our implementation we pick hubs with the sampling-based approach
proposed in the work on transfer patterns and did not apply any speed-up techniques
for local searches. This makes local searches too expensive for any realistically sized
network. One could likely engineer more efficient means to perform local searches. The
computation of access nodes for transit node routing [7, 6, 8] seems quite comparable
to the problem of computing local searches up to hub stations in our scenario. There
it is essential to do this very efficiently to keep precomputation costs within reasonable
bounds. For example when transit nodes are computed using contraction hierarchies,
the hierarchy of the network can be exploited as transit nodes are chosen at an higher
order in the hierarchy. So a limited search in the upward graph suffices. This could be
adapted to our scenario by choosing transit nodes as hubs.

However, storing transfer-patterns for all hubs up to all stations would still require
too much space. Recall that for transit node routing, a complete distance table is
only computed and stored between transit nodes. Adapting this to our setting would
correspond to a 2-layer concept of hub stations, where patterns for hubs are only stored
up to other hub stations. So copying concepts from transit node routing seems to provide
solutions to cope with the problems that arise from the large number of stations of our
street-based translation approach. But in the end the question would be if anything has
been gained compared to native transit node routing on road networks. For our simple
translation, we do not see any advantage. This could be different for more abstract
definitions of stations, transfers and lines.

We did not pursue this however, but instead shifted focus to a different approach de-
scribed in the next chapter that seemed more promising.
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3 Computing Multi-Modal Transfer
Patterns

3.1 Central Idea

At query time, the transfer patterns algorithm [5] relies on querying a fast direct connec-
tion structure for connections between precomputed patterns of stations. We’ve already
noted in the previous chapter that these direct connections do not necessarily have to be
lines. One could imagine using anything instead that returns the cost of a direct connec-
tion fast enough. The authors have reported query times of about 10 µs for the direct
connection data structure. So we can safely assume that anything that achieves similar
query times could be used in substitution. Similar query times can be achieved on road
networks with transit node routing [7, 6, 8]. The authors have reported query times of
about 5 µs to 20 µs. So multi-modal routing with transfer patterns seems achievable if
the following two assumptions hold:

1. Multi-modal transfer patterns can be computed efficiently enough.

2. The number of multi-modal patterns between two locations is not substantially
higher than for a (uni-modal) public transportation network.

In this chapter, we describe our approaches to computing multi-modal transfer pat-
terns. A multi-modal transfer pattern P = (p1, p2, . . . , pn) is a sequence of stations
or geographical locations on a path from p1 to pn where a change of vehicle or mode
occurs (including source and target location). We denote the associated modes with
MP = (m1,2, . . . ,mn−1,n), where mi,j ∈ Σ is is a mode in Σ := {Σt,Σc,Σw}. As input
we consider three graphs covering the same geographical region:

• A transit graph Gt corresponding to the line model (see section 1.2.2) of a public
transportation network.

• A car graph Gc that models a road network. Edge costs correspond the average
travel time along an edge using a car.

• A walk graph Gw that also models a road network. But here edge costs correspond
to the time it takes to walk along an edge.
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3 Computing Multi-Modal Transfer Patterns

We are interested in computing optimal, multi-modal transfer patterns of paths that
jointly use these graphs in a way meaningful for a human traveler. At this point we do
not have a formal definition of for meaningful in this context so we just stick with the
intuition of it.

In the rest of this chapter we describe our approaches to compute transfer patterns in
the chronological order as we have examined them.

3.2 Naively Joint Road and Transit Graphs

The simplest and most naive idea for computing multi-modal transfer patterns is prob-
ably to just join all input graphs and run a Dijkstra search on the joint graph. This is
exactly what we describe in this section.

3.2.1 Graph Model

In our experiments we build input graphs from publicly available data. For the transit
graph we process GTFS feeds [1] (General Transit Feed Specification) which are available
for many cities, mainly in the US. To build the car and walk graphs we use an extract
from OpenStreetMap covering the same geographical region. For the walk graph, we
assign edge costs that correspond to an average walking speed of 4 km

h . For the car
graph we assign edge costs that corresponds to an average travel speed depending on
the road type, ranging from 5 km

h to 110 km
h . For ease of implementation we assume that

all roads can be travelled in both directions and do not handle any turn restrictions. So
our car and walk graphs share exactly same structure except for their edge costs.

We further assume that a change of mode can only occur at stations and only from the
transit graph to exactly one of the road graphs or vice versa. This means that transitions
between the walk and car graph are not allowed. Please note that in the real world it
can make sense to walk a few meters to a road that is better accessible by car and take
a car from there. But as in our model the car and walk graphs share identical structure
and edge costs of the car graph are strictly lower, one could never save travel time by
allowing such transitions. So given the simplicity of our model for the road graphs we
argue that this is a reasonable assumption to make.

In order to model this restriction we use a slight variation of the line model introduced
in section 1.2.2 for the transit graph. Namely, instead of having just a single station
node and line node at each station, we add a station arrival node and a station departure
node replacing a single station node and a line arrival node and a line departure node
replacing a single line node. For every pair of those nodes, we add a zero-cost edge
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Figure 3.1: Joint graph at a station with two lines. Diamond shaped node are line nodes,
circular nodes are station nodes and pentagon nodes are the nearest nodes
of the car and walk graphs. Edges from the station departure node to the
line departure node are labelled with the travel time component of the edge
costs.

from the arrival to the departure node. We also add an edge from each line arrival node
to the corresponding station arrival node and from the station departure node to all
corresponding line departure nodes. Note that with this structure there are no paths
from the station departure to the station arrival nodes. We now build a joint graph
G = (V,E) by just merging all graphs V = Vt ∪ Vc ∪ Vw, E = Et ∪ Ec ∪ Ew. For every
station, we add an edge from the nearest car node vc and walk node vw to the station
departure node and an edge from the station arrival node to these nodes. See figure 3.1
for an illustration. Note that transitions between the walking and car graphs via the
transit graph are not possible without using public transportation in-between.

3.2.2 Computing Profile Queries

Assume that we want to compute transfer patterns between a given set of locations,
i. e. nodes of the joint graph. Recall that in the original transfer patterns paper [5]
this is achieved by running a multi-label Dijkstra profile query from all transfer nodes

18



3 Computing Multi-Modal Transfer Patterns

of a given station. We do not use the time-expanded model, so we have to do that in a
slightly different way that we’ll describe here.

Recall that an order relation on labels defines a set of dominant labels used during the
Dijkstra search. More formally, let l ∈ L be a set of labels and <L be an order relation.
Then the set of dominant labels of L is defined by {l ∈ L | ¬∃lo ∈ L : lo <L l}. We
define a label as a tuple l = (td, c), consisting of departure time td ∈ Γ and cost c ∈ C.
We then define an order <L on the set of labels based on a given order relation on the
costs as:

(t1, c1) <L (t2, c2)⇔ (t1 > t2 ∧ c1 ≤C c2) ∨ (t1 ≥ t2 ∧ c1 <C c2)

This means a label dominates another label if it has a later departure time and no higher
costs, or if it has lower costs and does not depart earlier. Please note that for the time-
expanded model, it suffices to use <C directly as order relation for the labels. This is
possible because the arrival time is encoded in the nodes and the structure of the graph
ensures that a label with earlier departure time is never compared to one with earlier
arrival time. The relation <C of course also suffices if all initial labels share the same
departure time (which is not true for our profile queries).

The departure time ta is either a number encoding the time or a special value indicating
that the departure time is arbitrary Γ := N0∪{Γany}. The order relation on the departure
times is given by their natural order with the exception Γany is treated like infinity. This
means that a free to choose departure time is better than any fixed departure time
regarding <L.

All of our actual cost models contain a travel-time component. We denote the travel time
component of cost c as ct. The arrival time of a label l = (t, c) (at the respective node) is
given by t+ct if t 6= Γany. During a Dijkstra search, the arrival time is used to determine
the first feasible trip of a line. The travel time of this trip plus the waiting time until
the trip departs, constitutes the travel time component ω(e, l)t of the edge cost ω(e, l) of
an edge e between a line departure and line arrival node. Labels are propagated along
edges by adding the edge cost to the cost component of the label, whereas the departure
time is copied from the preceding label. For the special case when a label with departure
time Γany hits a line departure node, a successor label is generated for each trip of that
line. The departure time of these labels is fixed to the departure time of the trip minus
the travel time component of the label cost. The travel time component of edges from
station departure to line departure nodes is set to the transfer buffer, as illustrated in
figure 3.1.

With these definitions we can now run profile queries on our joint graph, suitable for
computing transfer patterns. For example, running a profile query from all transfer
nodes in the time-expanded model is equivalent to running a profile query with an
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initial label l = (Γany, 0) at the station departure node. Allowing initial walking or car
usage corresponds to putting the same initial label at the station arrival node.

3.2.3 Contracting Road Graphs

One of the first things one will notice when running a profile query on the joint graph,
is that a lot of resources are consumed to propagate labels within the road networks.
Please recall that we generate labels for every departure time of a line. For a non-trivial
cost model many of these labels will eventually end up at a station arrival node and then
be propagated through the road graphs. Now consider how a multi-modal path between
to arbitrary locations A and B (station, car, or walk nodes) actually looks like. It can
be split into three potentially empty subpaths:

1. A subpath from A to some station node that solely uses either the car or walk
graph.

2. A subpath that uses the transit graph and the road graphs, but the latter only
between pairs of station nodes.

3. A subpath from some station node to B.

As we are not interested in computing actual paths but just transfer patterns, the path
on the road network between two station nodes is irrelevant. So for exploring 2), there
is no need to know the complete road input graphs. Instead, we can substitute the
road graphs by any smaller graph as long as distances between stations are preserved.
To compute a profile query we compute the distance from A to all station nodes on
the original road network and use these to initialize our actual profile search. After
completion, for any target location B we analogously collect labels at all station arrival
nodes and add the costs to go to B on the road networks. This gives us the same set of
dominant labels as we would get without substituting the road graphs.

We use node contraction as known from Contraction Hierarchies [15] to compute a
core graph that preserves distances between all station nodes. As priority term we use
the sum of Edge Difference plus the number of already contracted neighbours. We fix
the priority to infinity for all nodes that will be connected with station nodes. This
artificially holds those nodes up in the hierarchy. To avoid ending up with a too dense
graph, we stop node contraction as soon as the edge difference raises above a threshold
(10 in our experiments). Recall that node contraction preserves path costs between all
not yet contracted nodes. So after completion we can just remove all contracted nodes
from our graph, yielding a much smaller core graph. For New York for example, this
reduces the number of nodes in the car (or walk) graph roughly by a factor of 50 from
about 2 million to about 36000 nodes in our experiments. We provide more detailed
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numbers in chapter 4.

3.2.4 Observations and Problems

We have described a way to compute multi-modal transfer patterns but we did not define
yet how the actual costs look like. In fact, choosing an appropriate cost model turned out
to be a non trivial task – something we did not expect in the beginning. In the following
we give some examples for cost models one might intuitively choose and describe why
they do not work.

Pareto: Time and Number of Transfers One of the most obvious cost models is to
just use what works well in a pure public transportation network. Bast et. al. [5] use a
tuple (t, p) where t is the travel time and p a penalty that basically corresponds to the
number of transfers. The order relation is defined in the Pareto sense:

(t1, p1) <C (t2, p2)⇔ (t1 < t2 ∧ p1 ≤ t2) ∨ (t1 ≤ t2 ∧ p1 < p2)

This cost model makes a lot of sense for public transportation networks. So let’s as-
sume we use it in our multi-modal setting and analogously count one transfer not only
for transfers within the public transportation network but also for boarding a car. It
turns out that with this cost model we will get virtually no routes that use the public
transportation network at all. It is easy to see why this happens: there always exists a
zero-transfer route that just uses a car from the source to the target location. The only
way a transit route can survive, is by being faster than the car-only route. Within cities
this is hardly ever the case. Just consider a city that provides public transportation
services only by buses. Here taking a car will alway be faster in our model. So using
this cost model clearly does not give desirable results.

Fixed Penalty for Boarding a Car Now let’s assume we use the same cost model as
described above, but use a fixed, larger penalty for boarding a car. Larger than the one
used for a transfer (i. e. boarding a line). Intuitively this corresponds to paying a fixed
amount for using a taxi. With such a cost model, once a taxi is used, there is hardly any
advantage in ever using public transportation again. A direct car-only route is nearly
always cheaper than any combination of car and public transport. Intuitively the taxi
is already completely paid once it is used, so there is no point in not using it for the
whole route (again except for situations where public transport is faster of course, which
is rarely the case within cities with our model). So this model also does not give useful
results.
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Figure 3.2: Illustation of follow-a-bus variations. Dashed lines are travelled by car, lined
ones using public transportation. Circles denote boarding a vehicle.

Penalizing Car Travel Time An other quite obvious idea for a cost model is to pe-
nalize the time travelled with a car. This can be achieved by using Pareto costs on a
triple (t, p, tc) analogously, where tc stands for the time spend in the car graph plus an
additional fixed time for boarding a taxi. Intuitively this can be seen as paying for taxi
based on the time using it.1 This cost model sounds quite reasonable at first glance, but
produces mostly unreasonable variations of paths. The most obvious unreasonable kind
of variations are what we call follow-a-bus routes: a set of routes where a car is used up
to a bus stop and the rest of the route is travelled using public transport. Variations of
such routes exist for many bus stops on the route. See figure 3.2 for an illustration.

To understand why these variations appear, recall that in the Pareto sense, a cost does
not dominate another cost if it is not less or equal in all components. In our case this
especially means that the travel time of a dominating cost cannot be greater, not even
the slightest bit. Now consider a route where the first part is travelled by car up to some
bus stop and the route continues with using a bus. Numerous Pareto-optimal variations
exist of such routes. Instead of using a car only up to the closest bus stop of a line,
there is a variation that uses a car up to the second closest bus stop of the same line
and is identical for the rest of the route. This variation is better in terms of travel time
but worse in terms of car usage. There exists also a variation that uses a car up to the
third closest bus stop and so on. None of these variations dominates the others. The
variations also appear analogously for the last part of a route.

So with this cost model, we get a great number of optimal routes. It would not make
any sense to show all these variations to a user. Apart form that, the number of labels
generated for a profile query with this cost model just makes it intractable for any dataset
of somewhat realistic size. One approach to cope the number of variations would be to
loosen the definition of dominance. For example take two routes: one that uses a taxi for

1Adding the time spend on the road network to p instead of adding a third cost component does
not change the described effects but has the additional disadvantage of implying a comparability of
car-time and number of transfers.
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10 minutes up to a train station and then a train for 2 hours directly to the destination.
And another one, that uses taxi for 9 minutes and a train for 5 hours directly to the
destination. From a human perspective, the first route is clearly preferable. One could
think of several way to address such cases. One approach would be to discretise car
time, for example in 5 minute steps. In this example it would lead to the desired
result. It would also make some of the follow-a-bus variations disappear. But one can
easily construct examples where variations of identical structure still appear. In our
example just consider 30 and 24 minutes of car time instead. Apart from this, applying
discretization already during the Dijkstra search easily leads to non-optimal solutions.
However, applying it on the results in a post-processing step does not help to decrease
computational costs. Despite from discretization, one could think of other concepts for
loosening the definition of dominance. For example one could somehow relate car time
with total travel time in a non-linear way. But again, one will easily loose optimality
when applying it already during search. Despite intensive thought, we could not come up
with any cost model (a definition of C and <C) that makes unwanted variations disappear
and nevertheless allows to give an optimality guarantee (or at least does not also make
some obviously wanted variations disappear too). A refined approach for loosening the
definition of dominance is described by Delling et. al. [9]. However again, results are
heuristic when applied during search.

In the rest of this thesis, we follow a different idea. As we failed to come up with a
convincing definition of <C , we instead experiment with ways to disallow undesirable
variations explicitly in the graph model already. The intuition for this is that modelling
gives more control to influence generated routes by reasoning about their structure, which
is hard to achieve by looking at costs only. To come up with a reasonable model, a deeper
understanding of the reason for variations is required. Especially for those which make
computation intractable on larger datasets. We have understood follow-a-bus variations
so far, so this is a starting point.

3.3 Reduced Boarding Variations

In previous section, we have described follow-a-bus variations of paths. In this section,
we describe a graph model that disallows such variations. The idea is quite simple.
Assume we are at any arbitrary location and want to use a car to access the public
transportation network. In the graph model described in the previous section, it is
possible to drive to any station departure node and take any line that departs from that
station. Which means every line can be boarded at every served station. Being able to
board a line at all possible stations is exactly what allows follow-a-bus variations. So we
make the following assumption:
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Assumption 1. Given a location A and a line l that serves stations Sl, taking a car
from A to s ∈ Sl in order to board l is only reasonable for a small number of stations s.

Intuitively this means, if you want use a car to reach a specific line, there is just one or
two station you would drive to. Usually it is is just one station. If you are somewhere
in-between two stations and the line goes in two directions, both stations might be
reasonable.2

3.3.1 Graph Model

We assume without loss of generality, that the road network is only used between sta-
tions. Please refer to section 3.2.3 for an explanation why this is sufficient. For the
public transportation part, we use the same graph as in the previous section. In order
to add the road networks we assume to be given an oracle Oc, that given a location p
(for example a station) and a line l, returns a set of reasonable stations Oc(p, l) ∈ P(S)
for taking l using a car to get to the station. For walking, follow-a-bus variations do not
appear as walking is usually slower than a bus. Nevertheless, for the sake of symmetrical
beauty we assume to be given an oracle Ow for walking analogously. For each line l and
station s, we add an edge from the station arrival node of s to all line departure nodes
of l at stations given by Oc(s, l). Edge costs are set to the shortest path costs in the
car graph between the two involved stations. For the walk graph we add the same edges
analogously. Please note that the number of edges added for each road input graph is
|L| · |S| · n where n is the average number of stations returned by the respective oracle.
So even for small n this are quite some edges. See figure 3.3 for illustration of the graph
structure. We call this graph model stops-to-lines model.

3.3.2 Observations and Problems

We do not have a clear understanding of how to implement a reasonable oracle at this
point. For our experiments we used a very simple implementation that for O(s, l), just
returns the nearest station served by the line. Where nearest means with respect to the
shortest path costs on the road graph. If l happens to serve s, we just return the empty
set. In the following we assume that this oracle is used if not otherwise stated. We are
aware that we will miss some reasonable routes with this simple oracle. So what we
observe is not necessarily generalizable. But it is likely that unwanted variations that
we observe with this simple oracle will also appear using a more sophisticated oracle. So
at least for finding more reasons for unwanted variations this simple oracle is sufficient.

2One could argue that if you are very late, you might indeed want to follow a bus to catch one specific
trip. But this is a very specific, probably rare use case. If it’s that urgent and it’s faster by car, you
would probably just take the car directly to your target location instead.
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Figure 3.3: Stops-to-lines graph model. Thick lines indicate the type of the edges added
for each road network as given by the oracle. In this example station s1 is
a reasonable station to board l1 and l2 from s2 via the road network.

Using the stops-to-lines model, one still gets a lot of unwanted variations. The most
obvious kind we recognized are of the following kind: On a taxi trip, use a bus for a few
stations to save some car time. Please recall that we do increase the car time tc every
time a taxi is boarded by a fixed amount (typically 5 minutes in our experiments). So
using two taxis in a row and a bus in-between does only pay off if it saves at least this
fixed amount of car time. Nevertheless such variations do appear. At the beginning or
end of a car route, variations do not even need to save a minimum amount of car time
to be non-dominated. A typical example is to use a bus for one station and use a taxi
for the rest of the route. We call such variations insane-skinflint routes. See figure 3.4
for an illustration.

Please note that these variations are much less frequent than the follow-a-bus variations
described in the previous section, which disappear with this model. Still they are the
most obvious unreasonable variations we noticed. So in the next section we will describe
a way to avoid them by imposing limits to the Dijkstra search.

3.4 Limited Mode Changes

In this section, we introduce a way to avoid insane-skinflint variations. The idea behind
this compiles down to one simple assumption:
Assumption 2. A path with transfer pattern P = (. . . , pi, pj , pk, . . . ) and modes mi,j =
Σc and mj,k = Σt is unreasonable, if the shortest path cost ci,k of the car-only path
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A B

0:03
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0:30
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0:31

Figure 3.4: Illustation of two insane-skinflint variations. Dashed lines are travelled by
car, lined ones using public transportation. Circles denote transfers or the
source and target locations.

from pi to pk is bound by ci,j + Csave for a reasonably chosen constant Csave. It is also
unreasonable for the reverse case with modes mi,j = Σt,mj,k = Σc.

For example in figure 3.4 the car time of the direct car connection is only little greater
than the car times of the indirect connections between A and B. So for a car save limit
Csave = 0:02 both variations would be considered as unreasonable. Please note that this
also applies to any subpaths. So in the example, A and B do not necessarily have to be
the source and target location but could correspond to a pair of transfers within a more
complex path.

3.4.1 Implementation

We modified our Dijkstra implementation to prune all paths early, as soon as it becomes
clear that they are unreasonable with respect to assumption 2. This is done in the
following way:

We compute a full distance table between all pairs of stations on the car graph. For
this purpose, we run a regular scalar-valued Dijkstra search on the core graph. In the
following we refer to the values in this table by csp(s1, s2). During search we additionally
maintain for each label:

• The station sbl where a line was boarded last and the car time cbl := tc immediately
before boarding.

• The station sbc where a car was boarded last and the car time cbc := tc immediately
before boarding.

These values are propagated during the search, i. e. copied from the predecessor if not
updated. We prune search whenever:
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. . .
trip 1

. . .
trip 2

. . .
trip 3

. . .
trip 4

high-frequency line

Figure 3.5: Illustation of high-frequency line-to-line variations. Dashed lines are trav-
elled by car, lined ones using public transportation. Circles denote boarding
a vehicle. Depending on where one gets off the first line, one can catch an
earlier trip of the second line.

• Getting of a car at s, public transport was used before, and csp(sbl, s) < tc − cbl +
Csave holds, i. e. using the car from sbl instead is preferable.

• Boarding a car at s, public transport was used before, and csp(sbl, s) < Csave holds.
This implies the previous pruning rule, but applies earlier.

• Getting of a line at s, a car was used before and csp(sbc, s) < tc− cbc +Csave holds,
i. e. using the car up to s instead is preferable.

3.4.2 Observations and Problems

We have noticed one major source for remaining unreasonable variations when running
experiments with the stops-to-lines model and a car save limit. We didn’t notice it
on small datasets but it became apparent on datasets of large cities. We call them
high-frequency line-to-line variations, because they appear on transfers from one line to
another line that is served with a high-frequency schedule. Imagine a bus line with final
destination at a metro station, where a trip of a high-frequency line departs every two
minutes. The most reasonable way to transfer from the bus line to the metro would be
to just wait till the bus arrives at the metro station. But in our stops-to-lines model,
it is also possible to leave at some earlier stop and take a taxi from there to the metro
station. This way it is possible to catch an earlier trip of the metro line. Which trip can
be caught, depends on the station where the transfer to the taxi is made. So it is not
uncommon to get a variation for every single stop of the bus on its way to the metro
station. See figure 3.5 for an illustration.
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The variations are structurally comparable to follow-a-bus variations, they just appear
in a different setting. If they appear, the number of these variations tends to grow large.
But they appear much less often and only for some queries of large cities that have
high-frequency lines. Please refer to chapter 4 for experimental details.

3.5 Explicitly Modelled Line to Line Transfers

To eliminate high-frequency line-to-line variations, we follow an idea very similar to the
one we used to eliminate follow-a-bus variations. We model connections between lines
over the road network explicitly. The initial boarding of a line and the final getting off is
treated as in the stops-to-lines model. Our model is based on the following assumption:
Assumption 3. Consider all reasonable paths that use two lines l1, l2 and a car in-
between. Let Tl1,l2 be a set with elements (s1, s2) ∈ Tl1,l2 identifying the stations where
a transfer between the lines occurs, i. e. l1 is used up to station s1 then a car is used
to drive to station s2 in order to board line l2 there. The number of elements |Tl1,l2 | is
small on average.

For the public transportation part, we use the same graph as in the previous sections.
To add the road networks, we assume to be given an oracle Olc, that given two lines
l1, l2 returns a set of reasonable transfers station tuples (s1, s2) ∈ Olc(l1, l2) identifying
a reasonable transfer from l1 to l2 with car usage in-between. Again, we assume to be
given an oracle Olw for walking analogously. For each pair of lines l1, l2 and stations
(s1, s2) ∈ Olc, we add an edge from the line arrival node of l1 at s1 to the line departure
node of l2 at s2. Edge’s costs are set to the shortest path cost from s1 to s2 on the car
graph. For walking, we proceed analogously. An illustration of the resulting graph is
given in figure 3.6. We call this model lines-to-lines model.

3.5.1 Observations and Problems

In our experiments we again use a very simple implementation of an oracle that just
returns a single tuple Olc(l1, l2) = {(s1, s2)} with minimal shortest path costs on the
road graph from l1 to l2. Please note that potentially desirable routes will be missed
with this simple oracle. But it is good enough for the purpose of finding out if other
computationally intensive variations exist despite the ones we have spotted so far.

Running Dijkstra profile queries on the lines-to-lines model turned out that variations
that made precomputation prohibitively expensive seem to have disappeared. We did
not recognize any remaining obviously unreasonable kind of variations. What remains
are variations that we call obvious variations:
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l1a l1d

l2a l2d

s1a s1d

l3a l3d

l4a l4d

s2a s2d

Figure 3.6: Lines-to-lines graph model. Thick lines indicate edges added for each road
network as given by the oracle. In this example edges from l3 to l1 and l2
for the transfer tuple (s2, s1) are shown.

• Walking to save a transfer. For a route that uses at least two vehicles, walking
instead of taking a line can save one transfer. This trades a transfer for more
travel time, which is incomparable in our cost model. For the first and last part
of a route, it is always possible to walk instead of taking a vehicle (with adapted
departure and arrival times).

• Car instead of walking. It sometimes is an option to either walk to the first
station or take a taxi to the first station. Same holds from the last station to the
target location. Combinations which walk the first part but use a car for the final
part, or the other way round, also occur.

These variations do not occur in such large numbers as the ones we’ve eliminated. So
they could also be filtered in a post-processing step. But this is not the focus of this
thesis.
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For our experiments we used publicly available GTFS [1] feeds for Léon (Spain), Austin,
Dallas, Toronto and New York. For the road networks, we’ve extracted OSM [2] data,
covering a region that contains all stations of a GTFS feed. The datasets are of increasing
size in the stated order, whereas Léon is very small and New York is the largest publicly
available GTFS feed. We only process data of a single Monday from the GTFS feeds.
Details about the datasets are given in table 4.1.

Table 4.2 shows details about the size of the resulting graph models. Note that for
the stops-to-lines and lines-to-lines models there are also walk and car nodes reported.
That is because in our implementation we add a walk and a car node next to each
line departure node to distinguish edge types. So this detail is slightly different from
the description of the graph models in chapter 3, where we assumed that no additional
information is necessary to determine the type of an edge, especially its Pareto cost
tuple.

We ran profile queries from random samples of source locations. In our experiments the
source location always corresponds to a station. This was done solely to ease imple-
mentation and is not a general limitation. It especially does not impose any restriction
on the first vehicle used. It is still possible to walk or go to any other station before
departing with public transport. During Dijkstra search, we discard labels with travel-
times worse by factor Cspread (10 in our experiments) than the best known travel-time
at the respective node. This eliminates some edge-case routes and also naturally limits
walking. For example one will never get something like walk from Freiburg to Frankfurt
Airport for 2 days as there are means to get to Frankfurt at least 10 times faster. We
assume a transfer buffer (minimal transfer duration) of 5 minutes for all transfers. We
also add the transfer buffer to the travel time for the initial boarding of a vehicle. So for
example boarding a taxi and using it for one minute has a total travel-time of 6 minutes.

All source code of our C++ implementation, including evaluation scripts used to generate
the result tables, is available on Bitbucket1. It may be considered as released into the
public domain.

1https://bitbucket.org/lohre/transitrouter
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Leon Austin Dallas Toronto New York
Transit
Stations 247 2.72 K 11.6 K 10.9 K 16.9 K
Lines 85 235 563 1.12 K 1.98 K
Trips 87 6062 10.8 K 40.7 K 62.8 K
Departures 1.95 K 161 K 473 K 1.47 M 2.24 M
Road
Nodes 234 K 339 K 1.37 M 399 K 1.95 M
Edges 501 K 723 K 2.98 M 880 K 4.27 M
Car core
Nodes 369 3.56 K 23.6 K 11.6 K 36.7 K
Edges 3.57 K 23.7 K 153 K 61.9 K 220 K
Nodes (%) 0.16 1.04 1.71 2.91 1.88
Walk core
Nodes 429 5.06 K 23.1 K 12.5 K 37.6 K
Edges 4.74 K 32.6 K 179 K 75.4 K 270 K
Nodes (%) 0.18 1.49 1.67 3.14 1.92

Table 4.1: Datasets used in our experiments. We parse transit data for a single Monday,
so numbers of trips and departures are for one day only. The road graphs are
the largest connected component of the OSM data. The number of nodes in
the core graphs is significantly lower, speeding up further processing.

4.1 Computational Costs

Computational costs mainly depend on the size of the graph and the number of labels
generated. Recall that a multi-label Dijkstra search maintains a set of dominant labels
for each node. Whenever a new label is generated, it is inserted into this set eliminating
all dominated labels, potentially the newly generated label itself. We use a naive im-
plementation to maintain label sets that requires checking all existing labels of a node
for dominance whenever a new label is inserted. So inserting n pairwise non-dominating
labels sequentially into an initially empty label set requires at least 1

2n(n − 1) ∈ Ω(n2)
comparisons. There might exist more efficient methods for maintaining labels sets, but
implementing these was not the focus of this thesis. Just keep in mind the computation
time of a query grows at least quadratic with the number of labels per node in our
implementation (for a fixed graph structure).

We ran random profile queries for all graph models (naive, stops-to-lines and lines-to-
lines) on all feasible datasets. We report the average number of labels separately for all
node types that remain after a query has completed. We also report the average CPU
time per query. A machine with two Intel Xenon E5649 CPUs with 12 cores in total and
96GB of RAM was used for our experiments. Our C++ implementation was compiled

31



4 Experiments

Naive s2l l2l
#car nodes 369 1.79 K 2.13 K
#walk nodes 429 1.82 K 2.15 K
#station nodes 494 494 494
#line nodes 3.98 K 3.98 K 3.98 K
#transit nodes 4.48 K 4.48 K 4.48 K
#nodes 5.27 K 8.09 K 8.75 K

(a) Leon

Naive s2l l2l
#car nodes 3.56 K 6.55 K 9.42 K
#walk nodes 5.06 K 6.72 K 9.77 K
#station nodes 5.44 K 5.44 K 5.44 K
#line nodes 14.7 K 14.7 K 14.7 K
#transit nodes 20.2 K 20.2 K 20.2 K
#nodes 28.8 K 33.5 K 39.4 K

(b) Austin

s2l l2l
#car nodes 22.1 K 27.8 K
#walk nodes 22.5 K 28.9 K
#station nodes 23.3 K 23.3 K
#line nodes 50.2 K 50.2 K
#transit nodes 73.5 K 73.5 K
#nodes 118 K 130 K

(c) Dallas

s2l l2l
#car nodes 37 K 52.1 K
#walk nodes 37.6 K 53.7 K
#station nodes 21.8 K 21.8 K
#line nodes 82.5 K 82.5 K
#transit nodes 104 K 104 K
#nodes 179 K 210 K

(d) Toronto

s2l l2l
#car nodes 57 K 86.8 K
#walk nodes 58.6 K 92.2 K
#station nodes 33.7 K 33.7 K
#line nodes 123 K 123 K
#transit nodes 156 K 156 K
#nodes 272 K 335 K

(e) New York

Table 4.2: Sizes of the naive, stops-to-lines (s2l) and lines-to-lines (l2l) graph models.
Transit nodes refers to station or line nodes.
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with gcc version 4.6.3. The results are reported in tables 4.3 to 4.7. The shortcuts
s2l (stops-to-lines), l2l (lines-to-lines) indicate the model, the digit the car save limit in
minutes. Values are averaged over multiple profile queries from random source stations.
For comparison, we also report the number of labels without car usage. We therefore
just count the number of labels with tc = 0 of the same query, so no separate CPU time
is reported. Please note that number of labels is not a good measure for the number of
resulting transfer patterns. A single high-frequency connection easily produces several
hundred labels that compress to a single transfer pattern, while a connection that is
only valid for one specific time also produces a transfer pattern but has little impact
on computational costs. So we report the number of transfer patterns separately in
section 4.2.

The computational effort for the naive model quickly grows beyond any reasonable limit.
For Austin about 1700 labels are generated per node and a single query requires more
than 5 hours on average. We could not even compute a single query on our larger
datasets within reasonable time limits. With the stops-to-lines model, computational
effort decreases significantly. For Léon and Austin, the number of generated labels drops
by a factor of 5 compared to the naive model. Knowing about the existence of follow-a-
bus variations, this reduction is not too surprising.

A car save limit of 10 minutes reduces the number of generated labels by about one order
of magnitude for the stops-to-lines model. For lines-to-lines model, it reduces them by
a factor of about 5.

Comparing the number of generated labels between the stops-to-lines and the lines-to-
lines model for a fixed car save limit shows, that the total number of labels for the
stops-to-lines is larger by a factor of about 2 to 3. However the difference in terms of
CPU-time is about 1 to 2 orders of magnitude. Neither can be explained completely
by avoided high-frequency line-to-line variations. Looking at the distribution of labels
among the different types of nodes, one can see that the difference in the number of labels
at transit nodes is quite insignificant. The difference in the total number of generated
labels mostly goes back to labels at car and walk nodes. So it turns out that inserting car
and walk nodes to distinguish edge types is not a very good idea. One could probably
save a lot by not inserting these nodes. This also holds for the lines-to-lines model,
but here the saving would be much less as the number of labels at walk and car nodes
is already much lower. Another part of the saving in CPU time of the lines-to-lines
model compared to the stops-to-lines model can be accounted to the reduced degree of
the graph. Recall that there is an edge from every station to every line for the former,
whereas for the latter there is only an edge from every line to every line. The number
of stations is typically larger by an order of magnitude (refer to table 4.1 for actual
numbers).
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Naive s2l-0 s2l-5 s2l-10 l2l-0 l2l-5 l2l-10

Samples 83 84 79 82 82 80 83
CPU Time 0:00:07 < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s

#labels at car nodes 124 K 36.1 K 3.84 K 426 966 102 77
#labels at walk nodes 80.5 K 26.7 K 9.25 K 8.56 K 963 373 390
#labels at station nodes 109 K 2.97 K 1.03 K 968 2.31 K 943 878
#labels at line nodes 27.8 K 5.09 K 3.5 K 3.31 K 3.56 K 2.86 K 2.77 K

#labels at transit nodes 137 K 8.06 K 4.53 K 4.28 K 5.87 K 3.8 K 3.65 K
#labels total 342 K 70.8 K 17.6 K 13.3 K 7.8 K 4.27 K 4.12 K

#labels/car node 337 20.2 2.14 0.238 0.454 0.048 0.0362
#labels/walk node 188 14.6 5.08 4.7 0.449 0.174 0.182
#labels/station node 222 6.01 2.09 1.96 4.69 1.91 1.78
#labels/line node 6.98 1.28 0.878 0.832 0.894 0.717 0.696

#labels/transit node 30.7 1.8 1.01 0.957 1.31 0.849 0.816
#labels/node 64.9 8.76 2.18 1.64 0.892 0.489 0.471

w/o car usage

#labels at walk nodes 8.95 K 7.95 K 8.48 K 360 367 390
#labels at station nodes 1 K 882 964 792 810 874
#labels at line nodes 1.96 K 1.83 K 1.93 K 1.29 K 1.31 K 1.4 K

#labels at transit nodes 2.97 K 2.71 K 2.9 K 2.08 K 2.12 K 2.28 K
#labels total 11.9 K 10.7 K 11.4 K 2.44 K 2.49 K 2.67 K

#labels/walk node 4.91 4.36 4.66 0.168 0.171 0.182
#labels/station node 2.03 1.79 1.95 1.6 1.64 1.77
#labels/line node 0.493 0.459 0.486 0.323 0.329 0.352

#labels/transit node 0.663 0.605 0.648 0.464 0.474 0.509
#labels/node 1.89 1.69 1.81 0.368 0.376 0.403

Table 4.3: Average computational costs of profile queries on the Léon dataset for vari-
ous graph models and car save limits.
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Naive s2l-0 s2l-5 s2l-10 l2l-0 l2l-5 l2l-10

Samples 17 26 20 20 20 20 20
CPU Time 5:18:43 1:21:31 0:04:55 0:00:34 0:01:34 0:00:09 0:00:03

#labels at car nodes 14.4 M 6.18 M 1.34 M 330 K 968 K 115 K 20 K
#labels at walk nodes 13.2 M 3.15 M 913 K 432 K 793 K 239 K 116 K
#labels at station nodes 13.7 M 1.25 M 439 K 201 K 988 K 376 K 179 K
#labels at line nodes 7.34 M 1.63 M 805 K 454 K 1.32 M 668 K 408 K

#labels at transit nodes 21 M 2.88 M 1.24 M 655 K 2.3 M 1.04 M 587 K
#labels total 48.6 M 12.2 M 3.49 M 1.42 M 4.06 M 1.4 M 723 K

#labels/car node 4.05 K 942 204 50.3 103 12.2 2.13
#labels/walk node 2.61 K 469 136 64.3 81.2 24.5 11.8
#labels/station node 2.51 K 229 80.7 37 182 69.1 32.9
#labels/line node 498 111 54.6 30.8 89.3 45.3 27.7

#labels/transit node 1.04 K 143 61.6 32.5 114 51.7 29.1
#labels/node 1.69 K 365 104 42.4 103 35.5 18.4

w/o car usage

#labels at walk nodes 380 K 365 K 327 K 93 K 96.9 K 95.5 K
#labels at station nodes 165 K 166 K 146 K 128 K 134 K 133 K
#labels at line nodes 248 K 248 K 223 K 188 K 196 K 195 K

#labels at transit nodes 414 K 414 K 369 K 316 K 331 K 328 K
#labels total 793 K 779 K 697 K 409 K 427 K 423 K

#labels/walk node 56.5 54.2 48.7 9.52 9.92 9.78
#labels/station node 30.4 30.5 26.9 23.5 24.7 24.4
#labels/line node 16.8 16.8 15.1 12.8 13.3 13.2

#labels/transit node 20.5 20.5 18.3 15.7 16.4 16.2
#labels/node 29.5 29 25.9 13.7 14.3 14.1

Table 4.4: Average computational costs of profile queries on the Austin dataset for
various graph models and car save limits.

35



4 Experiments

s2l-0 s2l-5 s2l-10 l2l-0 l2l-5 l2l-10

Samples 13 20 20 20 20 20
CPU Time 17:06:05 1:10:51 0:09:37 0:08:20 0:00:49 0:00:19

#labels at car nodes 24.1 M 6.61 M 1.77 M 2.92 M 563 K 149 K
#labels at walk nodes 10.1 M 3.55 M 1.98 M 2.16 M 761 K 477 K
#labels at station nodes 6.06 M 2.35 M 1.34 M 5.32 M 2.16 M 1.26 M
#labels at line nodes 7.27 M 3.76 M 2.31 M 6.48 M 3.32 M 2.17 M

#labels at transit nodes 13.3 M 6.11 M 3.65 M 11.8 M 5.49 M 3.43 M
#labels total 47.5 M 16.3 M 7.4 M 16.9 M 6.81 M 4.05 M

#labels/car node 1.09 K 299 80.1 105 20.2 5.36
#labels/walk node 450 158 88.3 74.5 26.3 16.5
#labels/station node 260 101 57.7 229 93 54.3
#labels/line node 145 74.9 46 129 66.2 43.2

#labels/transit node 181 83.2 49.7 161 74.7 46.7
#labels/node 403 138 62.8 130 52.3 31.1

w/o car usage

#labels at walk nodes 1.19 M 1.27 M 1.3 M 307 K 261 K 278 K
#labels at station nodes 792 K 835 K 857 K 764 K 657 K 694 K
#labels at line nodes 1.02 M 1.08 M 1.1 M 978 K 848 K 897 K

#labels at transit nodes 1.81 M 1.91 M 1.96 M 1.74 M 1.51 M 1.59 M
#labels total 3.01 M 3.18 M 3.26 M 2.05 M 1.77 M 1.87 M

#labels/walk node 53 56.6 58 10.6 9 9.61
#labels/station node 34 35.9 36.8 32.8 28.2 29.8
#labels/line node 20.4 21.4 22 19.5 16.9 17.9

#labels/transit node 24.7 26 26.7 23.7 20.5 21.7
#labels/node 31.3 33.2 34 20 17.2 18.3

Table 4.5: Average computational costs of profile queries on the Dallas dataset for
various graph models and car save limits.
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s2l-5 s2l-10 l2l-0 l2l-5 l2l-10

Samples 2 24 20 20 20
CPU Time 1 day, 0:06:14 3:14:24 5:11:41 0:35:36 0:04:45

#labels at car nodes 29.9 M 9.43 M 23.1 M 4.97 M 969 K
#labels at walk nodes 22.1 M 10.7 M 18.1 M 7.17 M 3.11 M
#labels at station nodes 7.69 M 3.78 M 19.9 M 7.82 M 3.38 M
#labels at line nodes 13.6 M 7.31 M 26.5 M 13 M 6.36 M

#labels at transit nodes 21.3 M 11.1 M 46.5 M 20.8 M 9.73 M
#labels total 73.4 M 31.3 M 87.7 M 32.9 M 13.8 M

#labels/car node 810 255 444 95.4 18.6
#labels/walk node 588 285 337 133 57.8
#labels/station node 353 174 916 359 155
#labels/line node 165 88.6 321 157 77

#labels/transit node 204 106 445 199 93.3
#labels/node 410 175 417 157 65.7

w/o car usage

#labels at walk nodes 5.54 M 6.82 M 2.38 M 2.29 M 2.16 M
#labels at station nodes 1.97 M 2.39 M 2.42 M 2.33 M 2.22 M
#labels at line nodes 2.84 M 3.36 M 3.4 M 3.28 M 3.16 M

#labels at transit nodes 4.81 M 5.74 M 5.82 M 5.61 M 5.38 M
#labels total 10.3 M 12.6 M 8.2 M 7.9 M 7.54 M

#labels/walk node 147 181 44.4 42.7 40.1
#labels/station node 90.5 110 111 107 102
#labels/line node 34.4 40.7 41.1 39.7 38.3

#labels/transit node 46.1 55.1 55.7 53.8 51.6
#labels/node 72.9 88.5 51.9 50 47.7

Table 4.6: Average computational costs of profile queries on the Toronto dataset for
various graph models and car save limits.
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s2l-10 l2l-5 l2l-10

Samples 20 20 20
CPU Time 6:44:16 1:26:16 0:17:31

#labels at car nodes 13.6 M 8.52 M 1.76 M
#labels at walk nodes 19.1 M 17.8 M 8.43 M
#labels at station nodes 6.22 M 13.4 M 6.3 M
#labels at line nodes 11.9 M 23.2 M 11.9 M

#labels at transit nodes 18.1 M 36.6 M 18.2 M
#labels total 50.8 M 62.9 M 28.4 M

#labels/car node 239 98.1 20.3
#labels/walk node 326 193 91.4
#labels/station node 184 397 187
#labels/line node 96.9 189 97.2

#labels/transit node 116 234 117
#labels/node 187 188 84.7

w/o car usage

#labels at walk nodes 11.8 M 4.87 M 4.81 M
#labels at station nodes 3.83 M 3.57 M 3.41 M
#labels at line nodes 5.47 M 5.2 M 4.99 M

#labels at transit nodes 9.3 M 8.76 M 8.4 M
#labels total 21.1 M 13.6 M 13.2 M

#labels/walk node 202 52.8 52.1
#labels/station node 114 106 101
#labels/line node 44.6 42.4 40.7

#labels/transit node 59.5 56.1 53.7
#labels/node 98.3 54.9 53.1

Table 4.7: Average computational costs of profile queries on the New York dataset for
various graph models and car save limits.
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4.2 Generated Patterns

We extracted transfer patterns from the profile queries and report some statistics about
them in tables 4.8 to 4.12. We generate transfer patterns for our sample queries to 1000
random target locations. A target locations always corresponds to the location of a
station. This is a limitation of our current implementation, but it does not impose any
restriction on the last vehicle used. It is still possible to arrive at the target location by
car or walking. We also report the number of mode patterns, which are transfer patterns
that are considered different if a different mode is used between two stations. For example
the two routes walk to the main station and take a direct train to Frankfurt and take
a taxi to the main station and take a direct train to Frankfurt are counted as a single
transfer pattern but two mode patterns. For patterns that use public transportation
there is a station where the public transportation network is entered the first time and
a station where the public transportation network is exited the last time. We refer to
these stations as access stations. The number of access stations that are accessed by
walking (#walk stations) or by car (#car stations) or somehow (#stations) is reported
in the tables. The latter also includes the source and target stations themselves. Some
transfer patterns are only valid at a single time, i. e. backed by only one label. We
report the same numbers with these patterns filtered out. So the filtered figures do not
take these edge cases into account. All numbers are reported for each feasible model
separately. We additionally include the naive model with car usage disabled (w/o car)
for comparison. This roughly corresponds to the original uni-modal transfer patterns
approach, with the exception that walking is not limited. So it does include variations,
which use walking to save a transfer as described in section 3.5.1. It can also include
routes with large amounts of walking. Please note that in our models with car usage
enabled, walking is implicitly more restricted as the worst travel-time is bound by the
best travel time multiplied by Cspread and the direct connection by car implies a lower
limit.

To illustrate the distribution of the number of patterns we also provide box plots in
figures 4.1 to 4.5. They do not show the naive model and the maximum observation for
some models, as they would require a too large scale.

The number of access stations is about equal for the stops-to-lines and lines-to-lines
model for a fixed car save limit. This is what had to be expected, as the lines-to-lines
model only restricts variations between pairs of lines. It ranges from about 8 for Dallas to
17 for New York with a car save limit of 10 minutes. The number of walk access stations
is consistently lower than the number of car access stations. Note that the number of
access stations and the number of patterns is higher for the naive model without car
usage than for the lines-to-lines model with a car save limit of 10 minutes for some
datasets. This is an indication that our simple oracles do indeed miss some interesting
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connections. It is not too surprising as we just stuck with very simple implementations
of oracles as a first attempt. They can easily miss connections. For example if a bus line
goes in two directions, with different stops for each direction on the respective side of
the street, our oracles just return connections to one of these stops, which can be the one
that goes in the wrong direction for an actual route. So any evaluation of the quality of
the resulting routes does not seem very reasonable at this stage. We have initial ideas
for more sophisticated oracles, but neither a implementation nor experimental results so
far.
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Naive s2l-0 s2l-5 s2l-10 l2l-0 l2l-5 l2l-10 w/o car

Samples 83 84 79 82 82 80 83 75

#patterns avg 119 12.7 4 2.76 11 4.17 2.7 7.67
#patterns stdev 94.2 7.46 2.41 2.57 6.08 2.69 2.79 4.43

#mode patterns avg 137 15 4.28 2.92 13.1 4.47 2.86 7.84
#mode patterns stdev 108 9.35 2.61 2.66 7.8 2.91 2.89 4.46

#walk stations avg 39.4 5.67 3.1 1.63 5.34 3.29 1.68 7.15
#walk station stddev 26.7 3.15 2.35 2.34 2.96 2.53 2.61 4.39

#car stations avg 55.3 6.54 0.353 0.0221 5.93 0.419 0.0146 0
#car station stddev 37.7 3.9 0.917 0.192 3.49 1.01 0.148 0

#stations avg 65.4 11.7 4.23 2.49 10.7 4.42 2.4 8.18
#station stddev 41.5 5.54 2.6 2.6 4.95 2.77 2.9 4.51

Filtered
#patterns avg 76.6 6.88 2.32 1.83 6.42 2.44 1.92 4.01
#patterns stdev 52.3 3.69 1.41 1.38 3.31 1.53 1.6 2.05

#mode patterns avg 94.6 9.14 2.64 2.14 8.57 2.79 2.22 4.18
#mode patterns stdev 65.9 6.22 1.7 1.56 5.58 1.83 1.74 2.12

#walk stations avg 31.7 4.37 2.57 1.78 4.3 2.73 1.97 4.97
#walk station stddev 19.6 2.5 1.72 1.74 2.46 1.83 2 2.67

#car stations avg 45 4.66 0.301 0.0358 4.48 0.354 0.0239 0
#car station stddev 28.6 2.65 0.713 0.231 2.52 0.778 0.183 0

#stations avg 53.3 8.5 3.6 2.94 8.23 3.74 3.07 5.88
#station stddev 31.1 3.62 1.73 1.62 3.43 1.82 1.87 2.63

Table 4.8: Patterns for Leon for various graph models and car save limits.
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Figure 4.1: Number of filtered transfer patterns for Léon.
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Naive s2l-0 s2l-5 s2l-10 l2l-0 l2l-5 l2l-10 w/o car

Samples 17 26 20 20 20 20 20 20

#patterns avg 686 135 36.6 16 91.5 28.1 13.4 26.7
#patterns stdev 500 102 33.3 13.2 67.8 22.9 11.1 16.5

#mode patterns avg 725 149 42 17.2 103 32.9 14.3 26.9
#mode patterns stdev 531 115 39.3 15 77.7 27.9 12.1 16.6

#walk stations avg 45.1 13.2 8.48 5.98 12 8.33 6.07 12.5
#walk station stddev 20.6 5.86 4.52 3.89 5.61 4.44 3.99 5.78

#car stations avg 194 38 9.22 1.69 36.1 8.75 1.66 0
#car station stddev 97.2 21.5 8.81 3.34 20.6 7.96 3.17 0

#stations avg 212 47.6 16.8 8.47 44.7 16.2 8.5 13.9
#station stddev 100 23 10.5 5.49 21.8 9.57 5.47 5.94

Filtered
#patterns avg 341 70.6 21.1 9.14 53.8 17.4 8.07 12.6
#patterns stdev 216 46.7 17.9 7.31 35.8 13.7 6.39 7.03

#mode patterns avg 381 84.8 26.6 10.5 65 22.3 9 12.8
#mode patterns stdev 247 59.9 24.4 9.55 46.2 19.1 7.64 7.12

#walk stations avg 31 11.6 7.29 5.13 10.7 7.31 5.29 8.95
#walk station stddev 13.5 5.16 3.83 3.04 4.95 3.74 3.1 4.32

#car stations avg 142 28.9 7.64 1.57 28.1 7.31 1.53 0
#car station stddev 69.1 15.7 7.14 2.92 15.5 6.42 2.77 0

#stations avg 156 37.6 14 7.4 36 13.8 7.51 10.1
#station stddev 71.3 17.3 8.64 4.38 16.8 7.75 4.35 4.44

Table 4.9: Patterns for Austin for various graph models and car save limits.
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Figure 4.2: Number of filtered transfer patterns for Austin.
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s2l-0 s2l-5 s2l-10 l2l-0 l2l-5 l2l-10 w/o car

Samples 13 20 20 20 20 20 20

#patterns avg 204 54 25.1 150 46.7 21.7 39.5
#patterns stdev 137 39.4 18.1 103 32.5 15.7 21

#mode patterns avg 234 66.3 29.6 179 55.9 26.2 40.9
#mode patterns stdev 157 48.5 22 121 39.3 19.3 21.7

#walk stations avg 12.7 9.48 8.01 12.7 9.32 7.44 16.3
#walk station stddev 4.7 3.93 3.7 4.89 3.95 3.8 6.04

#car stations avg 56.9 14.8 3.71 55.6 15.1 4.38 0
#car station stddev 29 10.2 4 28.4 10 4.47 0

#stations avg 65.7 23 12.1 64.5 23.3 12 17.8
#station stddev 29.6 11.4 5.84 29.5 11.4 6.35 6.21

Filtered
#patterns avg 110 32.9 15.2 90.2 30 14.5 15.9
#patterns stdev 68.5 22.6 10.6 57.1 20.1 9.99 7.03

#mode patterns avg 140 45.3 19.9 119 39.2 19.2 17.2
#mode patterns stdev 90.8 32.7 15.4 77.3 27.5 14.3 8.27

#walk stations avg 11.2 8.35 6.85 11.2 8.16 6.58 10.3
#walk station stddev 4.12 3.39 2.98 4.29 3.4 3.02 3.85

#car stations avg 42.8 12.2 3.25 42.9 12.5 3.98 0
#car station stddev 21.7 8.23 3.42 21.4 8.11 3.86 0

#stations avg 50.8 19.4 10.5 50.9 19.7 10.8 11.6
#station stddev 22.3 9.4 4.87 22.4 9.37 5.18 4.02

Table 4.10: Patterns for Dallas for various graph models and car save limits.
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Figure 4.3: Number of filtered transfer patterns for Dallas.
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s2l-5 s2l-10 l2l-0 l2l-5 l2l-10 w/o car

Samples 2 24 20 20 20 20

#patterns avg 91.2 32 190 69.3 30 40.8
#patterns stdev 94.1 27.7 145 62.1 26.1 26.5

#mode patterns avg 96.7 34.4 207 76 32 41
#mode patterns stdev 97.6 30.3 156 67 28.3 26.5

#walk stations avg 9.76 8.06 15.1 10.3 8.03 16.2
#walk station stddev 3.71 3.63 5.4 4.78 4.04 7.01

#car stations avg 22 5 61.6 21.4 4.75 0
#car station stddev 18.6 6.11 34.2 18.6 6.24 0

#stations avg 30.5 13.5 72.5 30.5 13.3 17.4
#station stddev 19.9 7.46 35.8 20.4 7.77 7.14

Filtered
#patterns avg 54.2 20.2 121 45.4 19.2 21.3
#patterns stdev 52.3 17 85.9 39.2 16.1 12.8

#mode patterns avg 59.7 22.6 139 52.1 21.2 21.4
#mode patterns stdev 56 19.8 98.1 44.5 18.4 12.8

#walk stations avg 8.26 6.81 13.2 8.74 6.72 11.1
#walk station stddev 3.16 3.1 4.75 3.93 3.24 4.72

#car stations avg 17.1 3.96 48.1 16.7 3.7 0
#car station stddev 14.1 4.95 25.9 14.2 4.91 0

#stations avg 24.3 11.2 57.7 24.4 10.9 12.2
#station stddev 15.2 6.1 27.4 15.8 6.08 4.81

Table 4.11: Patterns for Toronto for various graph models and car save limits.
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Figure 4.4: Number of filtered transfer patterns for Toronto.
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s2l-10 l2l-5 l2l-10 w/o car

Samples 20 20 20 20

#patterns avg 55.4 129 60.7 53.2
#patterns stdev 68.2 133 68.9 40.2

#mode patterns avg 61.1 151 67 53.2
#mode patterns stdev 76.7 155 79 40.2

#walk stations avg 11.4 15.3 12.1 21.4
#walk station stddev 5.78 6.58 5.98 8.85

#car stations avg 6.79 28 8.71 0
#car station stddev 9.48 21.2 11.4 0

#stations avg 17.6 39.8 20.2 22.2
#station stddev 12.1 23.6 13.9 9.03

Filtered
#patterns avg 31.9 76.5 35.8 24.8
#patterns stdev 33.8 70.7 37.1 15.2

#mode patterns avg 37.7 98.4 42.3 24.8
#mode patterns stdev 43 93.6 47.7 15.2

#walk stations avg 9.51 12.9 10.2 14.5
#walk station stddev 4.53 5.53 4.66 6.12

#car stations avg 5.97 22.6 7.57 0
#car station stddev 8.03 16.8 9.55 0

#stations avg 14.8 32.3 17.1 15.1
#station stddev 9.84 18.6 11.3 6.26

Table 4.12: Patterns for New York for various graph models and car save limits.
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Figure 4.5: Number of filtered transfer patterns for New York.
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5 Conclusions

We first implemented an approach for routing with transfer patterns on road networks.
We therefore treated a change of street name like a transfer. This naive approach however
had issues with the large number of stations, so we’ve switched focus to computing
transfer patterns for multi-modal route planning. We therefore abstracted from routing
on road networks and treated a route between two locations on the road network just as
a direct connection, assuming that these connections could be looked up quickly at query
time using any existing, efficient routing algorithm for road networks. We examined ways
to compute multi-modal transfer patterns, starting from a naively joint multi-modal,
line-based graph model with a Pareto cost model. This turned out to generate many
unreasonable route variations that render precomputation infeasible. We have identified
reasons why these variations appear and introduced restricted graph models and the car
save limit, that together eliminate most of the variations and make precomputation of
profile queries feasible, even on large datasets.

To construct our graph models, we assumed to be provided with reasonable connections
by an oracle. For our experiments, we have used a very simple implementation of an
oracle. This was good enough to allow us to confirm that the kind of variations we
suspected where indeed the ones that make precomputation infeasible. However, it is
unclear if precomputation still remains feasible with more advanced and realistic oracles.
So unfortunately, we cannot make any claim about the practical utility of our models.
This is the most obvious limitation of our work and probably the first thing one would
want to examine in future work.

For practical multi-modal route planning based on precomputed transfer patterns, one
would also like to be able to execute location-to-location queries between arbitrary lo-
cations. It would be infeasible to precompute and store transfer patterns between all
pairs of OSM-Nodes the way we did it for a set of sample locations. So it is an open
question how such queries can be executed or how transfer patterns for all locations can
be computed and stored efficiently. We do not yet have a solution for this and it remains
an interesting challenge for future work.

Taking these limitations into account, the most useful contribution of this work is prob-
ably a better understanding of the route variations that occur in multi-modal route
planning with a Pareto cost model. We hope, that this insight is valuable for the future
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development of multi-modal route planning algorithms, even if the models we examined
should turn out not to be the way to go.
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