Question Auto-Completion using a Typed LSTM Language Model

MASTER THESIS BY NATALIE PRANGE

Query Auto-Completion

wo konnen m			
wo können m utat i	onen auftreten		
wo können m ediz	inische fachangeste	llte arbeiten	
wo können m öwe	n in krefeld kostenlo	s karussell fahren	
wo können m otte	n herkommen		
	Google-Suche	Auf gut Glück!	
			Weitere Informationer

Unangemessene Vervollständigungen melden

Source: https://i.imgur.com/eObv3jl.jpg

Query Auto-Completion

Goals of Query Auto-Completion (QAC):

- Reduce typing effort
- Prevent spelling errors
- Assist in phrasing a query

A QAC system must therefore present completion predictions ...

- ... after a minimal amount of keystrokes
- ... in real time
- ... properly ranked

Motivation

Most QAC research focuses on QAC using query logs

Problems with query log approaches:

- Not available to search engines with a small user base or recently deployed search engines
- Publicly available query logs are outdated
- Queries that have never been asked before can not be predicted

→ Use a language-model-based approach

Tackling the Data Sparsity Problem

A common problem when working with language models:

Receiving an input that did not occur in the training data

Solution: Use a typed language model (LM)

Concrete entities are replaced by abstract types

- E.g. "Who played **Gandalf** in **The Lord of the Rings**?"
 - → "Who played [fictional character] in [film]?"

Entities are later inserted using

- an entity prominence score
- co-occurrence
- word vector similarity

Overview of the System

Building the Typed Language Model

Create an entity-to-type mapping using Wikidata entities and classes

Challenge: Types must neither be too general nor too specific

- → Use two types: a more specific type (*primary type*) and a more general type (*secondary type*)
 - E.g. Gandalf → fictional character (primary)
 → creative work (secondary)
- → Use a hand-crafted and sorted list of preferred types

Training Data for the Language Model

- Dataset with 11,290,367 questions
- 97% of questions stem from the WikiQuestions dataset:
 - Wikipedia sentences with entity mentions transformed into questions
- The remaining 3% of questions stem from the ClueWeb12 corpus
 - Questions from English web pages with entity mentions
- Entities are replaced by their types
 - E.g. "Who is **Gandalf**?" → "Who is **[fictional character/creative work]**?"

Training the LSTM Language Model

LSTM network = Long Short Term Memory network

Architecture:

- Embedding layer of size 100
- Two stacked LSTM layers of size 512
- Softmax layer of size of the vocabulary
- → Given a question prefix, the network outputs a probability distribution over the vocabulary

Training:

- Batch size of 512
- 15 epochs
- → training time: ca. 9 days and 21 hours

Predicting Words and Types

The typed LM should predict the next word or type given a question prefix

E.g. "Who directed the Lord of t"

Standard LM:

predict words for the current word prefix "t" given the context words C = ("who", "directed", "the", "Lord", "of")

Typed LM:

- predict words for all possible current word prefixes i.e. "t", "of t", "Lord of t" ...
- → predict "Who directed [film]"

Inserting Entities for Predicted Types

Extract candidate entities that ...

- ... have the predicted primary type (as primary or secondary type)
- ... start with the current word prefix

Define **insertion context words** *I*(*C*) as set of **entities** contained in a question prefix and *<type>* if question starts with "*Which <type>*"

• E.g. for the context words C = ("Which", "country", "did", "J.R.R. Tolkien")

 \rightarrow I(C) = ("country", "J.R.R. Tolkien")

Inserting Entities for Predicted Types

If insertion context words $I(C) = \emptyset$:

- → Use an entity prominence score to score candidate entities
 - Based on an entity's Wikibase sitelink count
 - Counts are normalized to a score between 0 and 1

Else:

- → Use the **co-occurrence count** between insertion context words and candidate entity
 - Co-occurrence is computed over a Wikipedia dump with entity mentions
 - Counts are normalized to a score between 0 and 1

Ranking Completion Predictions

Completion predictions are ranked according to a final score

Components of the final score:

- Language model probability
- Insertion score
- Penalty factors

Language model probability

- Incorporate probability to observe given context words
- For a completion prediction w and context words $C = (w_1, w_2, ..., w_i)$

 $p_{lm}(w|C) = \hat{p}(C) * p(w|C)$

 $\hat{p}(C)$: Discounted LM probability to observe the context words C

p(w|C): LM probability of the predicted word or type of w given the context words C

Ranking Completion Predictions

Entity insertion score

• Normalized sitelink count or normalized co-occurrence count for entities

Normal word insertion score

- Balance prediction of normal words vs. entities
- If $I(C) = \emptyset$: Use constant score of 0.01
- Else: compute word vector similarity between non-stopwords in the question prefix and the predicted normal word

Ranking Completion Predictions

Penalty factors

• Penalize prediction of consecutive entities with penalty factor g_{ce}

 $g_{ce} = \begin{cases} 0.04 & if \ completion \ prediction \ is \ an \ entity \ and \ previous \ word \ is \ an \ entity \\ 1 & else \end{cases}$

• Penalize prediction of the entity type [human] with penalty factor g_h

$$g_h = \begin{cases} 0.02 & if \ LM \ predicts \ type \ [human] \\ 1 & else \end{cases}$$

• Penalize alias-based completion predictions with penalty factor g_a

 $g_a = \begin{cases} 0.6 & if \ completion \ prediction \ is \ based \ on \ entity \ alias \ instead \ of \ entity \ label \\ 1 & else \end{cases}$

Final score:

$$s = p_{lm} * (s_{insert} * g_a)^{0.3} * g_{ce} * g_h$$

Adding and Removing Entities

- Append entities when not enough completion predictions were generated using co-occurrence
 - Use product of word vector similarity and sitelink count to score candidate entities
- Append completely typed entities
- Remove double completion predictions

Evaluation

Multiple-True-Completions Evaluation

- Evaluate over set of 100 question prefixes along with reasonable completion predictions
- Measure **precision at k = 5** (P@5)

 $P@k = \frac{|Q_{true} \cap Q_{results}^{k}|}{k}$ $Q_{true} : \text{set of true completions}$ $Q_{results}^{k} : \text{set of top k completions predicted by the system}$

• Measure average precision (AP)

$$AP = \frac{\sum_{i=1}^{n} P@r_i}{n}$$

 r_1, \ldots, r_n : list of positions at which predictions from Q_{true} appear in $Q_{results}$

Evaluation

Measure normalized discounted cumulative gain at k = 5 (nDCG@5)

Discounted cumulative gain at k:

DCG@k = $rel_1 + \sum_{i=2}^{k} \frac{rel_i}{log_2(i+1)}$

 rel_i : relevance score for the completion predicted at rank i

Normalized discounted cumulative gain at k: $nDCG@k = \frac{DCG@k}{IDCG@k}$ IDCG@k: ideal discounted cumulative gain

Evaluation

Single-True-Completion Evaluation

- Base test set: 10,000 random questions
- 1ICW test set: 10,000 questions with one insertion context word
- >1ICW test set: 10,000 questions with more than one insertion context word
- Measure mean reciprocal rank (MRR)

 $RR = \frac{1}{2}$

r: rank of the correct completion prediction

Compute RR for each word in each question after its 1st letter has been typed Report the mean over all computed RR scores

• Measure **required user interaction** (RUI) $RUI = \frac{\# user interactions needed given completion predictions}{\# user interactions needed without completion predictions}$

Typing a letter and selecting a completion prediction each count as one interaction

Evaluated Versions

Three main versions that differ in the entity insertion method for $I(C) \neq \emptyset$

- *sitelinks:* Entity insertion based on sitelink count (Baseline)
- *sitelinks* + *w*2*v*: Entity insertion based on product of sitelink count and word vector similarity
- *co-occurrence:* Entity insertion based on co-occurrence

Additional versions:

- *co-occurrence w/o* g_{ce} : no penalty for consecutive entities
- co-occurrence w/o g_h : no penalty for prediction of type [human]
- co-occurrence w/o w2v fill-up: no filling up of entities using word vector similarity

Multiple-True-Completions Evaluation Results

	P@5	AP	nDCG@5	Time
sitelinks	0.286	0.375	0.422	$0.64 \mathrm{~s}$
sitelinks + w2v	0.322	0.464	0.524	$0.77 \mathrm{\ s}$
co-occurrence w/o g_{ce}	0.338	0.481	0.551	$0.70~\mathrm{s}$
co-occurrence w/o g_h	0.316	0.473	0.543	$0.70~{ m s}$
co-occurrence w/o w2v fill-up	0.340	0.489	0.564	$0.65~{ m s}$
co-occurrence	0.344	0.500	0.572	$0.69 \mathrm{~s}$

Single-True-Completion Evaluation Results

	Base T	'est Set	1ICW 7	Test Set	>1ICW	7 Test Set
	MRR	RUI	MRR	RUI	MRR	RUI
sitelinks	0.532	0.542	0.537	0.538	0.529	0.525
sitelinks $+$ w2v	0.533	0.541	0.540	0.535	0.533	0.523
co-occurrence	0.531	0.538	0.537	0.529	0.531	0.510

Single-True-Completion Evaluation Results

Correctly predicted entities for $I(C) \neq \emptyset$			
	$entity \in I(C)$	$<\!\!type\!\!>\in I(C)$	
sitelinks	468	200	
sitelinks $+$ w2v	718	195	
co-occurrence	1062	280	

On the >1/CW test set after typing the first letter of the entity label

Future Work

- Experiment with different methods for language modeling
- Make system robust against spelling errors
- Create a larger ground truth for the evaluation
- Enhance completion predictions with contextual information