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Abstract

OpenStreetMap (OSM) is a collaborative project that provides free and editable geospa-
tial data worldwide. Representing OSM data in knowledge graphs based on the Re-
source Description Framework (RDF) enables the execution of expressive queries via
the SPARQL query language. However, keeping such endpoints synchronized with
OSM’s rapidly evolving planet-scale data is computationally demanding. This thesis
introduces osm-live-updates (olu), a tool that generates SPARQL update operations
from OSM change files, enabling efficient and near real-time updating of OSM data
on SPARQL endpoints. When paired with a high-performance SPARQL engine like
QLever, olu can generate SPARQL update operations from minute-level change files
for the complete OSM Planet dataset in under 7 seconds on average, while ensuring the
geometries of all OSM elements on the SPARQL endpoint remain correct. The tool is

open-source and available on GitHub.
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Chapter 1

Introduction

OpenStreetMap (OSM) [1] is a map database project maintained by a global community
of volunteers. The OSM database contains information on roads, trails, cafés, railway
stations, and many other features. One way to access and analyze this data is through
knowledge graphs, which can represent OSM information in a structured form. When
built using the Resource Description Framework (RDF) [2], these graphs describe data

as a collection of subject-predicate-object triples.

Tools like osm2rdf [3] can convert OSM data into RDF format, making it possible
to query the data efficiently with the SQL-like SPARQL query language [4]. Endpoints
such as QLever [5] support the execution of such queries, enabling fast and expressive

search capabilities, with features like autocompletion to improve usability [6].

However, converting OSM data into RDF triples and indexing the triples for effi-
cient querying are both computationally demanding tasks. This is especially true for
large datasets like the complete OSM Planet data [7], which receives thousands of up-
dates per minute. Keeping a SPARQL endpoint synchronized with such a rapidly evolv-
ing dataset is therefore a difficult but crucial task for applications that rely on up-to-date

information.

To address this problem, this thesis introduces osm-live-updates (olu), a tool that
provides efficient updates for SPARQL endpoints. olu processes OSM change files con-
taining the edits made to the OSM database and generates the corresponding SPARQL
update operations. These updates are then applied to the endpoint, keeping it synchro-
nized with the latest OSM data. In doing so, olu enables near real-time querying of
OSM data on SPARQL endpoints.
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1.1 OpenStreetMap

OpenStreetMap (OSM), launched in 2004, has evolved into one of the largest collab-
orative open-data projects, with more than 10 million registered users [8]. It offers a
freely editable alternative to proprietary mapping services and is widely used in appli-
cations such as navigation, geographic information systems (GIS), and location-based
services. The underlying data model is structured around three fundamental element
types: nodes, ways, and relations. Each element type serves a specific purpose in rep-

resenting geographic features.

Node A node represents a specific geographic location and is defined by a latitude and
longitude coordinate. It is the only OSM element that directly stores geographic coor-
dinates. Nodes may denote individual points of interest, such as a bench or a restaurant,

or serve as building blocks for the geometry of the other OSM elements.

Ways A way is an ordered list of nodes that can represent a linear feature, such as a
road, river, or footpath (see Fig. 1.1a). If the first and the last node are the same, the
way forms a closed loop and defines a polygonal area. This can represent features such

as a body of water or a building footprint (see Fig. 1.1b).

u
s

o

Jump and Twist

Figure 1.1: Examples that show how OSM uses ways to represent linear features, such
as footpaths (a), and polygonal areas, such as building footprints (b).

* Map data copyrighted OpenStreetMap contributors and available from https://www.
openstreetmap.org.
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Relations A relation is a structured collection of nodes, ways, and/or other relations
that defines the logical relationships between these elements. They can represent com-
plex geographical features, such as multipolygons (see Fig. 1.2a), which consist of
multiple polygonal elements. Relations can also be used to define areas by combin-

ing multiple ways that form closed loops. For instance, a relation could represent an

administrative region by including ways that form its boundaries (see Fig. 1.2b).
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Figure 1.2: Examples illustrating how OSM relations can represent complex
(multi)polygonal features. (a) A collection of polygons representing
areas that are part of the University of Freiburg, and (b) a collection of
ways forming the boundary of the city of Freiburg. Relations that define
administrative areas often include a node marking the center of the area,
shown here as a circle in the middle of area.

* Map data copyrighted OpenStreetMap contributors and available from https://www.
openstreetmap.org.

Each OSM element can be annotated with tags, which are key-value pairs pro-
vided by users to describe the element’s properties. Examples include road type (high-
way=footway), building function (building=hospital), or surface material (surface=as-
phalt). Tags enrich OSM data with semantic meaning, making them essential for inter-
preting and analyzing the raw geometries. In addition to these descriptive tags, each
element is annotated with attributes such as a unique identifier (ID), a version number
that increments with each modification, and the timestamp of the most recent change.
The attributes also include metadata about the user who created or modified the ele-

ment.
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The OSM database currently contains around 10 billion nodes, 1 billion ways, and
100 million relations [8]. The complete planet dataset is roughly 82 GB in size when
compressed, and is provided by the OSM Foundation in weekly intervals [7]. The
OSM Foundation is a not-for-profit organization that supports the OSM project and is
responsible for the maintenance of the central database. If working with the full planet
dataset is unnecessary, it is possible to use several tools that allow for extracting subsets
of OSM data. One such tool is the command-line tool osmium [9]. Furthermore, some
providers that offer ready-to-use extracts of OSM data at different scales, ranging from

entire continents down to individual cities, including Geofabrik [10] and BBBike [11].

1.2 Resource Description Framework

The Resource Description Framework (RDF) is a model for representing data in the
form of directed graphs [2]. In the RDF model, information is expressed as triples,
with each triple consisting of a subject, a predicate, and an object. The subject and
object denote resources, while the predicate specifies the relationship between them.
Despite its simple structure, RDF is highly expressive. Individual triples can be com-
bined into RDF graphs that capture complex data structures. Figure 1.3 shows the graph
representation of a generic RDF triple alongside an example showing how OSM data

can be represented in this format.

Predicate hasTimestamp

@ »2025-06-11"

(a) Generic RDF triple (b) RDF triple representing OSM data

Figure 1.3: (a) Graph representation of an RDF triple and (b) an example showing how
it can represent OSM data, here storing the timestamp of an OSM way.

Each component of an RDF triple can be either represented as an International-
ized Resource Identifier (IRI), a literal, or a blank node. An IRI is a globally unique
identifier used to reference a resource. Literals denote concrete values, such as strings
or numbers, and can only appear in the object position of a triple. Blank nodes refer

to anonymous resources that function as intermediate structures for grouping related
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triples. An example of how a blank node can be used to model the member relationship

of an OSM way and node can be seen in Appendix A.

Terse RDF Triple Language RDF is an abstract data model that can be serialized
in various formats. The Terse RDF Triple Language (Turtle) is a frequently employed,
human-readable serialization for RDF data, which utilizes a compact syntax for repre-
senting RDF triples [12]. In particular, Turtle employs the use of prefixes and abbre-
viated identifiers, which makes RDF easier to read and understand compared to more
verbose formats. A concrete example of an RDF triple in Turtle format that stores the
timestamp of an OSM way is provided in Listing 1.1. The prefix declarations at the top
allow us to abbreviate the IRIs for the OSM way and the timestamp predicate, resulting

in a more readable representation of the triple.

Listing 1.1: Example of an RDF triple encoding the timestamp of an OSM way in Turtle
format. Prefix declarations are used to make the triple more compact and
readable.

1| PREFIX osmway: <https://www.openstreetmap.org/way/>
2| PREFIX osmmeta: <https://www.openstreetmap.org/meta/>

3|

4| osmway: 1347584463 osmmeta:timestamp "2025-06-11T14:44:46Z"

1.3 Convert OSM Data to RDF triples

To store OSM data within an RDF graph, it is necessary first to convert it into RDF
triples. This process involves generating triples that encode the data stored for each
OSM node, way, and relation. The osm2rdf [3] tool performs the transformation of
OSM data into RDF triples while preserving all semantic information and the geome-
tries of the elements. Each OSM element is identified using one of the prefixes osmnode:,
osmway:, or osmrel:, followed by its unique ID, e.g., osmnode:1. For each element,
osm2rdf generates RDF triples that capture its attributes (e.g., timestamp, version), key-
value pairs of associated tags, geometries, and member relationships. The geometries
of OSM elements are encoded in the Well-Known Text (WKT) standard, which can
representing geometric objects in a text-based form [13]. Listing 1.2 shows examples
of how geometries of different OSM elements are stored in WKT format. Node ge-
ometries are represented as points, while ways are encoded as line strings or polygons

when describing areas. Depending on their members, relations may form polygons or
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multipolygons. If they do not define a closed area, they are represented as geometry

collections containing the geometries of their member elements.

Listing 1.2: Example showing how the geometries of different OSM elements are stored
in WKT format. The notation geo:hasGeography/geo:asWKT serves as
a shortcut, facilitating the combination of two triples such that the object

of the first triple becomes the subject of the second one.

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX osmnode: <https://www.openstreetmap.org/node/>
PREFIX osmway: <https://www.openstreetmap.org/way/>
PREFIX osmrel: <https://www.openstreetmap.org/relation/>

osmnode: 123 geo:hasGeographie/geo:asWKT "POINT(7.84798 48.01354)"

osmway:456 geo:hasGeographie/geo:asWKT "LINESTRING (7.8534
47.99488, 7.51577 47.99167, 7.85161 47.99096)"

8} osmrel:789 geo:hasGeographie/geo:asWKT "POLYGON ((7.84597 <

47.9736, 7.84813 47.92621, 7.83465 47.99867, 7.84597 47.9973))"

~N O L W N~

osm2rdf takes an OSM dataset as input and outputs a Turtle file (. tt1) containing
all prefix declarations and generated RDF triples in Turtle format. As OSM ways and
relations do not contain geometric information themselves, all members of a way or
relation must be included in the input file for osm2rdf to compute their corresponding
geometries. Converting OSM data into RDF format is computationally expensive, par-
ticularly for large datasets. For the complete OSM planet data, the conversion process

takes approximately 17 hours, generating around 135 billion triples.

1.4 Querying OSM Data in RDF graphs

The SPARQL Protocol and RDF Query Language (SPARQL) is a powerful tool for
querying data in RDF graphs [4]. It enables the formulation of expressive queries over
the data, including filtering, aggregation, and pattern matching operations. Listing 1.3
provides an example of a SPARQL query that retrieves the IDs of all OSM ways that
describe footpaths and have been added or modified after 2024. In OSM, the tag high-
way is conventionally used to specify the road type for an OSM way. The timestamp

of the ways can then be used to filter the elements for the desired dates.
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Listing 1.3: SPARQL query to retrieve the IDs of all OSM ways that describe footpaths
and have been created or modified after 2024. The function YEAR extracts
the year from the timestamp as an integer, while the function FILTER filters
the results based on the given condition.

PREFIX osmmeta: <https://www.openstreetmap.org/meta/>
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>

1
2
3
4| SELECT 7osm_id WHERE {

5 7osm_id osmkey:highway "footway" .

6 7osm_id osmmeta:timestamp 7timestamp .
7 FILTER (YEAR(?7timestamp) > 2024)

8

}

SPARQL Engines SPARQL engines, such as QLever [5], enable users to efficiently
query large RDF graphs. To achieve a high query performance, it is essential to build
specialized indexes, which are data structures that organize triples to allow for fast
lookups. The construction of these indexes requires substantial computational resources,
as they can involve parsing and processing billions of triples. This process is espe-
cially time-consuming and resource-intensive for large datasets, such as the complete
OSM planet dataset, for which it takes approximately 30 hours. Table 1.1 provides an
overview of the time required to convert various OSM datasets into RDF format using

osm2rdf and index them with QLever.

Table 1.1: Statistics on compressed file sizes, the number of generated triples, and the
conversion and indexing times for various OSM datasets. The OSM data
was converted into RDF triples using osm2rdf. The indexing of the resulting
triples was performed with QLever. All measurements were conducted on a
machine with 16 CPU cores and 125 GB of RAM. The OSM data extracts
were downloaded from Geofabrik [10].

OSM Dataset File Size # Triples  Conversion Indexing
Planet 84.5GB 134.8B 17.4h 30.8h
Europe 31.2GB 37.7B 12.2h 8.7h
Germany 4.3GB 6.3B 59.4 min 61.9 min
Baden-Wiirttemberg 0.6GB 0.6B 5.6 min 8.1 min

District of Freiburg 0.1GB 0.2B 1.3 min 1.9 min
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The significant time requirements for conversion and indexing pose a challenge
for applications requiring access to up-to-date OSM data, such as navigation systems,
urban planning tools, or disaster response applications. Therefore, it is important to
develop efficient methods for updating SPARQL endpoints with the latest OSM data

without the need for a complete reprocessing of the entire dataset.

1.5 Updating OSM Data in RDF graphs

The OSM dataset is highly dynamic, with over 3 million elements created, modified, or
deleted daily by the OSM community. Table 1.2 shows the number of changed OSM
elements (nodes, ways, and relations) recorded per minute, hour, and day for various
OSM extracts. The dynamic nature of the OSM data highlights the importance of keep-
ing SPARQL endpoints synchronized with the latest changes to ensure accurate and
up-to-date query results. As discussed in the previous section, setting up a SPARQL
endpoint is computationally demanding. Therefore, it is essential to find an efficient
way of updating the OSM data within an RDF graph. OSM change files provide a way
to track modifications in the database. SPARQL update operations allow these modi-
fications to be applied to existing endpoints, avoiding the need to reprocess the entire
dataset from scratch. The following sections provide an overview of OSM change files
and SPARQL update operations.

Table 1.2: Average number of elements that were changed by OSM contributors per
minute, hour, and day across different OSM datasets. Since change file sizes
vary with the activity of the OSM community, we calculated a mean value
over seven days. The OSM planet change files were downloaded from the
OSM replication server [7]. The data for the OSM datasets was obtained by
creating regional extracts using the osmium tool and boundaries provided by

Geofabrik [10].
Number of Changed Elements
OSM Dataset # Triples per Minute per Hour per Day
Planet 134.8B 2287 02M 32M
Europe 37.7B 775 439K 1.0M
Germany 6.3B 70 41K 0.1M
Baden-Wiirttemberg 0.6B 10 0.6K 149K

District of Freiburg 0.2B 2 0.1K 2.1K
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1.5.1 OSM Change Files

OSM change files (. osc) are XML documents that record the differences between two
states of the OSM datasets [14]. Each difference is categorized as the creation, modi-
fication, or deletion of an element. An element that exists in the later state but not the
earlier state is enclosed in a create tag. An element that exists in the earlier state but
not the later state is enclosed in a delete tag. An element that has changed between the
two states is listed inside a modify tag only in its latest state. It is important to note that
the change file, therefore, does not indicate what change has been made to a modified
element. Listing 1.4 provides an example illustrating how a created node, a modified
way, and a deleted node are represented. Within the change file, elements are typically
sorted first by their type (node, way, or relation) and then by their ID. Every element
in a change file is fully described, including all attributes and tags. However, as the
geometry of OSM ways and relations depends on their members, it is not necessarily
possible to derive their geometries from the change file alone, as the member elements

are only included if they themselves were created, modified, or deleted.

Listing 1.4: Example of an OSM change file that describes the changes between two
sets of OSM data. In this example, the changes include creating a node,

modifying a way, and deleting a node.

1] <osmChange version="0.6">

2 <create>

3 <node i1d="2110601103" lat="48.0126985" lon="7.8347244"/>
4 </create>

5] <modify>

6 <way id="1347584463">

7 <nd ref="12465374441"/>

8 <nd ref="12465374443"/>

9 <nd ref="12465374440"/>

10 <tag k="highway" v="footway"/>

11 </way>

12 </modify>

13 <delete>

14 <node id="1822236037" lat="48.0136829" lon="7.8344712">
15 <tag k="natural" v="tree"/>

16 </node>

17 </delete>

18| </osmChange>
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The OSM Foundation operates a replication server that provides access to change
files for the entire OSM planet dataset [15]. These files are available at minutly, hourly,
and daily intervals and describe changes made to the OSM database during these time
periods. Each change file is accompanied by a state file containing the file’s creation
timestamp and a sequence number that increases with each new file. Regional change
files are also available from services such as Geofabrik [ 10], although these are provided
only at daily intervals. Additionally, there is a mirror! of the OSM planet replication

server that provides minutely change files for specific regions for a limited time frame.

1.5.2 SPARQL Update Operations

SPARQL update operations provide a way to modify RDF graphs by inserting or delet-
ing triples. They allow us to reflect the changes made to the OSM dataset directly in the
RDF graph. For example, new triples can be added with an INSERT operation, while
outdated triples can be removed with a DELETE operation. Listing 1.5 shows how to
insert the triples that describe a newly created node into the RDF graph. Conversely,
Listing 1.6 shows how to remove all triples associated with a specific OSM element,
modeling its deletion. Modifications made to existing OSM elements can be expressed
as a combination of both operations. First, a DELETE operation to remove the old triples,

followed by an INSERT operation to add the new ones.

Listing 1.5: SPARQL update operation that inserts some triples belonging to a new
OSM node into an existing RDF graph.

PREFIX osmmeta: <https://www.openstreetmap.org/meta/>

PREFIX osmnode: <https://www.openstreetmap.org/node/>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX osm: <https://www.openstreetmap.org/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX osm2rdfgeom: <https://osm2rdf.cs.uni-freiburg.de/rdf/geom#>

INSERT DATA {
osmnode: 1822236 rdf:type osm:node .
osmnode: 1822236 osmmeta:timestamp "2024-08-23T06:57:04"

O 0 9 O i B W N~

—_—
- O

osmnode: 1822236 geo:hasGeometry osm2rdfgeom:osmnode_1822236 .
osm2rdfgeom: osmnode_1822236 geo:asWKT "POINT(7.8344712 <
48.0136829) "

—
[\

—
w

}

"https://download.openstreetmap.fr/replication



Chapter 1 Introduction 13

Listing 1.6: SPARQL update operation that deletes all triples belonging to a specific
OSM way from an RDF graph. This includes triples describing member
relationships linked to the OSM way via a blank node.

PREFIX osmway: <https://www.openstreetmap.org/way/>

1
2
3| DELETE WHERE {

4 osmway: 1347584463 7predicate 7object .
5

6

7object 7memberPredicate 7member(Object .

}

1.6 Problem Statement and Contribution

In the previous sections, we demonstrated how OpenStreetMap (OSM) data can be con-
verted into RDF triples and queried through SPARQL endpoints. While this enables
expressive querying, the process of setting up a SPARQL endpoint is computationally
demanding and time-consuming. For dynamic datasets, such as the OSM planet data,
which receives millions of edits each day, the time required for this setup presents a sig-
nificant challenge. Many applications require access to up-to-date data, yet rebuilding
a SPARQL endpoint from scratch to update it is impractical. This problem underscores
the need for a tool that can continuously synchronize a SPARQL endpoint with the lat-
est OSM data.

The OSM Foundation publishes OSM change files at minute, hourly, and daily in-
tervals for the complete planet data. These change files reflect the modifications made
to the OSM dataset by the OSM contributors during these time periods. In principle,
these change files can be used to update a SPARQL endpoint via SPARQL update op-
erations. However, no existing tool supports this process while fully preserving the
geometry of the updated OSM elements. Addressing this gap is the central contribu-

tion of this thesis.

We introduce osm-live-updates (olu), a tool that generates SPARQL update opera-
tions from OSM change files and synchronizes an existing SPARQL endpoint with the
changes made to the OSM database. When paired with a high-performance SPARQL
engine, such as QLever, olu can generate SPARQL update operations from minute-

interval change files for the complete OSM Planet data in under 7 seconds on average.
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These update operations can then be applied to a SPARQL endpoint in under 50 sec-
onds on average, enabling near real-time querying of the complete OSM Planet data on
a SPARQL endpoint.

Structure of the Thesis Following this introduction, we review existing approaches
for working with up-to-date OSM data in different storage formats in Chapter 2. We
then present the base implementation of olu in Chapter 3, explaining how SPARQL
update operations can be generated from OSM change files. In Chapter 4, we provide a
detailed description of olu’s key functionalities and outline the optimizations introduced
to enhance performance. We will then evaluate the correctness and performance of olu
in Chapter 5. In Chapter 6, we discuss current limitations and potential directions for

further development. Finally, in Chapter 7, we conclude the thesis.



Chapter 2

Related Work

Depending on the user’s needs and resources, several approaches are available for work-
ing with up-to-date OpenStreetMap (OSM) data. The method requiring the least com-
plex setup is querying the Overpass API [16], a search engine for OSM data, which
typically reflects changes to the OSM database within a few minutes. This can be
done via front-end services such as Overpass Turbo'. However, the public Overpass
API has limitations, including rate limits, performance issues, and the requirement to
learn the Overpass Query Language to construct queries. Users or applications that
require greater control and flexibility typically operate their own OSM data infrastruc-
ture. Most of these approaches rely on OSM change files (introduced in Section 1.5.1)
to keep datasets up to date. This chapter reviews existing methods for applying OSM
change files to different data representations, ranging from raw OSM files to relational

databases and knowledge graphs.

2.1 Updating OSM Data Files

OSM data can be stored in multiple file formats. For smaller datasets, the human-
readable, XML-based . osm format is often used. In this format, the XML file is simply
a list of all OSM elements (nodes, ways, and relations), together with their attributes
and tags. For larger datasets, it is common to either compress the XML files using stan-
dard algorithms (e.g., gzip or bzip2), or to use the more efficient binary PBF format
(.pbf). This format significantly reduces storage size and read/write times [17]. The
OSM planet dataset, for example, is available for download in both compressed XML
and PBF formats [7].

'https://overpass-turbo.eu/


https://overpass-turbo.eu/
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Updating OSM data files involves sequentially processing each OSM element in
the file and, if the element is listed in the OSM change file, executing the specified
operation. This includes inserting all elements enclosed in create tags, replacing ele-
ments in modify tags with their updated versions, and removing the elements enclosed in
delete tags. Several tools support this, including the widely used command-line utility
osmium [9], which provides the apply-changes command for applying OSM change
files to OSM data files. However, this process can be ineflicient because it requires
scanning the entire dataset. This is especially problematic when only minor updates
are needed for large datasets. Furthermore, file-based tools are good for data manage-

ment and exchange but lack the advanced querying capabilities provided by databases.

2.2 Updating OSM Data in Databases

To enable efficient querying and analysis, OpenStreetMap (OSM) data is often im-
ported into databases. That way, they provide optimized storage and indexing mecha-
nisms. However, this approach introduces additional complexity because the raw OSM
data must first be prepared for the chosen database system. Maintaining an up-to-date
database by applying OSM change files adds another layer of complexity, as the up-
dates must be transformed into a format the database can process. This section reviews

existing methods for updating OSM data in relational databases and RDF graphs.

Relational Databases The most widely used relational database for OSM data is Post-
greSQL [18]. It can be paired with the PostGIS extension to enable complex geospatial
queries directly on OSM data [19]. The osm2pgsql tool can be used to import OSM
data into PostgreSQL databases [20]. Many services rely on it to make OSM data avail-
able for applications such as map rendering and geocoding. osm2pgsql also supports
updating database tables using OSM change files. For this purpose, it provides a Python
script that automatically synchronizes an existing database with the latest changes from
the OSM planet replication server [21]. Applying updates, however, requires importing
the database in a special mode called ”slim mode”. Here, osm2pgsql creates additional
properties in tables and indexes to ensure updates are applied correctly to all OSM el-
ements. While this enables incremental updates, it also increases the overall database

size.

RDF Graphs The use of RDF graphs for OSM data is relatively new compared to the

use of relational databases. As discussed in Chapter 1.3, the osm2rdf tool can convert
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OSM data into RDF format, which can then be queried using SPARQL endpoints such
as QLever. However, osm2rdf does not provide the functionality to update an existing
SPARQL endpoint. When an update to the SPARQL endpoint is needed, the endpoint

must be set up from scratch using a newer OSM file.

To the best of our knowledge, Sophox [22] is the only tool that combines OSM-to-
RDF conversion, SPARQL querying, and support for incremental updates. In Sophox,
OSM change files are translated into SPARQL update operations, which are then ap-
plied to the RDF graph. This enables querying of up-to-date OSM data. However, the

tool has several important limitations. Notably:

* Nodes without tags, which make up the majority of OSM nodes, are omitted from
the output.

» Tags are only included if they contain English letters, digits, or a limited set of
special characters.

* Geometries of OSM elements are not preserved, as all elements are reduced to
single points.

 The project is no longer actively developed, with the last commit improving the
functionality occurring several years ago?, meaning that these limitations are un-

likely to be addressed in the future.

2See: https://github.com/Sophox/






Chapter 3

Generating SPARQL Update
Operations from OSM Change Files

We previously introduced the problem of keeping SPARQL endpoints synchronized
with the latest changes from the OSM database in Section 1.6. This chapter presents the
basic implementation of osm-live-updates (olu). We begin with a more precise problem
definition, outlining the key challenges of maintaining synchronization between the
OSM planet data and SPARQL endpoints. Section 3.2 then describes the baseline,
unoptimized procedure, focusing on describing how SPARQL update operations can

be generated from OSM change files.

3.1 Problem Definition

The goal of this implementation is to keep a SPARQL endpoint synchronized with the
latest updates to the OSM database by applying the modifications described in OSM
change files. The OSM replication server publishes these change files for the complete
planet dataset. Each change file specifies the operations required to update the data:
elements in create tags must be inserted, elements in modify tags replaced with their

updated versions, and elements in delete tags removed.

These instructions, however, cannot be applied directly to a SPARQL endpoint.
Instead, the changes first need to be translated into SPARQL update operations that the
endpoint can process. This translation involves converting the OSM elements in the
change file into RDF triples, and then generating the appropriate INSERT and DELETE
operations that capture the changes described by the change file. In practice, this pro-

cess introduces several challenges:
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1. The change files do not necessarily contain sufficient information to compute

the geometries of OSM ways and relations, as their members are not included if
they themselves are not created or modified. This additional information must be
retrieved from the updated SPARQL endpoint.

2. The geometry of an OSM way or relation may change even if the element itself is

not listed in the change file. Such changes occur when the geometry of one of its
member elements is modified. Detecting and updating these implicit geometry

changes is therefore necessary.

3.2 Procedure

To overcome the challenges mentioned before, we implemented a four-stage process to

generate SPARQL update operations from OSM change files in our base implementa-

tion of olu. This process involves:

1. Collect IDs of relevant OSM elements: In the first step, we collect the IDs of

all OSM elements relevant to the update process. The relevant elements include
all elements in the change file, all elements on the SPARQL endpoint that require
geometry updates, and all member elements that are necessary for calculating the

geometries.

. Construct an intermediate OSM file: In the second step, we construct an OSM

file that contains all elements identified in the previous step. For elements miss-
ing from the change file (members or elements for which the geometries need to
be updated), we create lightweight dummy elements that contain only the neces-

sary information to compute the geometries.

. Convert the OSM file to RDF triples: In the third step, we use osm2rdf to

convert the intermediate OSM file from the previous step to RDF triples.

. Generate SPARQL updates: In the fourth and last step, we generate the nec-

essary SPARQL DELETE and INSERT operations to apply the changes from
the OSM change file. These generated update operations are then applied to the
SPARQL endpoint.

3.2.1 Collect IDs of Relevant OSM Elements

In the first step, we collect the IDs of all OSM elements that are relevant for the update

process and group them in four distinct categories:
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1. Deleted elements: Elements inside a delete tag in the OSM change file.

2. Created elements: Elements inside a create tag in the OSM change file.

3. Modified elements: Elements inside a modify tag in the OSM change file, as
well as OSM ways and relations that have a modified element as a member.

4. Member elements: All members of elements in the created or modified elements

category, which are not already present in the OSM change file.

The first three categories can be extracted directly from the change file, except for OSM
elements on the endpoint that are indirectly modified. Even if it is not explicitly listed
in the change file, the geometry of an OSM way or relation may change if one of its
members has its geometry modified in the change file. For instance, if the location of
an OSM node is modified in the change file, the geometry of any OSM way that has this
node as a member will also change, since the geometry of OSM ways and relations is
determined by their members. We therefore have to update the geometry triples of every
OSM element that has a modified element as a member. We query the SPARQL end-
point to detect all OSM elements that undergo such an indirect modification. Listing 3.1
shows an example query that returns the IDs of all OSM ways that have a specific OSM
node as a member. We execute queries like this for each modified element to retrieve
the IDs of the OSM ways and relations that reference it. It is important to first query all
OSM ways with changed geometry, as these ways may be a member of another OSM

relation that also needs to be updated.

Listing 3.1: SPARQL query fetching all OSM ways that have a specific OSM node as
member. The GROUP BY modifier ensures that each OSM way appears only
once in the result.

PREFIX osmway: <https://www.openstreetmap.org/way/>
PREFIX osmnode: <https://www.openstreetmap.org/node/>

SELECT ?way_id WHERE {
?member osmway:member_id osmnode:13101857348 .
?way_id osmway:member 7member

}

GROUP BY 7?way_id

0 N N Lt AW N~

The fourth category of member elements is collected in a second pass over the
change file, where we extract the member IDs of created and modified elements if they
are not already listed in the change file. Additionally, we query the endpoint for the

members of OSM ways and relations that require an update to their geometry. List-
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ing 3.2 shows an example query that fetches all members of an OSM relation. A query
like this is executed again for each OSM way or relation that requires an update to the

geometry. The resulting member IDs are added to the set of member elements.

Listing 3.2: SPARQL query fetching the IDs of all members of a specific relation.

PREFIX osmrel: <https://www.openstreetmap.org/relation/>

1
2
3} SELECT ?7element_id WHERE {

4 osmrel:1590189 osmrel:member 7member .
5

6

?member osmrel:member_id 7element_id .

}

After performing this step, we know the IDs of all OSM elements relevant to the
generation of SPARQL update operations and have them grouped by category. We can
now proceed to create an intermediate OSM file that is used to generate the relevant
RDF triples.

3.2.2 Construct an intermediate OSM file

In the second step, we create an OSM data file containing all OSM elements identified
in the previous step, excluding deleted elements, for which we do not need to generate
any RDF triples. The file is structured in the XML-based .osm format, which provides
a human-readable representation of OSM data. It consists of XML representations
of OSM nodes, ways, and relations, sorted by type and ID. The OSM elements from
the change file can be incorporated directly into the OSM data file. However, some
elements are not present in the change file but must still be included. The missing ele-
ments include the indirectly modified elements, whose geometries need to be updated,
and the member elements, which are necessary to compute the geometries. For these
OSM elements, we create dummy elements containing only the information required for
geometry computation. Since tags and metadata are not needed for this purpose, they
are omitted from the dummy elements. In the following, we describe how we create

dummy elements for OSM nodes, ways, and relations.

Nodes Nodes are the only OSM elements that directly contain geographic coordinates
and therefore form the basis for defining the geometries of OSM ways and relations. To
compute the geometry of a way or relation, it is necessary to know the coordinates of

all its member nodes. For each member node, we create a dummy element containing
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the node’s ID, latitude, and longitude. The coordinates are retrieved from the SPARQL
endpoint using the geo:hasGeographie/geo: asWKT predicates. Since node locations
are stored as WKT points on the endpoint, we parse the longitude and latitude from this

representation. Listing 3.2.2 shows an example of a dummy element for an OSM node.

Listing 3.3: Example of a dummy element created for an OSM node. The dummy ele-

ment contains the node’s ID, latitude (1at), and longitude (1on).

II <node id="13101857348" 1lat="48.0129705" lon="7.8334866"/>

Ways The geometry of an OSM way is determined by the ordered list of its member
nodes. To compute the ways geometry, we create a dummy element for each relevant
way that contains the way’s ID and the ordered list of its member nodes. The predicates
osmway :member/osmway :member_id are used to query the IDs of the member nodes
of the specific ways. Listing 3.2.2 illustrates a dummy element for an OSM way with

four member nodes.

Listing 3.4: Example of a dummy element created for an OSM way, which has four
members. The member node is enclosed in a nd tag, and the ref attribute

contains the ID of the member node.

1§ <way 1d="1347584463">

2 <nd ref="12465374433"/>
3 <nd ref="12465374436"/>
4 <nd ref="12465374437"/>
5 <nd ref="12465374438"/>
6f </way>

Relations The geometry of an OSM relation is defined by the ordered list of its mem-
ber elements, which can be nodes, ways, or other relations. Each member also has
a role attribute. For example, in a multipolygon relation, the role can distinguish be-
tween inner and outer boundaries. Additionally, relations have a mandatory fype tag
that determines how their geometry is computed in osm2rdf: Relations of type mul-
tipolygon generate multipolygons, relations of type boundary define polygons, and
other relation types are represented as collections of their member geometries. For
each relevant relation, we create a dummy element containing the relation’s ID and
type, as well as the ordered list of members with their roles. The member IDs and

roles are queried from the SPARQL endpoint using the predicates osmrel :member,
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osmrel :member_id, and osmrel :member_role, and the relation type is obtained via
the predicate osmkey : type. Listing 3.5 shows an example dummy element for an OSM
relation, representing a multipolygon with one OSM way that defines the outer bound-
ary and another OSM way that defines an inner boundary, which could, for example,

model a lake with an island.

Listing 3.5: Example of a dummy element created for an OSM relation, that describes
a multipolygon. The members of the relation are enclosed in member tags.

For each member the type (node, way or relation), ID (ref) and role is

stored.
1§ <relation id="539979">
2 <member type="way" ref="4099376" role="outer"/>
3 <member type="way" ref="4885940" role="inner"/>
4 <tag k="type" v="multipolygon"/>
5 </relation>

The dummy nodes, ways, and relations are first written to separate XML files and
then merged with the original OSM change file using the osmium library [23]. This
approach ensures that the elements are properly ordered by type and ID. After this
step is finished, the resulting OSM file contains all elements necessary to update the
SPARQL endpoint. In the next step, this OSM file is converted into RDF triples.

3.2.3 Convert OSM Data to RDF Triples

In this step, the intermediate OSM file created previously is converted into RDF triples
using the osm2rdf tool. osm2rdf natively supports the . osm format and generates triples
for all included OSM elements, which can then be used to update the SPARQL endpoint.
osm2rdf provides configurable options, such as excluding metadata, adding additional
geometry triples, e.g., the centroid or envelope, or setting the precision of WKT strings.
It is therefore important to maintain consistency with the triples already stored on the
endpoint. To ensure consistency, we extended osm2rdf to include these options that
were used as metadata triples'. Listing 3.6 shows an example of how the WKT precision
option is stored as a triple on the SPARQL endpoint. The relevant osm2rdf options are
queried from the endpoint and reused when osm2rdf is run to convert the OSM data
file into RDF triples.

'See pull request: https://github.com/ad-freiburg/osm2rdf/pull/116
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Listing 3.6: Example of a triple storing an osm2rdf option, in this case the precision of
the WKT strings.

II PREFIX osm2rdfmeta: <https://osm2rdf.cs.uni-freiburg.de/rdf/meta#>

2|

3| osm2rdfmeta:option osm2rdfmeta:wkt-precision "6"

As discussed in the previous section, the intermediate OSM file also contains
dummy elements created for geometry calculations. Triples generated from these dummy
elements are irrelevant for the update process and must be filtered out. To do this, we
retain only triples whose subject IDs belong to the created or modified categories iden-
tified in Section 3.2.1. While filtering, blank nodes, which lack explicit IDs, have to
be treated differently. We need to keep a mapping for a blank node that belongs to a
relevant OSM element and also include the triples where this blank node appears as the

subject.

The filtered osm2rdf output now represents the latest state of the OSM elements as
described in the OSM change file. These triples are then used for generating SPARQL
insert operations in the next step.

3.2.4 Generating SPARQL Update Operations

In this step, we generate the SPARQL update operations [24] that are used to synchro-
nize the SPARQL endpoint with the changes from the OSM change file. Each change
action in the file corresponds to one or both of the two basic SPARQL update operations:
DELETE and INSERT. Specifically, elements in delete tags are handled with DELETE op-
erations, which remove all triples belonging to the deleted elements. For elements in
create tags, we use INSERT operations to add the newly generated triples to the endpoint.
Elements in modify tags require both operations: we first delete all triples associated
with the modified element and then insert the updated triples. In summary, we delete all
triples associated with deleted and modified elements, and insert new triples for created

and modified elements, i.e., the triples generated in the previous step.

DELETE Operations We use SPARQL delete operations to remove all triples asso-
ciated with deleted and modified elements from the endpoint. These operations must
cover triples where the OSM element appears directly as the subject, and all connected
triples through intermediate resources, such as blank nodes for member relationships

and geometry triples. Listing 3.7 provides a concrete example of this process, showing
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how all triples belonging to an OSM way can be removed. We execute the query for

each deleted or modified element for which the IDs were collected in the first step.

Listing 3.7: Example of an SPARQL update operation that deletes all triples with the
subject osmway : 1347584463, as well as all triples connected via one inter-

mediate resource, such as member relationships or geometries.

PREFIX osmway: <https://www.openstreetmap.org/way/>

1
2
3| DELETE WHERE {

4 osmway: 1347584463 7predicate 7object .
5

6

7object 7memberPredicate 7memberObject .

}

INSERT Operations After the DELETE operations are performed, the newly gener-
ated triples for all created or modified elements are inserted. Since these triples were
filtered in the previous conversion step (Section 3.2.3), they can be added directly with-
out further checks. Listing 3.8 shows an example of an INSERT DATA operation that
inserts some triples belonging to an OSM node at the SPARQL endpoint. We execute

this operation for each generated triple.

Listing 3.8: Example of an update operation that inserts generated triples for an OSM
node with the ID 1822236.

PREFIX osmmeta: <https://www.openstreetmap.org/meta/>

PREFIX osmnode: <https://www.openstreetmap.org/node/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX osm: <https://www.openstreetmap.org/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX osm2rdfgeom: <https://osm2rdf.cs.uni-freiburg.de/rdf/geom#>

INSERT DATA {
osmnode: 1822236 rdf:type osm:node .
osmnode: 1822236 osmmeta:timestamp "2024-08-23T06:57:04"
osmnode: 1822236 geo:hasGeometry osm2rdfgeom:osmnode_1822236 .
osm2rdfgeom: osmnode_1822236 geo:asWKT "POINT(7.8344712 <
48.0136829) "

O 0 N N L AW N~
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Depending on user preference, the generated SPARQL update operations can ei-
ther be applied directly to the SPARQL endpoint or written to a file. When applied
directly, the DELETE and INSERT operations are sent via HTTP requests. For insertions,
the Graph Store Protocol [25] is used. This way the triples are included in Turtle for-
mat within the request body. If the operations are written to a file, the SPARQL INSERT
DATA syntax is employed (as shown in Listing 3.8), allowing the file to be executed on
the SPARQL endpoint at a later time.

Summary In this chapter, we presented the base implementation of osm-live-updates
(olu) and detailed the four-step pipeline for generating SPARQL update operations from
OSM change files. Using this procedure, a SPARQL endpoint can be kept synchronized
with the latest updates from the OSM database. While the described approach ensures
correctness, it is not yet optimized for performance or scalability. The next chapter
builds on this foundation by introducing optimizations that improve efficiency, enabling
olu to process larger change files and support near real-time updates. Furthermore, we

will provide a technical overview and describe some key features of o/u in more detail.






Chapter 4

Implementation Details and

Optimizations

One of the key challenges of implementing olu is processing OSM change files quickly
enough to update the SPARQL endpoint with changes from the OSM replication server
in near-real time. Since replication files are released at fixed intervals (minutely, hourly,
or daily), the tool must complete the update process within the corresponding time win-
dow, which is particularly demanding given the large number of changes continuously
committed to the OSM database. To meet this requirement, olu applies a series of op-
timizations to the baseline implementation presented in the previous chapter. First, we
will provide a technical overview of our implementation. Next, we will discuss the

optimizations employed to enhance usability and performance.

4.1 Technical Overview

osm-live-updates is implemented as a command-line tool that requires two mandatory
parameters: (1) the URL of the SPARQL endpoint to be updated and (2) either a di-
rectory containing OSM change files or the URL of an OSM replication server. When
a replication server is used, olu automatically downloads the required change files to
update the endpoint (see Section 4.2). Based on the user-provided or automatically
downloaded change files, the tool generates SPARQL update operations. The update
operations are by default directly applied to the SPARQL endpoint, but they can also
be written to a file using the output option. A complete list of available command-line
options is provided in Appendix B. olu is implemented in C++ (using features from
the C++23 standard) and built with CMake. The source code is available under the
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GPL-3.0 license on GitHub!. A Dockerfile is included for containerized builds, and a

pre-built Docker image is available at docker.io/adfreiburg/olu.

olu is compatible with any SPARQL endpoint that supports the SPARQL 1.1 stan-
dard [4]. The tool is particularly optimized for use with QLever, where it can addi-
tionally report update statistics (e.g., number of inserted and deleted triples or process-
ing time on the QLever endpoint). OSM data is converted into RDF triples using the
osm2rdf tool [3], which is included as a dependency in the repository. For compatibil-

ity, a fork of osm2rdf* is used that has been adapted for integration with olu.

Additionally, olu integrates with the glever-control project, which provides man-
agement scripts for QLever endpoints. Using a valid configuration file (QLeverfile),
setting up a continuously updated SPARQL endpoint requires only a few commands,

as illustrated in Listing 4.1.

Listing 4.1: Example of how a continuously updated QLever endpoint can be setup us-
ing glever-control.

1| glever get-data # downloads 0SM data and converts it via osm2rdf

2| glever index # builds the indexes

3| qlever start # starts the QLever endpoint

4| glever update-osm # starts continuous updates with olu

Adding the option granularity to the qlever update-osm command allows

users to select the desired update interval (minutely, hourly, or daily).

4.2 Determining the Start Sequence Number

olu can automatically determine which change files to download and apply to the SPARQL
endpoint when an OSM replication server is specified with the replication-server
option. This task requires determining the current state of the endpoint and mapping it
to the corresponding state on the replication server. As an indicator of the endpoint’s
state, we use the latest timestamp of any OSM element stored on the SPARQL endpoint.
The SPARQL query in Listing 4.2 retrieves this timestamp.

"https://github.com/ad-freiburg/osm-1live-updates
’https://github.com/nicolano/osm2rdf/tree/olu_compatibility
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Listing 4.2: SPARQL query fetching the latest timestamp of any OSM elements on the
SPARQL endpoint. Since timestamps in OSM use ISO 8601 format, their
lexicographical order corresponds to chronological order. The MAX func-

tion therefore returns the most recent timestamp.

PREFIX osmmeta: <https://www.openstreetmap.org/meta/>

?subject osmmeta:timestamp 7timestamp .

1
2
3} SELECT (MAX(?timestamp) AS 7latestTimestamp) WHERE {
4
51}

Each change file on an OSM replication server is uniquely identified by a sequence
number that increases incrementally with each replication interval®. Alongside every
change file, the server provides a state file that links the sequence number to a timestamp
marking the file’s creation time. To determine the correct starting point for updating the
SPARQL endpoint, we compare the latest timestamp stored on the endpoint with the
timestamps recorded in the state files. The first state file whose timestamp is greater
than or equal to the endpoint’s latest timestamp yields the correct sequence number.
This sequence number then serves as the starting point for downloading all subsequent

change files up to the most recent one.

Performing this lookup each time olu is executed can be inefficient. The SPARQL
query used to obtain the latest timestamp is relatively costly, taking around one minute
for the complete OSM planet dataset on a QLever endpoint. Downloading and scanning
the state files introduces additional overhead. This becomes particularly problematic if
the update interval is short (for example, for minutely updates) and the SPARQL end-
point has not been updated for an extended period. Determining the starting sequence
number for an endpoint that is one week out of sync with a minutely replication server
would, for example, require checking 10,080 state files. To address this issue, we im-
plemented two optimizations that significantly improve the efficiency of determining

the starting sequence number.

Estimating the Start Sequence Number When using the official OSM planet repli-
cation server, change files are provided at minute, hourly, or daily intervals. This allows

us to estimate the starting sequence number by comparing the latest timestamp on the

3For example, the minutely change file with the sequence number 6755760 can be downloaded from
https://planet.openstreetmap.org/replication/minute/006/755/760.0sc.gz.


https://planet.openstreetmap.org/replication/minute/006/755/760.osc.gz

32 Chapter 4 Implementation Details and Optimizations

SPARQL endpoint with the current timestamp of the replication server. The elapsed
time (in minutes, hours, or days, depending on the chosen granularity) corresponds to
the number of change files that have been created since the SPARQL endpoint was cre-
ated or last updated. Subtracting this number from the latest sequence number on the
replication server yields an initial estimate. For example, suppose the endpoint’s latest
timestamp is 2025-09-01T12:00:00Z and the replication server’s current timestamp
is 2025-09-08T16:00:00Z. In that case, 7 days have elapsed between the creation of
the endpoint and the current timestamp. When using a daily update interval and the
latest sequence number on the replication server is 4503, we can estimate the starting
sequence number as 4503 - 7 = 4496. Using this method, we only need to download the
state file of the most recent change file, the state file of the estimated sequence number,

and, to avoid rounding errors, one state file immediately before and after the estimate.

Read Start Sequence Number from Endpoint For SPARQL endpoints that have al-
ready been updated, olu can skip the sequence number estimation by storing metadata
about previous updates directly on the endpoint. Specifically, it records the latest ap-
plied sequence number using the predicate osm2rdfmeta:updatesCompleteUntil.
Since sequence numbers differ between replication servers (e.g., daily and minute-
interval files use separate numbering), olu stores the URL of the used replication server
with the predicate osm2rdfmeta:replicationServer. After each update, olu also
adds a timestamp triple with the predicate osm2rdfmeta:dateModified, which can
be helpful in database management tasks. Listing 4.3 shows an example of these three

metadata triples.

Listing 4.3: Example of the three metadata triples that are inserted after a successful
update. In this case, the last change file has a sequence number of 4503

and was downloaded from a replication server provided by Geofabrik.

PREFIX osm2rdfmeta: <https://osm2rdf.cs.uni-freiburg.de/rdf/meta#>

3| osm2rdfmeta:info osm2rdfmeta:updatesCompleteUntil (Sequence <~
number: 4,503, Timestamp: 2025-08-11T20:21:31Z)

4} osm2rdfmeta:info osm2rdfmeta:replicationServer <—
https://download.geofabrik.de/europe/germany/bremen-updates/
5| osm2rdfmeta:info osm2rdfmeta:dateModified 2025-08-12T07:59:22

When olu is executed again, it retrieves these metadata triples from the SPARQL

endpoint. It then checks whether the stored replication server URL matches the one
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currently in use. If that is the case, olu can use the sequence number stored in the
osm2rdfmeta:updatesCompleteUntil triple as the starting point for the update pro-
cess, avoiding state file lookups on the replication server. This optimization substan-
tially reduces startup overhead, particularly for endpoints that are updated in minute-

intervals.

4.3 Merging OSM Change Files

When updating a SPARQL endpoint, it is often necessary to process multiple OSM
change files simultaneously. Rather than applying each file separately, it is generally
more efficient to merge them into a single, combined file. Merging change files reduces
the overall number of changed OSM elements, since these elements can undergo mul-
tiple updates within a given time span. Processing only the most recent state avoids
applying intermediate updates that would be overwritten anyway. Similarly, OSM ele-
ments created or modified in an earlier change file may be deleted in a later one, render-
ing the intermediate updates unnecessary. Depending on the time intervals and OSM
data extracts used, this can reduce the overall number of changed elements that need
to be processed by up to 10 %. An additional benefit of merging change files and pro-
cessing them together is that it reduces the overall number of member elements that are
fetched from the SPARQL endpoint. When multiple elements across different change
files share the same OSM nodes, ways, or relations as members, merging the change
files avoids repeated lookups that would have been necessary if the change files were

processed separately.

We use the osmium library to merge the change files. Each file is loaded into an
osmium: :memory: :Buffer, and lightweight pointers to the objects are stored in an
osmium: :ObjectPointerCollection. This has the advantage that only the pointers
need to be sorted and copied, while the actual objects remain in their respective buffers.
The pointers to the objects are sorted by type (node, way, or relation) and ID. To ensure
that only the most recent version of each element is retained, we also sort by the ver-
sion attribute, which increments with each modification in the OSM database. Deleted
objects are treated as having the highest version so that they appear first in the sorted
list. After sorting, we use the C++ function std: :unique_copy to extract only the
first occurrence of each OSM element, which represents its most recent version, and

write them to a combined change file.
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Merging change files in this manner is efficient because it involves sorting and
copying only pointers rather than full objects. This approach allows large numbers of
change files, such as the daily change files for the full OSM planet dataset, which can

exceed 100 MB, to be merged with moderate resource usage.

Besides the performance benefits of merging change files, sorting the change files
is also an important validation step to ensure that each OSM element appears only once
in the resulting change file. OSM elements can appear multiple times in a change file
when they are updated multiple times within the same time interval. This happens, for
example, regularly in the minute-interval change files from the OSM planet replication
server. It also ensures that the OSM elements in the change files are sorted in the correct
order (by type and ID), which is a requirement for the subsequent processing steps in
olu. The sorting step is therefore always performed, even when only a single change

file is processed.

4.4 Optimizing Updates for OSM Extracts

When working with OSM data limited to a specific geographic area, it is often advan-
tageous to set up a SPARQL endpoint using an extract of the complete OSM planet
data, as this reduces system resource requirements. In such cases, change files from the
OSM planet replication server may contain information that is irrelevant for the update
process. One alternative is to use a replication server that provides change files spe-
cific to the extract. However, these servers often come with limitations. For example,
Geofabrik provides replication servers for country extracts, but only updates them at
daily intervals. Another option is a mirror of the OSM planet server*, which provides
minute-level updates but retains the files only for a short period. To our knowledge,
no public replication server currently provides change files with full detail across all
update intervals in the same way as the OSM planet replication server. Additionally,
some OSM extracts may not align with administrative boundaries and are therefore not

covered by any public replication server.

In such cases, OSM planet change files must be filtered before applying them to
extract-based SPARQL endpoints, because they can include information that is irrele-

vant for updating the elements inside the extract’s boundaries. For this task, we use

“http://download.openstreetmap.fr/replication/
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the osmium command-line tool [9], which provides the extract command for extract-
ing elements within a bounding box or polygon, provided in either polygon (.poly) or
GeoJSON (.geojson) format. The tool supports different extraction strategies, which
determine how elements that intersect the boundary are handled. For example, one
could choose to include all members of ways and relations that cross the boundary of
the extract, even if the members themselves are not within the boundary. These strate-
gies vary in terms of memory requirements and the number of times the change file
must be read. For details, see the osmium documentation’. To maintain consistency
with the initial OSM import, olu provides the extract-strategy option to specify
the same strategy when filtering change files. The used bounding box or polygon can

be provided to olu using the bbox or polygon options, respectively.

Depending on the number and size of change files, as well as the size of the OSM
extract, the most efficient order for merging, sorting, and creating the extracts can vary.
When working with a small number of change files, it is, in most cases, faster to first
extract the relevant elements from each change file and then merge and sort the result-
ing smaller files. However, as the osmium extract command does not work for some
extract strategies if an OSM element appears multiple times in the change file, we al-
ways perform the merging and sorting step first to ensure that change files can always

be processed correctly.

4.5 Minimizing Updates for Modified OSM Elements

Updating a SPARQL endpoint with OSM change files often requires the insertion and
deletion of millions of RDF triples at the SPARQL endpoint, which can represent a
significant fraction of the total update time. Although the baseline approach described
in Chapter 3 guarantees correctness, it does not optimize the number of triples that need
to be updated. While we can not reduce the number of triples that need to be updated
for newly created or deleted OSM elements, we can reduce the number of updated
triples for modified elements. In the baseline approach, modified OSM elements are
handled by first deleting all triples associated with the element and then inserting the
newly generated triples. While this method is straightforward, it is suboptimal because
a considerable number of triples remain unchanged yet are redundantly deleted and

reinserted. To reduce this inefficiency, we investigate optimization strategies designed

Shttps://osmcode.org/osmium-tool/manual .html
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to minimize the number of triples that need to be updated at the SPARQL endpoint.

4.5.1 Minimize Updates for Changing Geometries

The geometry of an OSM element must be updated on the SPARQL endpoint when it
has another OSM element that has been modified in the change file as a member. In
the baseline implementation of olu, all triples of such referencing elements are deleted
and reinserted, even though only the geometry triples need to be updated. For instance,
if the geometry of an OSM node that is a member of an OSM way changes, the OSM
way’s attributes, member lists, and tags remain unaffected. Therefore, instead of delet-
ing and reinserting all triples that belong to the way, we can update only the triples

describing its geometry.

To implement this, olu keeps a dedicated list of ways and relations whose ge-
ometries require updating. A targeted delete operation removes only geometry-related
triples (such as geo:asWKT or osm2rdf :hasCompleteGeometry) for these OSM ele-
ments. The number and type of the geometry triples depend on the osm2rdf options
used during the initial data dump. olu retrieves these options directly from the endpoint
to generate the corresponding delete operations. When inserting the updated triples, our
filter step described in Section 3.2.3 includes only the relevant geometry triples for the

OSM elements that are updated on the endpoint.

Since geometry triples make up only a minor portion of the triples that are gener-
ated by osm2rdf for OSM ways and relations, and the number of OSM elements that
need to be updated can be high, this approach significantly cuts down the number of
triples that need to be updated on the SPARQL endpoint and achieves better perfor-

mance at no additional cost.

4.5.2 Minimizing Updates by Checking Node Location Changes

When a node appears in a modify tag in the change file, it is only necessary to update the
geometries of referencing OSM elements if the node’s location has actually changed.
For example, the geometries of OSM ways or relations do not change if a member node
is modified by adding a tag to it. Updating geometry triples in these cases would be un-
necessary. To implement this optimization, we retrieve the coordinates of all modified

nodes from the SPARQL endpoint. Then, we can compare them with the coordinates
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provided in the change file. If the coordinates are identical, we can skip updating the

geometry triples of the referencing elements.

Although nodes with tag-only modifications constitute a small fraction of all OSM
nodes (approximately 1 % of modified nodes) in change files, this optimization can still
yield performance benefits. Modified nodes account for roughly 25 % of all elements
in change files, and comparing coordinates is computationally cheap. In practice, this
optimization can reduce the total update time. However, the actual performance gain
depends on the specific change file and SPARQL endpoint in use, and it is relatively
small compared to the total update time.

4.5.3 Evaluating Member-Change Checks for Ways and Relations

Since the geometry of an OSM way or relation is defined by its member list, updating
the geometry of referencing elements is only necessary when the member list of the
modified element changes. Similar to the node location check discussed previously,
we explored minimizing the number of triples that need to be updated by verifying

whether the member lists of OSM ways was modified.

To implement this check, we retrieve the member lists of modified elements from
the SPARQL endpoint and compare them with the member lists in the change file. For
ways, we fetch the member elements using the predicates osmway:member_id and
osmway :member_pos. For relations, we also have to include the member roles via
osmrel :member_id, osmrel:member_pos, and osmrel :member_role, as they also
have an influence on how the geometry is calculated. The retrieved member IDs are
stored in arrays sorted by position and compared against the corresponding arrays from
the change file. If the members are identical, updating the geometry and member triples

for all referencing elements can be skipped.

In practice, this approach, however, did not improve overall performance. Al-
though it is relatively common for OSM ways and relations to be modified without
changing their members (approximately 50 % of ways and 25 % of relations), these el-
ements together account for only about 5 % of all elements in a change file. Moreover,
unlike the node location check, comparing member lists is computationally expensive,
requiring fetching, parsing, and sorting large numbers of triples. The resulting reduc-

tion in inserted triples was minimal (around 2 % at max), and in some cases, the extra
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computation even degraded performance. For these reasons, this optimization was not

included in the final implementation of olu.

4.6 String Parsing

Parsing large strings, such as OSM change files and SPARQL endpoint responses, is a
key component of our implementation of olu. To maximize performance, we employed
specialized libraries and optimized low-level string operations. This includes using the
osmium library [23] for parsing OSM change files, the simdjson library [26] for parsing
SPARQL JSON responses, and custom routines for high-performance string handling.

Parsing OSM Change Files The daily change files from the OSM planet replication
server can reach 100 MB in size. Processing several files at once requires working with
hundreds of megabytes of data. When first implementing olu, we started using standard
C++ XML libraries that are not optimized for OSM data, such as Boost. PropertyTree[27]
(which internally uses RapidXml [28]). This library loads the entire XML document
into memory and constructs a full tree structure. This approach leads to high memory
consumption and slow performance, making it unsuitable for large OSM files. To fix
this issue, olu now uses the osmium library [9], which allows the OSM change files
to be read in buffered chunks, avoiding full in-memory loading. Its handler interface
allows custom logic to be applied to each OSM element in the change file, enabling

efficient processing even on systems with limited memory.

Parsing Responses from the SPARQL Endpoint We request JSON responses from
the SPARQL endpoints to retrieve the necessary information for processing the change
files. The simdjson library® is used to parse these JSON responses efficiently. It is
designed to handle large JSON documents quickly and with low memory overhead,
making it suitable for our use case. simdjson uses SIMD (single instruction, multiple
data) instructions to accelerate parsing, allowing it to parse gigabytes of JSON per sec-
ond [26].

Optimizing Low-Level String Parsing In addition to specialized libraries, we opti-
mized frequently executed string operations. We used std: :regex in an initial imple-
mentation to parse element IDs, coordinates, and other data. However, regular expres-

sions are slow and memory-intensive when applied to large datasets. We replaced them

®https://simdjson.org
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with custom parsing routines that manipulate character pointers directly. For instance,
our optimized method extracts a node ID from an IRI in 7.8 ns, compared to 616 ns with
std: :regex. Operations like this can be executed millions of times per olu run. By
avoiding regular expressions in heavily repeated operations, we significantly improved

both speed and memory efficiency.

4.7 Batching of SPARQL Queries and Operations

Sending one SPARQL query per OSM element would introduce excessive overhead.
To avoid this, we use the VALUES syntax in SPARQL, allowing a single query to handle
multiple lookups simultaneously. Listing 4.4 illustrates how a single query can retrieve
the geometries of multiple OSM nodes at once. The VALUES clause specifies a list of

values for a variable, which the query then uses to filter results.

Listing 4.4: Example for a SPARQL query fetching multiple nodes locations at once.

1} PREFIX geo: <http://www.opengis.net/ont/geosparql#>

2| PREFIX osm2rdfgeom: <https://osm2rdf.cs.uni-freiburg.de/rdf/geom#>

3

4§ SELECT ?value ?7location WHERE {

5 VALUES ?7value { osm2rdfgeom:osmnode_1 osm2rdfgeom:osmnode_2 <
osm2rdfgeom: osmnode_3 }

6 ?value geo:asWKT ?location .

74 }

Using the VALUES clause drastically reduces the number of queries sent to the
SPARQL endpoint. However, including too many values in a single query may cause
the endpoint to run out of memory or reject the request. To address this, we imple-
mented a batching mechanism that splits large lists of values into smaller chunks, each
of which is sent as a separate query. This batching strategy is also applied to SPARQL
update operations. This is important because deletion operations are memory-intensive,
and the HTTP requests that carry the triples that need to be inserted as a payload can

reach hundreds of megabytes, too large for some endpoints to process in a single request.

In general, performance improves with fewer batches, but the optimal batch size de-
pends on the endpoint’s capabilities. To provide flexibility, olu includes the command-
line option batch-size, allowing users to configure the number of values per batch or

triples per update operation.






Chapter 5

Evaluation

In this chapter, we evaluate our implementation of olu with respect to two key aspects:
correctness and performance. Correctness is crucial for ensuring that the SPARQL end-
point accurately reflects the current state of the OSM data. To this end, we verify that
all relevant triples are inserted, updated, or deleted correctly during the update process.
Our performance evaluation focuses on the efficiency of the update mechanism, specif-
ically the time required to generate SPARQL update operations from OSM change files
and the time required to process these operations at the endpoint. We use the publi-
cation intervals of OSM planet replication files (minute, hour, and day) as practical
benchmarks to determine whether olu can keep pace with real-world update frequen-
cies. Together, these evaluations demonstrate both the reliability and scalability of olu

in handling continuous OSM updates to an SPARQL endpoint.

5.1 Correctness of the Update Process

An update process can be defined as correct when it accurately reflects the current state
of the data after an update has been applied. In the context of updating a SPARQL end-
point with olu, this means that after applying a series of OSM change files, the SPARQL
endpoint should contain the same information as if it had been created from scratch us-
ing the latest OSM data dump. Consequently, to verify the correctness of the update
process, we compare a graph on the SPARQL endpoint after applying the change files
with a graph that was created from scratch using the latest OSM data dump. If the two

graphs are identical, the update process can be considered correct.

A central challenge in testing RDF graph equality is handling blank nodes. Since

blank nodes do not have fixed or unique values, determining equality between two blank
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nodes in different graphs necessitates establishing a mapping between them. Calculat-
ing such a mapping for blank nodes in two different graphs is known to be an NP-
complete task [29]. However, this complexity can be avoided by eliminating blank
nodes from the graphs. Once removed, RDF graphs can be treated as sets of triples, and
we can test the equality using simple set operations. Section 5.1.1 discusses Skolemiza-
tion, a technique for eliminating blank nodes. Section 5.1.2 explains how equality for
RDF graphs without blank nodes can be verified using a SPARQL query.

5.1.1 Skolemization

osm2rdf represents member relationships in OSM ways and relations using blank nodes
(see Appendix A). Although blank nodes are ideal for modeling intermediate resources,
they complicate the comparison of RDF graphs, as mentioned before. To avoid the need
for an algorithm to map the blank nodes, we employ a technique called Skolemization.
Here, blank nodes are replaced with globally unique URIs. This transformation turns
previously anonymous resources into regular resources, thereby eliminating the need

to find a mapping between the two graphs.

For this purpose, we extended osm2rdf with the ability to use unique URIs in the
genid namespace instead of blank nodes when describing member relationships'. The
skolemized identifier is constructed from the ID of the member, the entity it belongs to,
and a letter indicating the object type (r for relations, w for ways, n for nodes). Members
can appear multiple times in the member list, for example, in closed ways that define
an area where the first and last nodes are the same. To guarantee uniqueness, we also
append the member position to the identifier (e.g. p3). Listing 5.1 shows how a blank
node describing the membership of an OSM way and an OSM node is replaced with
such a deterministic URI. This strategy ensures that the resulting identifiers are globally

unique and are equal across different data dumps.

Listing 5.1: Example of replacing a blank node representing the member relationship
of an OSM way and a node with the unique URI genId:w5362n2473p3.

PREFIX genid: <http://osm2rdf.cs.uni-freiburg.de/.well-known/genid/>

osmway:5362 osmway:member genld:w5362n2473p3
genld:wb362n2473p3 osmway:member_id osmnode:2473

N W N =

genld:wb362n2473p3 osmway:member_pos "3"

'https://github.com/ad-freiburg/osm2rdf/pull/114
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5.1.2 Proof of Equality

By applying Skolemization to remove blank nodes from the RDF graphs, each resource
is assigned a deterministic and globally unique identifier. Consequently, if two triples
convey the same information, they will be identical in both graphs. This property allows

us to treat RDF graphs as sets of triples and verify graph equality using set theory.

Set Equality Formally, two sets A and B are equal if and only if they contain exactly

the same elements

A=B < (ACB)AN(BCA). (5.1

If A and B are equal, then A is a subset of B and therefore all elements of A are

contained in B, e.g.

ACB & A-B=10. (5.2)

Similarly, if B is a subset of A, then B — A = (). Thus, equality holds precisely when

both set differences are empty

(A—-B=0O)AN(B-—A=0) < A=B. (5.3)
Figure 5.1 provides a visual illustration of these set differences.

A B A B

(@ A—B (byB—A

Figure 5.1: Visualization of the set differences between two sets A and B. If both green
areas are empty, i.e., A — B = () and B — A = (), the sets are equal.
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Graph Equality For our equality check, we compare two RDF graphs: Gy, created
from the most recent OSM data dump, and G\ypdated, Obtained by applying OSM change
files to a SPARQL endpoint build from an older OSM data dump. If the update process
is correct, both graphs must contain the same triples. Using Equation 5.3, equality can

be verified by computing

Glatest - Gupdated = @ A Gupdated - Glatest = @ ) (54)

or equivalently

(Glatest - Gupdated) U (Gupdated - Glatest) - @ . (55)

Listing 5.2 shows how this equation can be implemented as a SPARQL query. The
MINUS operator computes the set differences, while UNION combines them. In SPARQL,
each graph is identified by an IRI: <http://example.com/updated> represents the
updated graph (G ypdaed), and <http://example.com/latest> represents the graph
created from the latest data dump (Gae)- An empty query result would confirm that
the two graphs are identical. As this SPARQL query is memory-intensive, it can be split
up. For example, triples with specific, frequently occurring predicates can be filtered

out and checked separately.

Listing 5.2: SPARQL query to compute the difference between two RDF graphs. The
GRAPH keyword ensures that triples are queried from the specified graph.

1] SELECT ?s ?p 7o WHERE {

2 A

3 {

4 GRAPH <http://example.com/updated> { ?s 7?p 7o . }
5 } MINUS {

6 GRAPH <http://example.com/latest> { ?s 7?p 7o . }
7 }

8] I} UNION {

9 {

10 GRAPH <http://example.com/latest> { ?s ?p 7o . }
11 } MINUS {

12 GRAPH <http://example.com/updated> { ?s 7p 7o . }
13 }

14y 2}

15§
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5.1.3 Testing the Correctness of the Update Process

As described in the previous section, to verify the correctness of the update process we
set up a SPARQL endpoint containing two graphs: one graph that contains the triples
from the latest OSM data dump which we call G, and another graph that contains
triples from a data dump that is several days older which we call G ypdaea- The OSM data
dumps were created with a custom fork? of osm2rdf with the options no-blank-nodes
andwrite-ogc-triples none’ enabled. We also reduce the precision of WKT points
in osm2rdf with the option wkt-precision to six decimal places, instead of the seven
decimal places that the OSM data can represent. This is done because QLever currently
stores only six decimal places for node coordinates. The wkt-precision option affects
only the output for node locations, not the precision used during geometry computation
of OSM ways and relations. We must therefore take additional measures to ensure con-
sistency between the updated and latest graphs. For this purpose, we created and used
a Python script that reduces the coordinate precision to six decimal places in the initial
OSM data files and the OSM change files before running olu. This way, osm2rdf al-
ways uses only six decimal places to compute the geometries of the OSM elements. We
then executed olu to update G pdaed, Specifying its URI via the command-line option

graph.

This experiment was repeated with multiple OSM extracts, however, the largest
correctness experiment was conducted on the OSM Germany dataset, which contains
around 4.8 billion triples. In this experiment, we downloaded the latest OSM Germany
data dump from Geofabrik* dated Oct 23, 2025, and a one-week-old dump dated Oct 17,
2025. Before the update, the SPARQL query in Listing 5.2 returned around 5 million
triples, indicating the differences between the two graphs. We then used the OSM
change files published between these two dates to update the older graph with olu. The
generated SPARQL update operations deleted around 17 million triples and inserted 19
million triples at the SPARQL endpoint. After applying all updates, the SPARQL query
returned around 50 triples. In the following we list some reasons why the response was
not empty:

* The osm2rdf metadata triple (osm2rdf : dateDumped) that stores the date when
the dump was created is different between both OSM datadumps

*https://github.com/nicolano/osm2rdf/tree/olu_compatibility

30lu does not support the update of spatial relations like ogc : sfContains or ogc:sfIntersects.
See Section 6.2 for details.

“https://download.geofabrik.de/europe/germany.html
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* The olu metadata triple (osm2rdf:dateModified) that stores the date of the
update is only present on the updated graph

* The timestamp of the OSM data file used to create graph G5 does not neces-
sarily coincide with that of the latest OSM change file. Therefore, it is possible
that some changes are applied to the updated graph, G\pqaed, that are not present
in the latest graph, Gl As these files are most commonly created at night,
the number of cases in which this occurs is small, particularly when working
with regional extracts such as OSM Germany data. In such cases, we verified the
correctness manually.

* When working with regional extracts of OSM data created using the osmium
tool and the extract strategy smart, the geometry of OSM relations that cross
the boundaries can differ between the two graphs. This is because only OSM
relations that are of type multipolygon are reference complete, meaning that all
referenced OSM ways and nodes are included in the extract. In rare cases, a
referenced OSM element may be present in one of the OSM change files that
was used for updating the graph Gpgaed- This can occur if the reference was
modified while it was part of a multipolygon at some point between updates.

* When the key of an OSM element tag contains a UTF-8 codepoint that is invalid
according to the Turtle grammar, osm2rdf uses a blank node to model the tag and
stores the key as a literal in the object of a triple. Our Skolemization does not
handle such cases, so the SPARQL query returns these triples because the blank
nodes differ across the graphs. However, this only occurred for two tags, so it
was possible to manually verify that the tags were the same in the updated and

latest graphs.

Apart from these rare edge cases, the experiment showed that the SPARQL update
operations generated by olu correctly update a SPARQL endpoint containing large OSM
datasets, such as the OSM Germany data.
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5.2 Performance of the Update Process

For olu to be used in a production environment, it must be able to efficiently handle
the high volume of updates continuously made to the OSM database. The OSM planet
replication server publishes change files that capture these updates at three intervals:
minute, hour, and day. These files therefore provide a realistic benchmark for olu’s
performance. To enable continuous updates for the SPARQL endpoint, the change files

must be processed within their respective publication intervals.

The results of the performance evaluation are summarized in Table 5.1. The table
reports the mean time required to generate SPARQL update operations with olu and the
mean time required to apply them to a SPARQL endpoint. Measurements were taken
for various OSM datasets differing in size, characterized by their triple count Njpe:
the district of Freiburg (FR), Baden-Wiirttemberg (BW), Germany (DE), Europe (EU),
and the complete OSM Planet data (P). Evaluations were conducted for change files
corresponding to minutely (¢min), hourly (¢pour), and daily (%4.y) updates. The number
of elements in a change file and, thus, the update time can vary substantially. For this
reason, we computed an average time for each dataset and publication interval. The
average was computed using change files that covered one week of OSM database up-
dates (i.e., 10,080 minutely, 168 hourly, and 7 daily change files). Due to increasing
runtimes, we used one day of OSM database updates (i.e., 1,440 minutely, 24 hourly
and one daily change files) for the OSM Planet dataset. Unfortunately, we were unable
to report a value for the application of the generated SPARQL update operations for
daily change files for the OSM Planet data due to an out-of-memory issue that occurred

when applying the updates to the QLever endpoint.

Experimental Setup All experiments were executed on a machine equipped with
an AMD Ryzen 9 7950X 16-Core Processor with 32 Threads, 125 GB of RAM, and
a 4 TB NVMe SSD running Ubuntu 22.04.2 LTS. We used QLever as the SPARQL
endpoint and glever-control to set up the endpoint using the configuration from the
default Qleverfile for the OSM planet data®. The official OSM Planet replication server
[7] was used to pre-download the change files for each measured dataset and publication
interval. For the smaller OSM datasets, generating update operations therefore requires
an additional step of extracting the relevant information from the planet change files.

The SPARQL endpoint was reset to its initial state before each measurement.

Shttps://github.com/ad-freiburg/glever-control/blob/main/src/qlever/Qleverfiles/Qleverfile.osm-planet
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Table 5.1: Mean time required to generate SPARQL update operations from OSM
change files with olu, and the mean time for a QLever endpoint to apply
these updates. Measurements were conducted for different OSM datasets
characterized by triple count Ny and change file intervals of one minute
(tmin), one hour (fy0yr), and one day (%44y). The change files were downloaded
from the OSM Planet replication server.

Generating Updates Applying Updates
Dataset N, triple tmin thour tday tmin thour tday
P 134.8B 6.7s 73.0s 21.6min 48.5s 180.0s -
EU 37.7B 1.3s 19.1s 5.4min 10.2s 41.5s 26.1 min
DE 4.8B 0.3s 5.5s 74.9s 0.8s 4.5s 92.2s
BW 0.6B 0.1s 2.1s 33.0s 40 ms 0.5s 9.6s
FR 0.2B 68 ms 1.5s 27.9s 7 ms 88ms 14s

Results The results demonstrate that, on average, olu processes all OSM change files
for the evaluated OSM datasets within the publication interval of the change files. While
individual change files may occasionally require more processing time due to variations
in file size and the number of contained changes, this suggests that olu can ultimately

reflect the update frequency of the OSM Planet replication server.

However, the average total update time for minute-interval change files for the
complete OSM Planet data is only slightly shorter than the publication interval itself.
Therefore, on systems with limited computational resources, it is advisable to use hourly
or daily change files to ensure updates can be performed consistently within the required
timeframe. These findings emphasize the importance of continuing to optimize the olu

update process.

5.2.1 Scalability of the Update Process

Based on the results of our performance evaluation in Table 5.1, we plotted the mean
total update time ¢,pdate (1.€. the time taken to generate and apply the update operations
at the endpoint) for minute-interval change files against the number of triples in the
OSM dataset in Figure 5.2.1. To empirically determine the computational complexity
of olu, we fitted the data points using the following power law model

yx)=a-2"+c. (5.6)



Chapter 5 Evaluation 49

While a power law exponent of b =~ 1 would suggest a linear runtime, an exponent of
b > 1 would indicate a non-linear, and therefore polynomial, runtime. For comparison,

we have also added a linear fit using the model

yx)=a-x+0b. (5.7)

We obtained the following fitted parameters using the power law model from Equa-

tion 5.6

a=2896x10"""ms, b=124, c=125ms. (5.8)
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Figure 5.2: Relationship between OSM dataset size 7.yl and the total update time
Lupdate fOr minute-interval change files. The annotated data points repre-
sent the total update time for various OSM datasets. The red curve shows a
power law fit using Equation 5.6. For comparison, we also added a linear fit
using Equation 5.7 with the restriction that b > 0, to avoid negative values
for the total update time.

The experimental results, shown in Figure 5.2.1, therefore indicate a super-linear run-
time of olu, meaning the runtime is polynomial but smaller than O(n?). Using these
parameters, we can derive a formula that can be used to estimate the total update time
for minute-interval change files ¢,,;,, in seconds, as a function of the OSM dataset size
Ntriple (1N billions of triples)

tmin(ntriple) ~ 0.13s- n1‘24 . (59)

triple

By performing the same power law fitting on the results of the total update time for
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hour- and day-interval change files, we can derive the following formulas to estimate
the runtime of olu for hour- and day-interval change files as a function of the OSM

dataset size nyiple (in billions of triples)

thour (ntriple) ~ 0.57s- n%r?gle (510)

tday (Nexiple) =~ 19.255 - ntlr-?gle (5.11)

While these formulas should only be used to provide rough estimates of runtime, partic-
ularly for smaller OSM datasets, the statement that olu has a super-linear runtime also

applies to larger update intervals and, consequently, larger runtimes.

To understand the reason for olu’s super-linear runtime, we can examine Figure 5.3,
which shows how the average number of elements 1., per minute-interval change file
and the average number of triples n,pdate that are inserted and deleted on the SPARQL
endpoint per minute-interval change file develop as the dataset size niple grows. Using
the linear fit from Equation 5.7, we can see that both variables grow linearly with the

size of the dataset.
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Figure 5.3: Relationship between OSM dataset size n,ipe and the average number of
elements in a minute-interval OSM change file 1., With a linear fit, using
Equation 5.7 with b = 0.

As the dataset grows, each change file contains more OSM elements to process,
leading to an increased number of SPARQL queries that have to be performed and
triples that have to be updated on the SPARQL endpoint. Moreover, the execution time
of individual SPARQL queries and updates also grows with the dataset size. We believe
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that this is the main reason for the non-linear runtime of olu. To verify this claim, we
plot the time spent on the SPARQL endpoint ¢qyever per minute-interval change file®
against and the remaining runtime of olu t,,, i.e. the total update time minus the time

spent on the QLever endpoint, against the dataset size ngiple-
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Figure 5.4: Relationship between OSM dataset size nyp1e and the time spent on the
QLever endpoint tqy,ever as Well as the remaining runtime from olu t,, for
various OSM datasets. The red curve shows a power law fit to the values of
tQrever Using Equation 5.6 with power law exponent b = 1.25. The dotted
green line shows a linear fit to the values of ¢,, using Equation 5.7.

We can see that while the remaining runtime of olu t,),, shows a linear runtime,
the time spent on the QLever endpoint tqrever Shows a super-linear runtime, similar to

the one reported for the total update time.

Over 1.5 billion new OSM elements are added to the OSM database each year,
resulting in a steady increase in dataset size [30]. Using this fact, we can assume that
the OSM dataset grows by approximately 18 billion triples annually’. The total number
of triples in the OSM database is therefore expected to double within roughly eight
years. Based on the super-linear runtime of olu, we can project how the total update
time will evolve in the coming years. Using our prediction model in Equation 5.9, the
total update time for minute-interval change files of the complete OSM Planet dataset
will increase from under one minute in 2025 to over two minutes by 2032. This increase

will render minutely updates of the complete OSM planet dataset infeasible on the same

This time was calculated from the timing statistics that is returned by the QLever endpoint for each
query and update operation.
70On average, one OSM element corresponds to about 12 RDF triples.
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machine. This projection highlights the importance of further optimizing olu to ensure

it can continue to handle OSM’s rapidly growing dataset in the future.

5.2.2 Breakdown of the Update Time

We equipped olu with detailed logging functionality to decompose the total update time
into its major components. When executed with the statistics option, the tool pro-
duces a comprehensive report on the time spent in each phase of the update process.
When used with a QLever endpoint, olu can also report detailed information about
statistics related to the query and update operation execution on the endpoint. This
breakdown enables the identification of potential bottlenecks within the update pipeline

and provides valuable insights into possible optimization opportunities.

Table 5.2 presents the average percentage share of the total update time for each
significant process step of olu. We listed the results for processing minutely change
files for various OSM dataset sizes. The listed steps roughly correspond to the proce-
dure described in Section 3.2, with two additional preprocessing steps for the change
files: merging and sorting (see Section 4.3) and applying the boundaries for regional
extracts (see Section 4.4). The percentage share was computed from the results of our

performance evaluation, which was presented in Table 5.1.

Table 5.2: Breakdown of the total update time into the significant processing steps of
olu. The table shows the average percentage share of each step for different
OSM dataset sizes. The values were calculated from the values for minute
change files in Table 5.1.

Percentage Share of the Total Update Time

Process Step FR BW DE EU P

Merging and sorting change files 22 %o 11 % 1 % >1% >1%
Apply boundaries to change files 40 % 23 % 6 % 1 % 0 %o
Collect IDs of OSM Elements 2 % 12 % 7 %o 4 %o 4 %o
Construct intermediate OSM file 2 % 6 %o 7 %o 4 %o 6 %o
Convert OSM Data to RDF Triples 6 % 14 % 6 Y% 1 % >1%
Apply Delete Operations 4 % 15 % 53 %o 72 % 77 %
Apply Insert Operations 5 %o 18 % 17 % 17 % 13 %

The primary observation is that as the dataset size increases, the dominant por-

tion of the total update time shifts from preprocessing the change files to applying the
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generated SPARQL update operations at the endpoint. Another noteworthy finding is
that generating SPARQL update operations from the preprocessed OSM change files
accounts for only a minor fraction of the total update time (at most 32 % for the OSM
Baden-Wiirttemberg dataset, but only 9 % for the OSM Planet dataset). The following

discussion explores these observations in more detail.

Preprocessing of the OSM Change Files The preprocessing of the OSM change files
consists of two main steps: (1) merging and sorting the change files, and (2) applying
boundaries for regional extracts. Merging and sorting are both optimization and valida-
tion steps that ensure each OSM element appears only once in the resulting change file
and that the change file is correctly sorted. For this reason, this step is performed even

when processing a single change file.

The extraction of relevant OSM entities for regional datasets is an additional op-
timization step that limits updates to the target region, thereby avoiding processing of
OSM elements outside the regional extract. This step is not required when working

with the complete OSM planet dataset.

The time required for sorting the change files remains constant across datasets, as
all experiments use the same change files from the OSM planet replication server. In
contrast, the time needed to apply regional boundaries increases with dataset size, since
larger datasets contain more OSM elements to extract. Nevertheless, the relative share
of preprocessing time decreases as the dataset size grows, because subsequent process-

ing stages scale more steeply.

Preprocessing the change files could be omitted if the provided change files already
contain only the relevant OSM elements for the target region and are correctly sorted.
This could be achieved using change files from a third-party replication server that
provides pre-filtered regional extracts. However, this would shift the preprocessing
workload to the replication server, potentially introducing higher delays. Therefore,
this approach is only advisable when local resource savings are prioritized over total

update time efficiency.

Generating SPARQL Update Operations Generating SPARQL update operations
from the preprocessed OSM change files involves several sub-steps: collecting the IDs

of the changed OSM elements, constructing an intermediate OSM file, converting the
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OSM data to RDF triples, and finally generating SPARQL delete and insert operations.
The time required for these steps is relatively small compared to the overall update time,
accounting for only a minor fraction of the total processing time. This indicates that
olu is eflicient in generating the necessary update operations, even for larger datasets.
There is, however, still optimization potential. We will discuss in Section 6.5 how

parallelization could further improve the performance of this step.

Applying Updates to the SPARQL Endpoint The time taken to apply the gener-
ated SPARQL update operations to the SPARQL endpoint increases with the size of
the dataset, eventually accounting for the majority of the total update time for larger
datasets (around 90% for the OSM Planet dataset). This is an expected trend, as larger
datasets typically involve more changes, resulting in a greater number of triples being
inserted and deleted. While under 100 triples are deleted and inserted at the SPARQL
endpoint per minute for the OSM Freiburg dataset, around 200,000 triples are deleted
and inserted for the OSM Planet dataset.

The time required to apply the generated SPARQL update operations to the end-
point is influenced by several factors, but is mainly driven by the SPARQL endpoint
used. In our experiments, we used QLever as the SPARQL endpoint. However, it is

important to note that the performance of other SPARQL endpoints may differ.

Although olu has no influence on the performance of the SPARQL endpoint itself,
it can affect the efficiency of the generated SPARQL update operations. One way to
do this is to minimize the number of triples that need to be inserted and deleted on the
SPARQL endpoint. This would significantly improve the overall update performance.
We will discuss potential strategies for optimizing the update operations for modified
OSM elements in Section 6.4.
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Discussion and Future Work

In the previous chapter, we demonstrated that our approach correctly and efficiently
updates a SPARQL endpoint with OSM data, enabling us to keep up with the changes
made to the OSM database. However, there are still some areas that could be improved

or extended in future work, which we will discuss in the following sections.

6.1 Different Namespace for Tagged and Untagged
Nodes

The majority of elements in the OSM database are untagged nodes, which are primarily
used to describe the geometries of OSM ways and relations. As tags carry the semantic
meaning of OSM elements, such untagged nodes cannot be used to represent points of
interest. This has implications for querying OSM data. For example, if a user wants to
find all the restaurants in a city, we only need to search the tagged nodes for information
if they represent restaurants. For such a question, it would be efficient to use a SPARQL
query for which the SPARQL endpoint only has to search the indexes of tagged nodes.
However, this is not possible if tagged and untagged nodes share the same prefix. For
this reason, osm2rdf was recently updated to allow users to specify a separate prefix for

untagged nodes'.

Unfortunately, this is not supported with the current version of olu because, among
other reasons, the prefixes of OSM elements are hard-coded. Future work is required
to enable olu to handle a variable namespace for OSM elements:

» While it is possible to hard-code the use of separate prefix in olu, this would not

solve the underlying problem. A more holistic approach should instead be used

ISee PR: https://github.com/ad-freiburg/osm2rdf/pull/120
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to avoid hard-coding prefixes in the future. For example, the output of osm2rdf
could be extended to include a triple indicating the namespace for a given ID of
an OSM element. This would enable the queries used by olu to avoid hard-coded
prefixes.

 Currently, it is not necessary to check for created dummy objects for OSM nodes,
if they are tagged or untagged. This changes when separate prefixes are used.
Therefore, to support separate prefixes, it must be checked if a node is tagged or
untagged.

* In the generated triples for OSM ways, the members are identified by the triple
with the predicate osmway :member_id, or osmrel :member_id for members of
OSM relations. The IRI of the OSM element is used as the object. Previously,
updating the tags of a member had no effect on these triples, but now the object
of the triple can change if, for example, an untagged node is modified with a new
tag. Therefore, the triples that store the member IRIs of a modified OSM element
in the change file must be updated.

These changes could be implemented within days. However, osm2rdf would also

need to be updated for this to be possible.

6.2 Updating Spatial Relation Triples

In addition to triples representing the geometry of an OSM element, osm2rdf can
generate triples encoding spatial relations, such as sfIntersects, sfContains, or
sfTouches. These triples allow efficient spatial queries, for example, to identify all
buildings within a city. When an element is modified, olu deletes all triples associated
with it, including all spatial relation triples, but does not regenerate or update them.
We based this decision on the fact that the correctness of the spatial relations cannot
be guaranteed after an update. Moreover, if the geometry of an element changes due
to modifications in one of its members, only the geometry triples are updated, leaving
the spatial relation triples potentially outdated. For instance, if a building is moved, its
geo:sfWithin triple might no longer be correct. Consequently, after an update, spatial

relation triples may be outdated and incorrect.

The current implementation of olu makes it infeasible to update the spatial rela-
tion triples incrementally. Recomputing all spatial relations for a dataset as large as the

OSM planet data requires approximately 1.5 hours [31]. Although it might be possi-
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ble to recompute the spatial relations for the subset of OSM elements that change their
geometry during an update, identifying these elements and recalculating their spatial

relations efficiently remains challenging, especially for short update intervals.

A practical alternative is to periodically (e.g., daily or weekly) recompute and up-
date spatial relation triples using a dedicated tool. This approach ensures that spatial
relation triples remain somewhat consistent with the latest OSM data while maintain-
ing the performance of incremental updates. Such a tool could easily be implemented.
However, there will always be periods during which the spatial relation triples may be
outdated.

Another promising approach is to integrate spatial capabilities directly into the
SPARQL endpoint, allowing queries to operate on geometry triples without relying
on precomputed spatial relationships. Work in this direction has been carried out for
engines such as QLever [32], [33], demonstrating that on-demand spatial querying can
be executed efficiently. However, these implementations do not provide the full range
of spatial predicates generated by osm2rdf, and supporting them would require further

research and development.

6.3 Database Consistency

In Section 5.1, we demonstrated that our approach can correctly update a SPARQL
endpoint. However, if the process is interrupted, whether due to a crash, lost network
connection, or manual termination, not all generated SPARQL update operations may
be applied to the endpoint. This could leave the database in an inconsistent state. Fur-
thermore, correctness is only ensured after all update operations have been applied.
During the update process, the database state may also be inconsistent. The following

sections discuss these scenarios and outline strategies for handling them.

6.3.1 Interrupted Update Process

We can distinguish two types of interruptions that can occur during the update process:
those that occur before any SPARQL update operation is sent to the endpoint, and those
that arise while updates are being executed on the SPARQL endpoint. The former in-
terruptions are harmless because no modifications have been applied to the SPARQL

endpoint. In contrast, interruptions during the application of the update operations can
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leave the database in an inconsistent state. For instance, if the process crashes after
the delete operations have been issued, but before corresponding insert operations are
completed, triples for modified elements may be removed without being reinserted. For-
tunately, rerunning olu will restore the consistency of the OSM data on the SPARQL
endpoint because the most recent versions of all modified elements are contained in
the change files and no information will be deleted from the SPARQL endpoint that is

needed for the update process.

At present, however, olu handles these interruptions inefficiently. The tool does
not support resuming an update from the point of failure. Instead, it must reprocess
all change files, regenerate the SPARQL update operations, and reapply them to the
database. In the worst case, this means that the database remains inconsistent until the

full update is reapplied.

Future Work Extending olu with support for resumable updates would mitigate this
problem. A checkpointing mechanism could be introduced to allow the update process
to continue from well-defined stages. These stages could include after downloading
and merging change files, converting them into RDF triples, or after each successfully
applied SPARQL update operation. Implementing these checkpoints would necessitate
maintaining metadata about the update process’s current state, including confirmation
of update success from the SPARQL endpoint. With checkpoints in place, olu could
resume from the last completed step, thus avoiding redundant work and minimizing the
time during which the database remains inconsistent. Such a feature could probably be

implemented in a matter of days.

6.3.2 Inconsistent State During Update

As discussed in the previous section, interruptions can leave the SPARQL endpoint in an
inconsistent state. However, even without crashes, temporary inconsistencies may arise
due to the sequential execution of update operations. In the current approach, all delete
operations are issued before the new triples are inserted. During a time period between
these two steps, queries may return incomplete results: the old triples of a modified
element have already been removed, while the new triples have not yet been inserted.
Consequently, the endpoint may briefly expose a view of the data that corresponds to
no valid OSM state. This temporary inconsistency can be problematic for applications

that require reliable information at all times.
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Future Work This issue can be resolved by using the DELETE/INSERT construct. Un-
like sequential operations, it allows deletions and insertions to be combined into one
update request. If the SPARQL endpoint executes such a request atomically, as recom-
mended by the SPARQL 1.1 specification (though not strictly required?), the inconsis-
tency window can be reduced to zero. Listing 6.1 shows how to update the timestamp
of an OSM node by deleting the old timestamp triple and inserting the new one in a

single atomic operation.

Listing 6.1: SPARQL DELETE/INSERT example to update the timestamp of an OSM
node in a single operation. This involves deleting the triple containing the

old timestamp and inserting a triple containing the new timestamp.

1| PREFIX osmnode: <https://www.openstreetmap.org/node/>
2| PREFIX osmmeta: <https://www.openstreetmap.org/meta/>
3| DELETE {

4 osmnode: 123 osmmeta:timestamp 7timestamp .

5013

6§ INSERT {

7 osmnode: 123 osmmeta:timestamp "2022-09-05T08:03:29"
81

9] WHERE {

10 osmnode: 123 osmmeta:timestamp 7timestamp .

1]}

To implement this in olu, deletions and insertions for modified elements would
need to be handled together rather than as separate operations. Since this is not cur-
rently the case, introducing such a change would likely require some refactoring of the
codebase. Nonetheless, the necessary functionality is already present in olu, and we
estimate that this change could be implemented within a few days to a week. It is im-
portant to note, however, that not all SPARQL endpoints support atomic execution of
DELETE/INSERT operations. As a result, this approach may not be universally applica-
ble.

6.4 Minimizing Triple Updates for Modified Elements

While the amount of triples that need to be inserted for newly created OSM elements and

the amount of triples that need to be deleted for deleted OSM elements in the change

2See: https://www.w3.org/TR/sparql1 1-update/#updateServices
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file cannot be reduced, there is potential for optimization when it comes to modified
OSM elements. In the current implementation of olu, all triples associated with a mod-
ified element are deleted and then reinserted, regardless of whether they have actually
changed. This approach guarantees correctness but can lead to unnecessary deletions
and insertions, especially when only a small portion of an element’s data has changed.
One example is the modification of a single tag of an OSM element. Around a quar-
ter of all elements in the change file are modified, yet they account for the majority of
triples deleted from the SPARQL endpoint. We therefore see potential for optimiza-
tions in this area. Our experiment to verify the correctness of our update process in
Section 5.1.3 emphasizes this point. Before the update was processed, 5 million triples
were different between the old and the new OSM data. olu inserted and deleted around
35 million triples on the SPARQL endpoint. Therefore, in this example, the number of
deleted and inserted triples could theoretically be reduced by almost 85 %.

We already discussed in Section 4.5 optimizations that we made to our implemen-
tation to reduce the number of updated triples. However, these optimizations target
only specific cases and only speed up the update process marginally. In future work, a

more general approach could be developed.

Future Work A straightforward method to minimize triple updates for modified el-
ements is to compare the old and new versions of each OSM element and identify the
differences, subsequently updating only the triples that have really changed. This could
be done at two stages of our implementation: either before or after converting the OSM

elements to RDF triples.

Comparing OSM elements before conversion would require fetching the existing
triples for each modified OSM element from the SPARQL endpoint, parsing them, and
comparing the extracted information to the data in the corresponding XML element of
the change file. However, this approach would introduce substantial performance over-
head and significantly increase the complexity of the implementation. For example,
our optimization that checked each OSM way in the change file for modifications to its

member list did not noticeably reduce the overall update time.

A more promising approach would be to perform the comparison after the conver-
sion to RDF triples, i.e., using the new triples generated for the modified OSM elements.

For this approach, the old triples of the modified elements would have to be retrieved
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from the SPARQL endpoint. Leveraging existing approaches, such as a signature-based
mapping algorithm with O(n logn) complexity [29], we could efficiently compute the
difference between these two sets, enabling us to generate precise DELETE and IN-
SERT operations affecting only the changed triples and thus minimizing unnecessary
updates. However, this approach should be carefully evaluated. It remains to be de-
termined whether the additional computational overhead introduced by fetching the old
triples for the modified elements from the endpoint and calculating the set of differences
would be offset by the reduced workload on the SPARQL endpoint when applying the
updates.

6.5 Parallelization of the Update Process

Currently, parallelization in olu is limited to downloading and processing change files.
Other stages of the update pipeline could also benefit from concurrent execution. As
discussed in Section 4.7, SPARQL queries and operations are grouped into batches of
configurable size but are processed sequentially: the next batch is sent only after the
previous one completes. If the SPARQL endpoint supports concurrent requests, multi-
ple batches could be executed in parallel. This would significantly accelerate parts of
the implementation that involve frequent endpoint interaction, such as fetching IDs of
relevant OSM elements or creating dummy objects. While no new functionality would
be required for this, substantial code refactoring would be necessary to support parallel
query execution. Implementing this change would likely require several days of devel-

opment effort.

Another promising candidate for parallelization is the filtering of converted RDF
triples. In the current implementation, each triple is examined sequentially to deter-
mine whether it should be included in the final update set. By partitioning the triples
into smaller chunks and processing them in parallel, this step could be significantly
accelerated, particularly for large datasets. However, care must be taken to preserve
dependencies between triples involving blank nodes. All triples connected to the same
blank node must be processed together to ensure that the blank node is consistently
linked to its corresponding OSM element. Only then can a decision be made about
whether the OSM element, and by extension, the associated blank node, is relevant for
the update process. Compared to parallel query execution, implementing paralleliza-

tion for triple filtering would require less effort and could likely be done in a few hours.
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However, as the filtering step currently constitutes only a small fraction of the total
processing time (under 1 %), the overall performance gain from this change would be

limited.

6.6 Caching

Another potential optimization for olu is to use caching to store frequently accessed
data, such as member of OSM elements retrieved from the SPARQL endpoint or the
dummy objects created for them. In the current implementation, each execution of olu
is independent and does not reuse information from previous runs. This can result in
redundant work when olu is executed consecutively. For example, when the SPARQL
endpoint is updated in minutely intervals. Changes made by OSM contributors often

affect the same geographic areas and thus involve the same referenced OSM elements.

With caching, olu could avoid making repeated queries to the endpoint and pre-
vent the creation of duplicate dummy objects. This would presumably speed up the
generation of the SPARQL update operations. However, designing such a mechanism
would require careful balancing of memory usage, cache invalidation, and consistency
with the most recent OSM state. Even a basic caching layer could provide significant
performance improvements, especially in scenarios involving frequent, minor updates.
However, it should first be verified that the overhead of managing the cache does not
outweigh its benefits. Implementing an effective caching strategy would likely require

several days of development effort.
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Conclusion

In this thesis, we introduced osm-live-updates (olu), a tool designed to efficiently up-
date SPARQL endpoints containing OpenStreetMap (OSM) data. We explored the
challenges of maintaining synchronization with the OSM database, a rapidly evolving
global dataset, and proposed a solution that generates SPARQL update operations from
OSM change files. Our approach follows a structured four-stage pipeline, which we
described in detail along with key optimizations that enable high performance even for

large-scale datasets such as the complete OSM Planet data.

We evaluated olu with respect to both correctness and performance. The correct-
ness evaluation confirmed that the generated update operations accurately reflect the
modifications described in the OSM change files, ensuring that the SPARQL endpoint
remains consistent with the OSM database over time. The performance evaluation
demonstrated that olu can efficiently process the large volume of changes made to the

OSM database, including those from the full planet dataset.

We also outlined several potential directions for future work. These include meth-
ods for stronger database consistency during updates and additional performance en-
hancements, such as minimizing the number of triples that need to be updated on the
SPARQL endpoint. Implementing these improvements could further increase the ro-

bustness and scalability of olu.

In summary, this work introduces olu, the first tool capable of keeping SPARQL
endpoints synchronized with the continuously changing OSM database, while preserv-
ing the geometries and information of all OSM elements on the endpoint. By enabling
incremental updates, olu provides applications and users using SPARQL endpoints with

up-to-date access to one of the world’s largest open geospatial data sources.
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Appendix A

Blank Node Example

OSM Node

hasMember

Blank Node

Figure A.1: Illustration of how a blank node can be used to represent the ordered list
of members in an OSM way by explicitly associating each member with its
corresponding position in the list. This member relationship is expressed
through three RDF triples (see Listing A).

Listing A.1: The member relationship between an OSM way and a node is expressed
through three RDF triples (see Figure A.1). A blank node is introduced to
link the node to its specific position within the ordered sequence of way
members.

ex:osmway ex:hasMember _:blankNode

|
2| _:blankNode ex:hasId ex:osmNode
I

_:blankNode ex:hasPos ex:position






Appendix B

Command-Line Options

Table B.1: Overview of command-line options for osm-live-updates.

Option name

Description

access-token

The access token of the SPARQL endpoint.

batch-size The number of values or triples that should be sent in one batch to the
SPARQL endpoint.

bbox Specify a bounding box (LEFT,BOTTOM,RIGHT,TOP) to cut out a spe-
cific area from the change files.

debug If set, all SPARQL queries are written to the output file.

endpoint-uri-updates

Specify a separate URI for sending SPARQL update requests.

extract-strategy

Specify the extract strategy to use.

graph

Specify the URI of a specific graph that you want to update.

input

A directory containing OSM change files

max—sequence—number

The sequence number where to stop the update process.

polygon

Specify a (multi)polygon file (.poly) to cut out a specific area from the
change files.

replication-server

The base URL of the replication server.

sequence-number

The sequence number to start the update process from.

spargl-output

Specify the file to which the SPARQL updates should be written.

sparql-response-output

Specify the file to which the SPARQL endpoint responses should be
written.

statistics Specify if detailed statistics should be added to the output.

timestamp The time stamp to start the update process from.

tmp Specify the location of the directory for the temporary files.

qlever Specify if the SPARQL endpoint is QLever. More statistics will be added

to the output.
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