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Abstract

Abstract
QLever is a SPARQL engine capable of computing queries with results of billions
of triples fast and efficiently. This is mainly because the operations’ computations
are almost exclusively done in memory. However, there are many cases where
QLever has larger memory requirements than conceptually necessary. This work
implements a new system that allows operations to perform their computations on
partial results one after another to reduce the memory requirements up to an order
of magnitude with minimal impact on performance while keeping some of the key
benefits of the existing caching mechanism.
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Introduction

1. Introduction

1.1. Preliminaries
SPARQL [1] is a query language that standardizes how triples of data can be
searched and processed.

QLever [2] is an engine that (currently incompletely) implements the SPARQL
standard. This means that given a dataset and a valid SPARQL query, the SPARQL
standard defines what the correct output should be. How the result is computed
is left to implementing engines such as QLever to decide for themselves. This
leaves a lot of room for implementors to decide how the computation of results
should be implemented and which computations to value higher than others when
performance-memory-tradeoffs have to be made eventually.

Many publicly available knowledge bases can be used as datasets for QLever.
These include (but are not limited to) Wikidata [3] with roughly 20 billion triples
containing information about a broad range of topics and UniProt [4] with roughly
160 billion triples containing information about protein sequences. With these large
amounts of data efficiency is no longer a convenience, but rather a requirement if
we expect a result to be computed reasonably fast.

1.2. Problem Definition
Processing in QLever typically happens by executing layers of operations one after
another. To optimize certain queries where this chain of operations would cause
inefficiencies, QLever uses hand-written optimizations when it detects a known
pattern. This is predominantly used whenever data has to be read from disk
where thanks to the index QLever builds, data can be accessed more efficiently
without having to search through all of it, but also in other cases. This approach
does unfortunately break down whenever the actual computation even just slightly
deviates from the hard-coded patterns. The following trivial SPARQL query is a good
example of a case where QLever is unnecessarily inefficient:

1 SELECT * WHERE { SPARQL
2   ?a ?b ?c
3 }

Previously this kind of SPARQL query would cause QLever to make a copy of
the whole dataset in memory just to export everything over the network. Of
course, this specific case could be solved by writing code to handle this special
case, but with a sheer unlimited amount of edge cases, this is only sustainable
up to a point. Additionally, many computations could conceptually operate on
partial data and produce partial results. This could make a huge difference in
memory consumption because QLever is performing almost all operations purely
in memory, consequently making smaller memory footprints possible. If additional
handwritten optimizations were added to cover all of these cases the code would

1
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Introduction

become unmaintainable very fast. To prevent this QLever requires a generic
interface to consume and process partial data so that every operation can benefit
from every other operation that also supports this interface. The development and
implementation of this interface is the main goal and topic of this thesis.

2



Related Work

2. Related Work

2.1. MillenniumDB
MillenniumDB [5] is an open-source graph database system that shares goals
somewhat similar to those of QLever. It achieves overall good performance across
a wide range of SPARQL queries. Just like QLever, for the authors of MillenniumDB
good performance on real-world data is highly valued, even outperforming QLever
for some queries. Before the efforts of this thesis, MillenniumDB was able to
efficiently handle queries that QLever severely struggled with¹. Unlike QLever
MillenniumDB does not seem to have a mechanism that makes use of chunked
HTTP encoding [6] so large result sets have to be fully held in memory or stored on
disk at some point during processing. It also does not come with a mechanism that
caches query results². So each invocation will trigger a new full computation chain.

To our surprise, we noticed that MillenniumDB does perform poorly on a small
number of SPARQL queries that seem to be conceptually trivial. This is a query
we found:

1 SELECT ?a (COUNT(*) AS ?count) WHERE { SPARQL
2   ?a ?b ?c
3 }
4 GROUP BY ?a
5 LIMIT 1000000

All this query should be doing is to grab subjects from a sorted set of triples and
count their unique amount of objects until a million unique subjects have been
found and return that. For reasons unbeknownst to us, this takes more than 60
seconds to execute on their official demo site³, and for smaller limits, an incorrect
empty result is returned. Our efforts in this thesis made this specific query blazingly
fast for QLever.

2.2. Virtuoso
Virtuoso, now an RDF graph store with built-in SPARQL and inference [7] is a well-
known SPARQL engine that is often used as a baseline reference for SPARQL
engines [2], [5]. For a lot of queries, it is a lot slower than QLever [2], but unlike
MillenniumDB it does support chunked HTTP encoding. Unlike QLever, just like
MillenniumDB, it does not come with a caching mechanism².

¹See Section 5.3.2 for an example query.
²SPARQL is built on top of HTTP, so by using the right headers you can make use of HTTP

caching under some circumstances.
³https://wikidata.imfd.cl

3
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Background

3. Background

3.1. Processing Stages
In the past, QLever used to process queries in 3 strictly sequential stages:
1. Query Planning
2. Computation
3. Export

In the query planning stage, QLever tries to determine the optimal tree of
computations heuristically. This stage was not touched by the efforts of this work
to not further increase the scope. However, there are many reasons to believe
tweaking this stage to consider lazy operations in the heuristic has to potential to
improve performance or reduce memory consumption for certain queries. More on
that in Section 8.2.

Query
Planning

Computation Export

Time

Figure 1: Model of previous processing order

Initially, the computation stage and the export stage were strictly separated⁴. This
means that after planning, the complete result was computed before anything
could be sent in response to the client.

The export stage then takes this fully materialized result and starts sending it
to the requesting client. The heavy computation is done at this point, the data

⁴There is an exception for limits applied to the query result, which is omitted if the exporter
can just apply the limit during export. So in this case the computation stage computes a slightly
different result, which is then “corrected” by the export stage.
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now only needs to get serialized to the HTTP stream as explored in our previous
work [6]. In a nutshell, the compact internal representation is converted into a
less compact, but text-based5 format that can be understood and parsed across
ecosystems. Especially for CONSTRUCT queries where the serialization step can
multiply the number of entries of the internal representation by a large factor, this
already saves a lot of memory. However, for cases where the result consists mostly
of boolean values the internal representation is only marginally more compact than
an equivalent CSV or TSV representation.

3.2. Caching
An important quality-of-life feature of QLever is the caching of intermediate results
of a query. During query planning, QLever builds a tree of operations that (for
the most part) work independently of each other. So generally an operation first
fetches the result of its children and then transforms those values accordingly. The
cache acts as a layer in between; when evaluating an operation the returned result
is immutable, allowing it to be stored in the cache and be shared across multiple
operation instances. So when an operation notices its result is already present in
the cache, there is no need to recompute the result and the operation can just use
it for further processing. When repeatedly making minor adjustments to SPARQL
queries, which happens a lot when experimenting with queries, many partial results
can be reused. This results in a better user experience because of lower execution
times.

3.3. Optimizations
There is a big problem when strictly using this approach to calculate results: One of
the most fundamental operations, internally called “IndexScan” is responsible for
retrieving matching data from the knowledge base and turning it into a continuous
memory block for further processing. This means that in the worst case, the whole
knowledge base will be copied just to filter out most elements. This is not just
incredibly wasteful, it would also make many computations infeasible to compute
on consumer hardware because memory is a limited and precious resource there.

So to avoid this problem many operations implement specific optimizations when
they detect that one of their children is a special kind of operation. The “Join”
operation which as the name implies joins two tables together based on a common
column, will handle the join of one or two “IndexScans” differently by skipping rows
that are known not to match at all entirely, thus saving a lot of computation time
and memory. The biggest limitation of this approach is that this system breaks
down as soon as the “IndexScan” or any other optimizable sub-operation is no
longer the direct child whenever the query demands a more complicated layout.
Then the system will not detect the potential shortcut it could take and will perform
a potentially multiple factors more expensive computation instead.

5QLever also supports binary export of data for debugging purposes.
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4. Approaches

4.1. Conceptual Goals
At this point, we should have been able to sufficiently explain why a new mechanism
is required for QLever to broaden the range of computations that it can efficiently
perform. Luckily, as already suggested in Section 1.2 many operations conceptually
do not need random access to all rows at once to make progress. The “Filter”
operation for example only needs to read a single row to decide if this row can
stay or needs to go. It would even be suited for perfect parallelism, where every
row is processed in parallel. Many more operations share similar traits, whose
implementation is explained further in Section 5.3.

Exporting as the last processing step also does not need all of the rows at once.
As originally introduced in [6] and improved upon in a later effort, QLever is capable
of streaming its result using the HTTP “Chunked transfer encoding” mechanism.
This essentially makes it the requesting client’s responsibility to finally aggregate
the data, moving the burden away from QLever’s limited memory constraints. This
means that for a limited range of queries, it would theoretically be possible to
compute very large result sets without QLever ever having to store more than one
row in memory at the same time. Especially for operations with limits, this would
allow us to avoid having to do a lot of computation when only the first n values of
an operation are required.

Query
Planning

Computation Export

Time

Figure 2: Model of proposed processing order
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This is of course not a new concept. Purely functional programming languages
like Lisp have been doing this since the late 1950s [8]. What is new here, is that
an engine like QLever applies this concept to truly large amounts of data with
performance in mind. In purely functional languages lists are typically represented
as linked lists which has its benefits in a pure world where everything is a function
and state does not exist, but is a rather inefficient layout of data in the world of
today’s CPU architectures. However, functional programming languages are usually
compiled languages and can thus often transform their code into efficient CPU
instructions. It is not a goal of QLever to be able to just-in-time-compile SPARQL
queries to efficient machine code, so QLever has to be treated as a SPARQL
interpreter instead of a compiler which does have some performance limits in
specific cases.

4.2. Practical Goals
There are many ways to achieve our set goal in practice. However, today’s CPU
architectures are specialized to operate on local data, i. e. run CPU instructions
that operate on data that is very close to each other in terms of memory
addresses. This way a processor is much more likely to leverage the low latency
and high throughput of its various caches because this increases the chances
memory was already loaded into the cache by a previous instruction using nearby
data. A somewhat recent optimization of this kind was performed in the Linux
kernel networking stack, where optimizing memory locality resulted in up to 40%
performance increase [9].

Because of this, processing each row individually will leave a lot of performance
on the table6. So our approach has to be a compromise of grouping enough rows
in a batch to continue to offer a high level of performance and few enough to not
end up with the status quo where everything is materialized at once. In practice, we
ended up targeting between 100 thousand and 1 million rows at once, which would
be up to 8 megabytes of continuous memory per column, small enough to fit inside
the L2 cache of a modern desktop CPU. This is more of an upper limit and soft
objective though. For many operations, it made sense to deviate from this objective
to make the code simpler or to avoid redundant copies just to meet the quota. There
might be some room for optimization left here. If the generated batches end up
consistently too small this will make the performance of the engine end up tanking
quite a bit due to the overhead of the code. This overhead is discussed later in depth
in Section 5.1.1. On the other hand, small batches can sometimes be favorable for
operations that do not support limits out of the box. If the limit is smaller than the
batch size the performance gains from not computing values that are not required
can only ever be as large as the batch size allows it to. So if we have set a small
limit, something in the single digit range, but the batch size is 10000, we are out of
luck and the engine computes at least 10000 values before noticing it did compute

6To put this claim to the test we created a synthetic benchmark in Section 6.4.1
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way too many values. It would of course be possible to make the operation limit-
aware to avoid these kinds of issues.

4.2.1. Dealing with the Cache
This just leaves the question of how to combine this idea with caching. The existing
code is conceptually a cache-first system. First, a result is computed, then it will be
put in the cache (if the cache size allows it), and just then will the operation that
requested the computation be handed over an immutable view of the result. The
immutability is important to allow safe concurrent access across threads, but it
also forces operations that could be implemented using cheap in-place algorithms
to make potentially expensive copies of the data. So there is a significant cost to
this approach, but also the benefit that if a query requires the same result of an
operation twice, or if two queries try to fetch the same data concurrently it is only
computed once.

Our original idea was to store the individual batches of rows individually in the
cache, by augmenting the cache lookup key with an offset of the data. This would
allow operations with a set offset to pick just the entries from the cache that they
actually require. Upon closer inspection, this turned out to be a bad idea for a variety
of reasons. If we are supposed to be able to find an arbitrary entry in the cache we
either have to have fixed boundaries for the entries so calculating the lookup key
becomes as simple as division or we would have to create some sort of lookup
table to find cached entries for arbitrary offsets. For very large results this would
essentially replace the whole cache with a result that does not even fit inside the
cache in its entirety. To add insult to injury the latter case could also lead to the
scenario where a result in batches is almost completely stored in the cache, except
for the first batch, triggering a computation that eliminates the second batch from
the result to make room for the newly computed first batch, ultimately resulting
in a series of cache misses even though initially all batches except for a single
one were present, demonstrating the worst-case for the implemented least recently
used caching policy.

It also does not consider what to do if an operation can only guarantee a partial
order of its rows. Currently, we assume all results to be ordered deterministically,
even those that rely on hash-based data-structure implementations, but this might
be something that might change in the future and is hard to prove beyond doubt
for every single existing operation. Thinking a step further this also means that
operations cannot efficiently use cached batches where one or more batches have
been dropped from the cache. After all, to resume to this exact point the operation
needs to be able to skip rows up until this point, which is potentially expensive
because of the nature of the operation (a filter operation would not know how many
entries to skip without evaluating them explicitly) or even impossible because the
order might not be deterministic and so it needs to recompute everything to prevent
duplicate and/or missing values. So this approach is not able to solve our problems.

8



Approaches

Our second idea involves changing what a “result” is itself. Previously a result was
little more than a wrapper around a single table of entries. We would always know
exactly how many rows there are in the result set and be able to access any piece of
data in constant time. But what if it could be one of two things? One mode where the
existing behavior persists and one where we would be able to consume one batch
after another. To make caching possible the result now stores those batches within
itself once they are computed, allowing a second consumer to cheaply retrieve
them, allowing the actual cache to drop everything at once if it deems the whole
result too big. The main benefit of this approach is that it has similar characteristics
as the status quo when it comes to caching. A single query that needs to run the
same operation twice avoids the expensive computation the second time if the
result fits inside the cache. The same goes for subsequent or concurrent queries.

This approach, however, has its downsides too. For one the caching mechanism
becomes more complicated as its entries now suddenly can change in size. This
is a direct result of making the result self-caching, they are no longer immutable
and thus they are stored in the cache before the computation has started. This also
means that we suddenly would need a mechanism to synchronize the threads. Error
handling also becomes more complicated. If two concurrent queries are running
the same operation simultaneously and one query runs into a user-defined7 timeout
or the user cancels the query computation, obviously this should only abort the
respective query, not the one that just happens to piggyback off the computation.
It also has the downside that if two queries want to compute the same operation,
but one of them can process it an order of magnitude faster than the other, this
would mean that either the faster query has to wait for the slower query to process
its data all of the time or the slower query ends up wasting time. In this case, the
faster query would be so far ahead that the values it computed have already been
purged from the cache due to size constraints, causing the slower query to become
even slower because it has to start over.

This leads us to our third idea and the one we ultimately settled on. The basic
assumption here is that only one of the cases where caching yields huge benefits
is very common. It is rather rare to see one or more queries require the exact same
result from an operation. The only case where the cache is regularly hit is when
iteratively altering queries to see how the results differ when different parameters
are tweaked, as it often happens when performing experiments with QLever. So
what if the cache becomes an afterthought? What if every operation would be
forced to compute its own dedicated result if it wants to process only small batches
of the whole result? Then we could have mutable tables without having to worry
about concurrency issues and thread safety, allowing some operations to resort to
cheaper algorithms. To allow this mechanism to still benefit from the cache, these
mutable tables would have to be copied for a while into a single aggregate table

7While the user can lower this timeout on a per-query basis, the upper limit is set by the server
and cannot be overridden without special privileges
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until either everything is stored there and it still fits inside the cache or it is deemed
too big and discarded. The only major drawback of this approach is that suddenly
the part that does the caching becomes somewhat expensive because of the newly
introduced step that copies memory, especially for large results. Section  5.2.2
discusses how these problems can be partially mitigated.

Besides that, it is way simpler than the other approaches and does not involve a
new concurrency mechanism of any sort while still keeping some of the benefits
of the existing caching system for a lot of cases.

10
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5. Lazification

5.1. Implementation in C++

5.1.1. Generators and State Machines
How can we implement our proposed goal in code? QLever is written in C++8,
which means that we can use a language feature called “coroutines”. These can
be interpreted as a generalization of a classic subroutine, also known as a function
or method, that can suspend and resume execution at fixed suspension points. In
practice, we use this feature to suspend execution after computing a batch of rows
(from now on referred to as a “chunk”) for a parent operation to pick it up, perform
its operation, and resume execution to compute the next chunk of data.

1 #include <generator> C++
2 #include <vector>
3 #include <iostream>
4 // Yield all integers within [0, 10)
5 std::generator<int> tenValuesWithGenerator() {
6   for (int i = 0; i < 10; i++) { co_yield i; }
7 }
8
9 // Return a vector containing all integers within [0, 10)
10 std::vector<int> tenValuesWithVector() {
11   std::vector<int> result;
12   for (int i = 0; i < 10; i++) { result.push_back(i); }
13   return result;
14 }
15
16 // Both variants print the same output
17 int main() {
18   for (int i : tenValuesWithGenerator()) { std::cout << i << ' '; }
19   std::cout << std::endl;
20   
21   for (int i : tenValuesWithVector()) { std::cout << i << ' '; }
22   std::cout << std::endl;
23 }

Listing 1: Code example to illustrate the basic structure. It requires C++23.

As we can see in Listing  1 both variants can be used interchangeably in this
particular scenario. The only semantic difference is that the variant using the vector
needs memory for all 10 values at the same time, whereas the variant using the

8At the time of writing C++20 specifically.
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generator only requires memory for a single value at once9. To achieve this C++
turns the coroutine into an object that will run a function up to the point where a
value is yielded based on the current state of the coroutine. So it is nothing more
than syntactic sugar for classic state machines. Instead of integers, QLever yields
a class it calls IdTable, which is pretty much just a table of IDs, 64 bits in size
each. This also means that the function call to tenValuesWithGenerator() will not
do any actual computation and return immediately. Only when we start iterating
over the returned std::generator<int> object the actual code within the coroutine
is invoked. This is why we will refer to this type of result as a “lazy result” and the
previous type of result as a “fully materialized result” from now on. It is worth noting,
however, that as of right now generators have somewhat of a bad reputation for
being hard to optimize by C++ compilers. This will likely change in the future when
more projects adopt coroutines in their code, but for now, this is another reason
why it is so important that the chunks that are yielded are large enough to make
the overhead from generators negligible in comparison. (See Section 6.4.1 for a
concrete example.)

5.1.2. Local Vocabularies
Of course, some queries produce values that are not representable in just 64 bits
respectively, mostly queries that involve creating a string of some sort. To handle
these cases a result typically bundles an IdTable together with a LocalVocab. The
IDs within the table then represent tagged pointers to a value in the vocabulary. To
avoid vocabularies that store all values of a complete result, when all we really need
is just the vocabulary for a partial result, for the case of lazy results the generator
also needs to bundle a LocalVocab with the IdTable it yields. Unfortunately, this
introduces new challenges. A LocalVocab does not know which parts of an IdTable
correspond to each stored value, so when processing values originating from
multiple sources we always have to assume that all entries of a local vocabulary
are necessary which is incredibly wasteful. This is not a new problem, it is also
present when dealing with fully materialized results. However, in the lazy case,
because we no longer have a single LocalVocab for each result but thousands if
not ten thousands of them worst-case with a lot of potential redundancy, merging
a lot of them can suddenly become very expensive. This is especially noticeable
when operations consume a lazy result but are constrained to produce a fully
materialized result, requiring them to merge thousands if not tens of thousands of
vocabularies (possibly with duplicates) into a single one.

Previously merging two local vocabularies involved just appending shared
pointers10 to the stored¹¹ values to an internal vector without any sort of de-

9Of course the generator needs to track its state between invocations, so technically this
overhead needs to be taken into account as well, but it is negligible when the values yielded are
an order of magnitude bigger than the variables on the stack.

10By shared pointer we are referring to an instance of std::shared_ptr, which is a pointer that
manages its allocated memory using a reference counter.
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duplication. In some cases where the same non-empty local vocabulary was
yielded over and over again due to the nature of the operation, this meant a single
local vocabulary suddenly held thousands of the same shared pointers instead of
just a single instance, wasting a lot of memory. To combat this the vector was
replaced with a hash set to provide an acceptable amount of de-duplication¹².

5.2. Implementation Quirks

5.2.1. Backwards Compatibility
While not strictly a requirement, it generally makes adopting new technologies and/
or features easier if they allow for gradual opt-in. So what we did is that the default
remains a fully materialized result for every operation. Only if an operation explicitly
requests one of its children to provide a lazy result only then will try to provide one
if it is supported and it makes sense to do so. This way all of the existing code
continues to work without any changes and operations can be lazified step by step.
Note that this means that just because we request a lazy result we are not entitled
to actually get one, the only guarantee we have is that when we do not request a
lazy result we are guaranteed to get a fully materialized result.

5.2.2. Generators in the Cache
A small engineering challenge that remains is to make lazy results interact nicely
with the cache. As mentioned in Section 4.2.1 caching of lazy results should be
nothing more than an afterthought. It is expensive to keep copying values into an
IdTable that is just there in case the values might be small enough to be cached.
Because of this, some additional constraints have to be met for the code to invest
precious CPU cycles into maintaining a large copy that might not even be used in
the future. One of those constraints is a configurable threshold that indicates how
large the aggregation table is allowed to grow before it is deemed too large and
its values are discarded. In addition, if we know in advance that the result size will
be larger than this threshold, which is the case for index scan operations then it
will not even try to cache it and avoid the expensive copy operations entirely. Also
if aggregating tables results in a memory allocation error because there is just no
memory left, then the value is also gracefully discarded to free memory. A caveat
here is that the mere presence of a table for the cache could lead to such memory
allocation errors elsewhere because it takes up space that other operations might
need more urgently. And then, only if the generator is consumed in its entirety and
thus the aggregation table can be deemed complete if it is still around, then, the
aggregated table along with an aggregated local vocabulary will be offered to the
cache. So the results in the cache are always fully materialized. Additionally, if an
operation requests a lazy result and a fully materialized result is already present in

¹¹The values are not stored inside the vocabularies. All the vocabularies do is to ensure the
lifetime of the value pointed to by the stored shared pointer is at least as long as the lifetime itself.

¹²If the same Value is created multiple times independent of each other, they will not get de-
duplicated because the hash implementation only considers the address in memory.
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the cache, it will receive the cheap fully materialized version instead of having to
compute a new one.

Because of this, an operation cannot know in advance if it is going to receive a lazy
result or not and consequently if it is going to be able to provide one itself. This
circumstance means that due to QLever’s code architecture, we cannot possibly
know if another result that is currently getting computed will turn out to be lazy, so
the best we can do is wait until the computation is done and see if it turned out
to be a fully materialized result we can use or a lazy result where the computation
is still pending. This is not a huge problem though as long as we follow some
guidelines. For one, if we happened to have waited for a result that turned out to be
lazy, we just compute our own without querying the cache again. This is to prevent
starvation of queries that would otherwise repeatedly wait for results turning out
to be all lazy and thus unusable for direct cache storage. It is also important to
make sure that when an operation creates a lazy result it must be able to quickly
return and notify the cache of it. In practice, this is not always given, even though
it likely would be possible with some refactoring effort. However, on one hand, this
case should be rare enough that it will not become an issue as long as QLever does
not handle multiple very similar queries at once regularly. On the other hand, if an
operation did in fact trigger a full computation of a fully materialized result, chances
are that this result will be stored in the cache so that waiting to find out a result is
lazy and then starting the computation was not for nothing because we can then
cheaply use the cached value instead. This of course only works when lazy results
are never evaluated outside of the parent’s lazy result because lazy results are not
necessarily cached.

5.2.3. Live Query Updates
Another minor adjustment that had to be made to make lazy result works is
to change the system that provides users with updates about the current query
state in realtime. When all operations only produce fully materialized results, all
that was necessary to provide updates in real-time, was to send an initial state
at the beginning of a query computation and whenever a child operation finished,
regardless if it failed or succeeded. For lazy results, we cannot do that. Instead, we
have to send updates whenever the generator that computes lazy results yields a
new value. This works but does cause a drastic increase in traffic, so much in fact,
that it can overwhelm a web browser when it tries to parse all the sent JSON. To
avoid this we put a limit in place that reduces the amount of updates to once every
50 milliseconds per operation¹³.

5.3. Implementing Laziness Support for Operations
There are many types of operations QLever has implemented so far. A subset
of those operations was changed to support laziness as part of this thesis. For

¹³Of course the last update will always be sent, regardless of the limit and two different
operations might accumulatively send updates more frequently than the limit.
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some operations, it makes more sense to support laziness than for others. The
reasoning is explained on a case-by-case basis below. As a general rule of thumb,
it makes sense to consume a result lazily and produce a non-lazy result whenever
the incoming result is potentially really large and the outgoing result is expected to
be much smaller than that to reduce the memory footprint. When an operation has
only fully materialized results to deal with but its output is expected to be larger
than its inputs it still makes sense to produce lazy values when requested because
this way a large memory overhead can also be avoided.

5.3.1. IndexScan
The IndexScan operation is one of the most fundamental building blocks of almost
any SPARQL query in QLever. It is responsible for reading the indexed dataset
from disk, so anything that interacts with the loaded knowledge base is using an
IndexScan one way or another. Because it is infeasible for a lot of operations to fully
materialize a full scan, a “lazy” implementation already existed which was used as
an optimization by a handful of operations. So all we did for this operation was to
use the pre-existing functionality that read data from disk into memory in chunks
(by default up to 30000 rows each) and made it available via the general interface
introduced by this thesis if requested.

This allows the most basic SPARQL query (see Figure 5¹⁴) to be run completely lazy:

1 SELECT * WHERE { SPARQL
2   ?a ?b ?c
3 }

5.3.2. Filter
The Filter operation for the most part is pretty basic. It computes the result of
its child operation and eliminates entries if they do not match a set predicate15.
This means that the Filter operation can only ever reduce the amount of entries,
never increase it. So it makes sense to always request its data lazily. If the child
operation supports it and returns a large result and the Filter operation result itself
is not requested lazily, chances are that the predicate is strict enough to eliminate
enough entries such that the fully materialized result is considerably smaller than
the original, which has the potential to save a lot of memory. When the Filter
operation itself is lazily requested, then the result type depends entirely on the
type of the result the child operation produces. If it is lazy, then the filter algorithm
is applied to every yielded table individually, otherwise, it is applied to the fully
materialized result. The chunk size is entirely dependent on the chunk size of the
child operation and the predicate. This means that currently if a predicate would

¹⁴This figure shows the execution tree for the respective operation.
15There is an optimization that avoids having to evaluate an expression for every entry if it is

known that the data is continuous regarding the evaluation result e.g. y < x on a sorted range
of values.
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eliminate all rows within a chunk, the Filter operation would simply yield an empty
table. Or, if the table is not completely empty this might lead to very small chunks,
which is undesirable but the alternative would be to merge tables, including their
respective local vocabularies which will likely cause a high memory consumption
too because there currently is no mechanism to selectively remove entries from
a local vocabulary, so we would have to keep memory allocated that might no
longer be used instead. An idea to solve this is discussed in Section 8.3. Filtering
is currently not using in-place algorithms, but it might be an optimization worth
considering for lazy evaluation.

Here is an example for a query (see Figure 6¹⁴) where support for laziness makes
a huge difference:

1 SELECT * WHERE { SPARQL
2   ?a ?b ?c .
3   FILTER(?a = ?c)
4 }

When we run this on Wikidata, this will result in ~17 million rows, out of the ~20
billion rows of the whole knowledge base. QLever is never even close to seeing the
whole data in memory. Only the requesting client will ever have to store the resulting
couple of gigabytes of data this creates.

5.3.3. GroupBy
The GroupBy operation is responsible for “grouping” i.e. aggregating multiple rows
into common values. It can be used to calculate the maximum values and count
rows, simply for concatenation across rows or other things. So most of the time
GroupBy ends up producing a result that is smaller than the result provided by the
child operation. If every row in the child’s result is unique the result produced by
GroupBy will have the same number of rows. So just like Filter it makes sense to
always request the result lazily.

GroupBy expects its input to be sorted by default, which allows the code to assume
that once a value is gone, no equivalent value will ever appear again in the input.
Consuming a result lazily differs from the case where all values are known in
advance. We need a mechanism that keeps track of intermediate values. Luckily in
the past support was added for a hash-based GroupBy, which was initially developed
to avoid sorting operations when beneficial and already does what we need with
a caveat. It does not support all kinds of aggregation functions. Support for some
was added where it was trivial as an effort of this thesis, but the non-trivial cases
were left for future efforts. There is also a lot of room for optimization here, because
when the input is sorted for aggregation functions like COUNT(*) we do not need
to process each row individually but we could process them all at once, which is
currently not done.
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The hash-based variant of GroupBy is currently disabled by default. When enabled
it is only used whenever it can be used to avoid an explicit sorting operation before
it, but not if the data is sorted already or the aggregation function is not supported.
This variant does not support consumption of lazy results, because the benefits
are not as big as for the sorted case. A future contribution could add support for
this case too.

When producing values lazily the chunk segmentation is mostly inherited from the
child operation. This can also lead to very small chunks whenever a chunk contains
only very few distinct groups. We do not consider this case to be too much of a
problem, because if we assume operations generally produce large chunks this will
mean that the GroupBy operation will reduce the amount of rows by a lot so the
produced result will be an order of magnitude smaller in comparison.

A query (see Figure 7¹⁴) that counts the number of objects for every subject could
look like this:

1 SELECT ?a (COUNT(*) AS ?count) WHERE { SPARQL
2   ?a ?b ?c
3 } GROUP BY ?a

5.3.4. Join
The Join operation is a centerpiece of most SPARQL queries and does benefit a lot
from being able to consume lazy inputs, even though a lot of the time this requires
pre-sorting. As the name already implies it is used to find all matching rows of two
matching columns. The algorithm to allow this already partially existed, primarily
to optimize the join of two IndexScan operations. The IndexScan operation never
produces results containing UNDEF values, which is why UNDEF support did not exist
so far when only being used to join two lazy results. To be able to always request
the child operations lazily, support for UNDEF was added and lazy results are always
requested from the child operations16.

When both children are fully materialized Join will also compute a fully materialized
result. The basic assumption here is that most of the time only a few rows will
match so a result of the size of a Cartesian product (which would happen if both
join columns only contain the same single value) is highly unlikely and most of the
time a join will reduce the combined amount of rows. Under this assumption, it
makes sense to use the faster algorithm without any indirections.

For all the other cases if the result is requested lazily it will produce a lazy
result. Joins in QLever internally use a flush mechanism to group write operations
together. Whenever flush is called, the code checks if the amount of written rows
exceeds the targeted chunk size, and if that is the case creates a new chunk (if it is

16There is an exception when one side of the join is already cached or its size is known to be
below a certain threshold, which will cause the child to be fully materialized.
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not empty) to be consumed by the next operation. After the last call to flush a final
chunk is created with the remaining rows.

Joins where one side is of type IndexScan get special treatment, because in those
cases we can ask the IndexScan to skip blocks that cannot possibly match the
current value during a join. This kind of pre-filtering already existed for joins with
fully materialized results and a variant was added that also supports the same
mechanism when the tables are computed on the fly.

A query that combines two Joins (see Figure 8¹⁴) after another to illustrate this
efficiency can be seen here:

1 PREFIX wd: <http://www.wikidata.org/entity/> SPARQL
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
4 SELECT ?label ?birth_date WHERE {
5   ?person wdt:P31 wd:Q5 .
6   ?person wdt:P569 ?birth_date .
7   ?person rdfs:label ?label .
8 }

5.3.5. Bind
All the Bind operation does is add a new column, where each row of the new column
is created by a transformation based on the values of the other columns in the
respective row. For this operation, it makes sense to just forward the request for
a lazy result to the child. If the caller wants laziness and the child supports it too,
Bind can just add a column “in-place”, in the sense that the IdTable yielded from the
child operation is modified, and yield it again with the newly added column. For the
non-lazy case, everything stays as-is. The local vocabulary is of course extended
analogously in both cases.

An example query making use of laziness in Bind (see Figure 9¹⁴) would look like
this:

1 SELECT (CONCAT(?a, ?b, ?c) AS ?string) WHERE { SPARQL
2   ?a ?b ?c
3 }

5.3.6. Union
The Union operation combines the results of two child operations by concatenating
them and sometimes it also permutates the columns17 so they match. If the result
of Union is requested lazily it will always return a lazy result (apart from caching).
This makes sure that even if both children return fully materialized, potentially very

17Tables in QLever have their columns stored independently of each other, so applying column
permutations is linear in the number of columns, not rows, which makes it very cheap.
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large results it never has to produce a table that has the combined size of both.
If one or both children return lazy results Union does not even have to copy any
data for lazy results because the tables are mutable. So all it does is to apply a
permutation in this case, making the whole operation trivially cheap to perform.

An example query making use of laziness in Union (see Figure 10¹⁴) would look
like this:

1 SELECT * WHERE { SPARQL
2   { VALUES (?a ?b ?c) { ("S" "P" "O") } }
3   UNION
4   { ?a ?b ?c }
5 }

5.3.7. Distinct
The Distinct operation eliminates duplicated rows18. It expects its input to be
sorted. On one hand, this is potentially a huge advantage because it makes this
operation a perfect fit to consume a lazy input and provide a lazy output whenever a
new distinct value is found. On the other hand, most of the time its child is a sorting
operation which is inherently non-lazy19, which means that very often we will not be
able to capitalize on this new feature.

In the future, QLever might bring a hash-based implementation that avoids sorting.
Such a variant would perform rather well in cases where unsorted data contains a
lot of duplicates, but if most of the values are unique our hash-based data structure
would eventually contain every unique value because it cannot possibly know if
new values from the input are duplicates of any of its preceding values.

For the current implementation, however, it is rather simple to implement. Since
Distinct can only ever reduce the number of rows, never increase it, just like
Filter it makes sense to always ask its child operation for a lazy result. If the
child operation returns a fully materialized result, Distinct will also return a fully
materialized result, where only the distinct rows are copied over. If the child
operation does return a lazy result and it is asked for a lazy result, it can even use
an in-place algorithm since the data from generators is mutable.

For cases where the Distinct operation is non-lazily asked for a result, but the child
operation does return a lazy result, Distinct aggregates all tables into a single one.

The simplest query to use DISTINCT (see Figure 11¹⁴) would look like this:

1 SELECT DISTINCT * WHERE { SPARQL
2   ?a ?b ?c 
3 }

18Of course we can selectively configure which columns should be checked for equality.
19See Section 5.4.5.
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5.3.8. TransitivePath
The TransitivePath operation20 can be used whenever the dataset needs to be
traversed similarly to a graph. For example, if we wanted to find all subclasses
of a certain class, but also the transitive subclasses of those subclasses. It can
also come in handy whenever we want to track down transitive dependencies of
an element in a knowledge graph. The size of the results of this operation heavily
depends on the connectivity i.e. the amount of matching edges of the knowledge
graph. So it can create very small results with only a bunch of rows but also very
large results with millions if not billions of rows. Especially for the cases where the
result size explodes with every newly traversed edge, it makes sense to produce a
lazy result whenever requested.

For the result of the child operation to be traversed like a graph, we need constant
time random access to each individual element in the result to be efficient. So we
do not gain anything from requesting this result lazily, we would have to aggregate
it anyway. A slight exception to this is an optimized case where a subsequent/
parent join would eliminate a lot of rows not present in the result of another sibling
operation. We still need the full graph to traverse it, but the sibling operation can
be requested and subsequently processed lazily as part of the TransitivePath
operation.

Whenever the result of the operation is requested lazily, one chunk is created for
the results of every depth-first search started for every “node” on the starting side
of the operation. This can often lead to very small chunks of varying sizes, which
is undesirable as we explained, but this segmentation of chunks is very natural to
implement because it allows a nice separation of concerns. For efficiency reasons,
this should probably be changed in the future.

A simple query demonstrating the TransitivePath operation (see Figure 12¹⁴) on
the Wikidata dataset could look like this:

1 PREFIX wdt: <http://www.wikidata.org/prop/direct/> SPARQL
2 SELECT * WHERE {
3   ?class wdt:P279+ ?subclass
4 }

5.3.9. CartesianProductJoin
The name of the CartesianProductJoin operation is a little bit misleading because
it does not perform a join operation whatsoever. It could of course become a join
operation when combining it with a Filter operation, which would represent the
most naive Join algorithm one could think of. But as a standalone operation, all it
does is produce a result that represents the Cartesian product of the results all of
its children compute. So its size will be the product of the sizes of all of its children,

20The transitive path operation comes in 2 distinct variants that have the same behavior to the
outside world, but differ in time and space requirements.
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which means that its result becomes huge regularly. This characteristic makes it a
good choice to produce values lazily. As a nice bonus, it can even consume up to
a single child lazily.

Producing values lazily is as simple as it gets. Instead of producing one big table
containing all of the values, we produce many smaller tables. We can even use
the existing LIMIT and OFFSET support to pretend we just want to repeatedly create
different slices of the actual result. This is why this is one of the few operations
that can produce chunks that all strictly adhere to a fixed size.

Consuming a child lazily is where it becomes tricky. Consuming multiple children
lazily, while in theory possible, is most likely a bad idea in practice. Due to the
nature of Cartesian products for all but one of the operands we eventually need to
go back to the start and repeat the values again and again. The generator model
we introduced in this thesis does not allow that and even if we just acquired a
new instance every time we need to start over, that would for one cause a lot of
overhead and also potentially cause expensive computations to run that compute
the same result over and over again. So simply requesting a non-lazy variant is
almost certainly the better option. Even though the existing implementation of this
operation did not guarantee any ordering, it always returned an ordered result if the
rightmost input was ordered. In the future, this ordering guarantee might come in
handy. However, as of right now, it must be known in advance if a result will be
returned ordered or not. So to keep the possibility open to guarantee an ordering, we
can only ever request the rightmost²¹ operation to return a lazy result, without being
able to fall back to one of the other child operations and permutating the columns
afterward. Ideally, the rightmost operation would be the operation producing the
biggest result that can be produced lazily. This would cut memory consumption
down the most. Unfortunately, the order of the children is currently arbitrary, the
result of a hash function.

A query that makes heavy use²² of the laziness of a single lazy child operation (see
Figure 13¹⁴) could look like this:

1 SELECT * WHERE { SPARQL
2   VALUES (?a) { ("A") }
3   VALUES (?b) { ("B") }
4   ?c ?d ?e
5 }

5.4. Other Operations
There are many operations that were not touched as part of this work. For
completeness, we list the reasons for this down below.

²¹This is an arbitrary implementation detail, the algorithm might as well be mirrored.
²²2 out of 3 times, the hash-function does not order the IndexScan last, so this is not guaranteed

to make use of laziness using the current version of QLever.
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5.4.1. CountAvailablePredicates
This is a special operation that optimizes auto-completion of SPARQL queries
explored in [10]. As of right now, it de-duplicates its inputs similarly to Distinct by
first sorting everything before eliminating duplicate values. This makes it a rather
bad candidate for laziness.

5.4.2. HasPredicateScan
HasPredicateScan is another variant of the regular IndexScan. So similarly
HasPredicateScan could support laziness. However, it was not important enough to
make the cut given the limited time we had.

5.4.3. Minus & OptionalJoin & MultiColumnJoin
All of those operations are conceptually very similar operations to regular Join.
The most common case that involves no UNDEF values would most likely be fairly
easy to implement, given the current code base. However, the behavior specified
by the SPARQL standard when it comes to joining columns that contain UNDEF
values makes this algorithm rather complicated to implement correctly. A future
bachelor’s thesis might be able to unify all of these join variants to provide a single
coherent interface. In any case, these operations serve a small enough niche so
the implementation became a lower priority, low enough to make it not fit within
the time constraints of this thesis.

5.4.4. NeutralElementOperation
This is an operation that always returns a single row with zero columns. It is a pure
helper construct for joins. So there is nothing to do here.

5.4.5. OrderBy & Sort
Sorting algorithms are inherently non-lazy. We need to consume the whole input
before being able to know which one is the first element and return that. This is why
intermediate sorting algorithms often “break” lazy chains where nothing is ever fully
materialized. This is why this operation was not touched as part of this work. There
might be potential to optimize this issue by adjusting query planning to prefer query
plans that avoid sorting operations if there are alternatives that work without them.

Some ideas on how to take advantage of lazy processing will be discussed in
Section 8.1.

5.4.6. PathSearch
PathSearch is somewhat similar to TransitivePath, it can be seen as a
generalization of it that not only returns the result but also the paths that lead to it.
So it would be possible to add support for lazy processing just like TransitivePath,
but it simply was not a priority given the niche it serves.

5.4.7. Service
The Service operation represents federated queries that fetch data from other
SPARQL engines remotely. Because data transfer is inherently some sort of stream,
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it makes perfect sense to also support laziness. In fact, this operation was changed
to support laziness during the efforts of this thesis, but not as part of this thesis,
even though it only was made possible because of it.

5.4.8. SpatialJoin
A SpatialJoin is not really a join in the classic sense. It is used to match geo-
spatial data, where two locations have no direct match and we are searching for
either the nearest match or all matches within a certain distance. To achieve this
an index is built for one of the two join sides, to allow the other side to quickly
search for matching data. This means that the side used to build the index will
not benefit from laziness because it would have to aggregate all data anyway. The
other side however could be consumed lazily, so ideally the smaller side of both
would be used to build the index and the bigger side requested lazily to achieve the
smallest memory footprint possible. Most definitely a good candidate for future
improvement.

5.4.9. TextIndexScanForEntity & TextIndexScanForWord & TextLimit
These operations were added as part of [11], a somewhat recent addition to QLever.
This allows QLever to quickly perform full-text searches using additional indexed
data. In a somewhat similar fashion to IndexScan and HasPredicateScan supporting
laziness would be feasible here as well if this becomes a common use-case.

5.4.10. Values
This operation is used to represent hard-coded values from the SPARQL query.
Therefore we can assume that the amount of values present is comparatively low
and always fully materialized anyway.
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6. Experiments

6.1. Setup
CPU AMD Ryzen 9 7950X
Memory 48GB²³
Storage 2x 4TB WD SN850X NVME, Software-RAID 0
OS Ubuntu 24.04.1 LTS
Git hash 4237e0d4af70e6e400f4357f61756eb5873fe98a

Build configuration Release, Parallel, GCC 13.3.0
Dataset Wikidata 2024-11-14

Table 1: Benchmark environment

To measure performance in all of the following experiments we submit a query
via HTTP and set the expected output format to QLever’s proprietary JSON format
which also includes a computation time with millisecond precision. To avoid
waiting for the potentially slow export via the network and for it to skew the peak
memory usage, we always set the GET parameter send=100 which limits the output
but still calculates the whole result.

All tests are repeated twice. The reported value will represent the arithmetic mean
of all 3 values.

6.2. Comparing Performance and Memory
For this experiment, we compare all example queries from Section  5.3 on the
Wikidata dataset plus a variant of the GroupBy query, also found in Section 2.1, and
a variant of the CartesianProductJoin example presented in Section 5.3.9 with an
added LIMIT 1000000, as well as the following query cherry-picked from qlever-ui’s²⁴
example query set to act as more of a real-world example.

²³Artificial memory limit via configuration.
²⁴The official qlever-ui demo can be found at https://qlever.cs.uni-freiburg.de.
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1 PREFIX wdt: <http://www.wikidata.org/prop/direct/> SPARQL
2 PREFIX wd: <http://www.wikidata.org/entity/>
3 PREFIX wikibase: <http://wikiba.se/ontology#>
4 PREFIX schema: <http://schema.org/>
5 SELECT ?name ?pic ?sitelinks WHERE {
6   ?person wdt:P31 wd:Q5 .
7   ?person ^schema:about/wikibase:sitelinks ?sitelinks .
8   ?person wdt:P18 ?pic .
9   ?person schema:name ?name .
10   FILTER (lang(?name) = "en") .
11 }
12 ORDER BY DESC(?sitelinks)

Listing 2: Example query “People with Pictures”

6.2.1. Methodology
To directly compare the performance and memory overhead of laziness we use a
second variant of the code that never requests lazy results25. This is to avoid any
performance differences resulting from any other aspects of the code.

To measure the memory footprint of queries we measure the memory usage at
the point before the query and compute the difference of this value and the peak
memory usage after the query has finished.

6.2.2. Results
The raw data for this experiment can be found in Table 4 and Table 5. Below we
can find a prettified version that is easier to interpret.

All values denoted in red performed worse than their respective counterpart. All
values represented as a single dash indicate that the query did not successfully
finish due to memory allocation errors. For Wikidata these queries would typically
require more than 160GB of memory which is more than our test machine is
capable of providing.

25The exact code change can be found in Listing 3.
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Processing Time Memory Delta
Query

Lazy Non-Lazy Lazy Non-Lazy
IndexScan example 20s - 702MB > 48GB²³
Filter example 127s - 702MB > 48GB²³
GroupBy example 608s - 702MB > 48GB²³
Join example 3715ms 4833ms 702MB 2151MB
Bind example26 447min - 1130MB > 48GB²³
Union example 39s - 702MB > 48GB²³
Distinct example 82s - 702MB > 48GB²³
TransitivePath example 13s 15s 702MB 2244MB
CartesianProductJoin example 111s - 702MB > 48GB²³
GroupBy example variant 385ms - 705MB > 48GB²³
CartesianProductJoin ex. variant 144ms 122ms 702MB 702MB
People with pictures 2342ms 2222ms 851MB 996MB

Table 2: Comparison of queries with and without laziness capabilities

The measured data mostly confirms our initial assumptions and expectations.
Of course, the selection of queries to benchmark is biased towards worst-
case scenarios for QLever, where without any laziness functionality the memory
requirements are really high. This is why most of the queries fail when forced to
run without laziness enabled. There are some exceptions though.

A lot of the queries were measured to have 702MB of peak memory usage. This is
almost certainly an artifact of the measurement approach. It indicates that QLever
at some point requires 702MB of additional memory to serve a response for a
single request. We do not know if this spike in memory usage occurs at some point
between the start of the HTTP request and the start of the computation, or if it
is an artifact that is itself caused by every query. To find out an involved memory
analysis would be required which is non-trivial to do in the worst case. Regardless
our approach is good enough to be able to isolate memory-intensive non-lazy
operations that are significant enough to stand out.

The Join query represents a little bit of a special case, because for Join QLever
already had optimizations in place specifically for the case where the results of
two IndexScan operations had to be joined. This case can be drastically sped up by
making use of the index so blocks of rows that are known not to match at all can be
skipped altogether. This is why even if the newly introduced laziness mechanism is
disabled, this optimization allows the IndexScan operations to essentially perform
the same actions as before. The increased memory overhead is a direct effect

26For Bind the values were extrapolated because creating a string for every triple would take an
unreasonable amount of time. Based on a LIMIT 100000000 and 20,054,336,444 triples in total we
estimated a linear growth in runtime and the memory consumption to be roughly constant.
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of the circumstance that even with this specific optimization still working Join
itself has no other choice than to store the computed result set in a single fully
materialized table. When executing lazily only the individual chunks end up fully
materialized, allowing QLever to never fully materialize the result at any point in
the computation chain. Somewhat surprisingly the lazy variant of the computation
is significantly faster than its non-lazy counterpart. We have to assume this is
because expensive allocations and reallocations of large memory areas can be
avoided in the lazy case, but a definitive answer would require a closer inspection.

The TransitivePath example query likely succeeds because it only operates on a
relatively small subset of the Wikidata graph, on roughly 5 million rows, leading
to a result with roughly 130 million rows. Even when the results have to be fully
materialized this amount of data will fit comfortably inside the memory of most
consumer hardware. The drastically increased memory requirement of the non-lazy
variant is unsurprising because in this case the 130 million rows never have to exist
in memory all at once. The 2-second reduction in execution time is also somewhat
unexpected but within a range that can reasonably be attributed to measurement
uncertainty.

Neither the GroupBy query nor its variant with a limit do successfully complete in the
non-lazy case. It is worth pointing out though that in the lazy case the variant with
limit runs significantly faster, even though the GroupBy operation does not natively
support limits. This is because the mechanism that enables lazy consumption
does allow ending consumption on every chunk boundary and thus enables this
huge improvement to execution times without specifically implementing it for every
operation.

The original query for CartesianProductJoin does not complete in the non-lazy
case but does complete for the variant with a stricter limit. This is because
CartesianProductJoin is one of the few operations that can natively handle limits
and propagate them accordingly to its children. For this query, the slight increase
in processing time for the lazy case can be explained by all of the overhead this
mechanism brings along. The memory overhead with limit for both cases, lazy and
non-lazy is too small to stand out and thus too small to reason about.

The “People with pictures” (Listing 2) query was chosen to be more of a real-world
example rather than a worst-case scenario. This is why both the lazy and non-lazy
cases finish reasonably fast. The lazy case brings about 5% performance overhead,
but a reduction of 15% in terms of peak memory consumption. These gains and
losses are not representative of a wide range of queries, every query is different,
but they show that laziness does allow to trade memory for performance in some
cases.

6.3. Performance Penalty of Caching
For this experiment, we use the same queries as Section 6.2, but we apply a LIMIT
1000000. Exceptions to this rule are the query for Join, which is left unchanged,
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and CartesianProductJoin which is used with LIMIT 100000000 instead to account
for the different characteristics of the operations. Because our two variants in the
previous experiment only differed by their LIMIT they are no longer of any interest
to us and thus we have 2 fewer queries to observe.

6.3.1. Methodology
To better understand the overhead the newly introduced caching mechanism
for lazy results introduces we measure the computation time for the respective
queries, using different maximum caching thresholds. This threshold can be
controlled via a CLI flag --lazy-result-max-cache-size. It defaults to 5MB. For this
experiment, we also try 500MB and 5000MB.

6.3.2. Results
The raw data for this experiment can be found in Table 6. Figure 3 visualizes this
data by representing the default case with green bars and the other thresholds
in yellow and red respectively. The error bars indicate the standard error of the 3
individual test runs, the actual value of the bars represents the arithmetic mean. To
represent all measured values in the same figure, they are all divided by the mean
time of the 5MB configuration. So the green bars all start at 1 for reference.
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Figure 3: Overhead caused by caching lazy results

We would expect that by increasing the threshold the overhead and thus the
processing time would increase. And for the most part, this is what we can observe
in the plot. An exception to this can be observed for IndexScan. This makes sense
because IndexScan is the only operation that does exactly know the size of its
results in advance so if the result is too large it will not even start to aggregate the

28



Experiments

tables to be able to cache it. This is why the standard errors of those three bars
overlap each other so clearly.

It is not completely clear why for Bind the bars are all so similar. We assume this is
because, for this particular query, most of the time is likely spent creating strings
and allocating the required memory instead of doing any actual computation. This
could be a potential reason for this observation. For the “People with pictures”
query, there seems to be an oddity with the 500MB and 5000MB configuration.
However, in this case, the actual result sizes might slightly exceed 5MB, but will
never get to sizes where the 500MB threshold is too small. This is why increasing
the threshold even further will not change anything for this particular query and so
the oddity can be explained by the variance of the measurement process.

6.4. Testing the Effects of Chunk Sizes
We want to observe the implications for the performance of different chunk sizes.

6.4.1. Synthetic Benchmark
To empirically test the claim made in Section 4.2 we created a synthetic micro-
benchmark using “Google benchmark”27. The implementation for this benchmark
can be found in Listing 4 and Listing 5.

We ran this benchmark using the same compiler configuration as all other
experiments in this chapter. We have 8 variants of the same generator that all try to
create 100 million 32-bit integers and subsequently sum all of them up (this is not
enough to result in an integer overflow). To make it a little bit harder for the branch
predictor, the values generated start at a random value, which is then incremented
for every newly inserted value.

Chunk Size Ø Time #Samples
1 972 ms 1

(inline) 1 253 ms 3
10 134 ms 5

100 39 ms 18
1000 31 ms 22

10000 28 ms 24
100000 27 ms 25

1000000 28 ms 25
10000000 159 ms 4

Table 3: Total average processing time of the benchmark code

As we can see in Table 3 we reach a sweet spot at a chunk size of 100 thousand
elements. For sizes any lower it seems that the overhead the generator introduces

27Google benchmark: https://github.com/google/benchmark
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slows things down a bit, especially when the chunk size is just a single element
where it becomes unreasonably high. We assume this is because the benchmark
repeatedly allocates memory on the heap for just 4 bytes which is very inefficient.
To have a closer look at this effect, we created a second variant of the benchmark
(Listing 5) that yields the integers directly instead of wrapping them inside a vector.
As we can see the overhead is still rather high in comparison, but way lower than
before. Once we reach a chunk size of 1 million the time is increasing again,
presumably because the memory regions grow so large they no longer fit inside the
CPU cache they could previously comfortably reside in.

6.4.2. Methodology
To see the practical effects of chunk sizes concerning runtime, we run 2 queries
with 4 different chunk sizes, namely the example queries shown in Section 5.3.4
(Join) and Section 5.3.9 (CartesianProductJoin) because those are currently the
only operations with fixed chunk sizes. They were also used in the previous
experiment in Section 6.2. Because those chunk sizes are not configurable, we need
to modify the code directly. See Listing 7 and Listing 6 for the respective changes28.
We compare chunk sizes of 1,000, 10,000, 100,000, and 1,000,000, so the code is
adjusted for each case accordingly.

6.4.3. Results
The raw data for this experiment can be found in Table 7. Below it is visualized in
Figure 4. The shown values indicate the mean of three runs, the error bars show
the respective standard error.
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Figure 4: Real-world effects of different chunk sizes.

28The referenced patches only show the changes to specific other chunk sizes, so for all sizes
that are not shown the values need to be changed accordingly.
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As we can see the results do align with our synthetic example to a reasonable
degree. We can clearly see that for Join the measurements for 1 million, 100
thousand, and 10 thousand are very similar, just like we observed in the synthetic
benchmark. The fastest option of them all (100,000) is used by QLever for this
operation. For CartesianProductJoin we see a similar picture but the standard error
makes it clear that the processing time itself can vary a lot, regardless of chunk size
configuration. For this operation, 1 million is used as the chunk size. In both cases,
a chunk size of 1000 introduces a significant overhead making it clear a chunk size
this low should be avoided.
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7. Conclusion
In this thesis, we have shown that extending QLever’s code to provide a
general mechanism to evaluate results lazily provides huge benefits for memory
consumption on a variety of queries. We also showed that in some cases this newly
introduced mechanism can even provide drastic improvements to performance
whenever small limits are present. For queries that do experience a statistically
significant performance regression, we also showed that it is a reasonable tradeoff
to reduce memory consumption. It should be clear that there is still room left for
further improvement by enabling even more operations that have not been modified
yet to make use of this newly introduced mechanism.
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8. Future Work

8.1. Lazy Sorting
In Section  5.4.5 we mentioned that sorting is inherently non-lazy. We cannot
produce a value until we have consumed the whole input and once everything is
consumed there does not seem to be a reason to yield smaller slices of the data,
because when everything is sorted the data is already present in its entirety.

One improvement that can be made here is to use the laziness mechanism
to reduce the memory footprint. This can be done by sorting all input chunks
individually when they come in and writing them to disk for later access. Once the
input is fully consumed small parts of it can be read to memory and passed to
subsequent operations. This way the operation will not be any faster (and almost
certainly slower because reading and writing from disk is orders of magnitudes
slower than from memory), but it will save a lot of memory.

8.2. Improving Query Planning
Query planning was not changed by the efforts of this work, as mentioned in
Section  3.1, but it is likely some room for optimization is left on the table here.
But this is far from being a trivial problem. As soon as memory constraints come
into play, optimizing query plans turns into a multi-objective optimization problem.
No longer does the query planner just have to find a sequence of operations
that likely compute the correct result as fast as possible, now we also have to
consider how much memory is at our disposal. It does not help that the amount of
allocated memory is constantly changing, so the actual available memory has to
be estimated conservatively which might leave a lot of performance on the table
when memory stays unused even though it could have been used.

It remains an open question if a hybrid approach where a faster but memory-
intensive operation is preferred over a slower, but memory-efficient plan and
falling back to the alternative if not enough memory is available does provide
any practical advantages. This would heavily depend on real-world scenarios and
implementation details that might change in the future.

In case a small limit is present it would be highly desirable to prefer query plans
that only chain operations together so that all of them can start producing partial
results without having consumed the whole input. So if a limit is present we can
stop the computation as soon as enough rows have been produced, saving a lot of
CPU resources and time. This also increases the complexity of query planning.

8.3. Minimal Local Vocabularies
As indicated in Section 5.1.2 and explicitly mentioned in Section 5.3.2 the current
implementation of the class for local vocabularies LocalVocab has limitations that
become noticeably problematic with the introduction of lazy results. The local
vocabulary just keeps a set of “vocabulary data” in memory without any metadata
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where it is being used. Conceptually it is an extension of QLever’s internal ValueId
type, which stores everything in 64 bits as already explained in Section 5.1.2. But
to trivially and efficiently write large amounts of data they need to be separated.
Otherwise, the code would have to follow pointers into arbitrary memory whenever
modifying instances of IdTable just to keep track of various reference counters
which is really inefficient.

Once something is written into a LocalVocab object it is no longer associated with
the actual ValueId that it supports. So when a subsequent operation removes an
entire column from an IdTable or only keeps some rows from the result, we either
have to keep all entries from the local vocabulary (which is the current behavior) or
check every value individually if it is still required (which is unreasonably expensive
to do). In other words, the current implementation trades a higher memory
consumption for faster execution times.

This does not have to be the case though. Obviously, there is always some kind
of tradeoff that has to be made, but simply having one instance of LocalVocab
associated with a certain column of an IdTable would already allow to drop a lot of
values whenever a whole column is dropped. This would allow for lower memory
footprints for a range of queries, even if it does increase the memory footprint
whenever multiple columns have lots of overlapping vocabulary data. The former
case should be more common because the latter should only ever occur when a
query is specifically crafted to have redundancy across multiple columns. Maybe
there is even a more sophisticated approach out there that improves even more
cases. In any case, this is something to think about in the future.

8.4. Avoiding Aggregation Tables when Unnecessary
As mentioned in Section  5.2.2 currently the IndexScan operation does not even
try to build an aggregation table when it will inevitably exceed the memory
threshold, because IndexScan does know exactly how many elements it will return.
This mechanism could be extended to other operations as well, even if it means
relying on heuristics to estimate the expected size. It remains unclear how much
of a margin of error should be taken into account when making this decision.
Regardless, changing this could speed up processing in several cases even if this
means not caching some results where the heuristic is off by a lot.

8.5. Preventing Out-Of-Memory Issues for Lazy-Caching
Whenever a lazy result is consumed the values are copied over into an aggregation
table to be able to store the whole result in the cache in the future (see Section 5.2.2
for details). Whenever this table becomes too big because no more memory is
available or it has reached the maximum allowed threshold it is discarded to not
terminate the computation for this silly reason. This works well enough for the
most part, especially because the default threshold is rather small (5 MB). But if the
memory requirements of a specific operation are just perfectly so that it would have
succeeded without any aggregation tables in the memory, but failed because an
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aggregation table consumed just enough memory to run out of it this is obviously
undesirable. Just to be clear, it is unlikely that an operation, potentially requiring
multiple gigabytes of memory will ever fail specifically because of this but ideally,
it should be impossible. With fully materialized results this does never happen.
Whenever an operation tries to allocate memory exceeding the configured memory
limit QLever clears the cache first and checks again. Because the aggregation table
is not stored in the cache during its creation it is not affected by this even though it
should. By extending this mechanism it should be possible with reasonable effort
to also clear any aggregation tables that might still be in the process of creation.
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Section 5: Lazification
INDEX SCAN ?a ?b ?c
Cols: ?c, ?b, ?a
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 41,677ms [~ 20,032,991,387]

Figure 5: Execution Tree for the IndexScan example query

INDEX SCAN ?a ?b ?c
Cols: ?c, ?b, ?a
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 1,034ms [~ 20,032,991,387]

FILTER (?a = ?c)
Cols: ?c, ?b, ?a
Size: 17,716,040 x 3 [~ 20,032,991]
Time: 81,185ms [~ 20,053,024,378]

Figure 6: Execution Tree for the Filter example query

INDEX SCAN ?a ?b ?c
Cols: ?a, ?b, ?c
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 752ms [~ 20,032,991,387]

GROUP BY on ?a
Cols: ?a, ?count (U)
Size: 2,177,511,744 x 2 [~ 2,177,511,680]
Time: 596,635ms [~ 0]

Figure 7: Execution Tree for the GroupBy example query

INDEX SCAN ?person <label> ?label
Cols: ?person, ?label
Size: 715,526,323 x 2 [~ 747,182,573]
Time: 79ms [~ 747,182,573]

INDEX SCAN ?person <P569> ?birth_date
Cols: ?person, ?birth_date
Size: 6,605,931 x 2 [~ 6,605,931]
Time: 1ms [~ 6,605,931]

INDEX SCAN ?person <P31> <Q5>
Cols: ?person
Size: 11,634,559 x 1 [~ 11,634,559]
Time: 1ms [~ 11,634,559]

JOIN on ?person
Cols: ?person, ?birth_date
Size: 6,581,647 x 2 [~ 4,624,151]
Time: 260ms [~ 22,864,641]

JOIN on ?person
Cols: ?person, ?birth_date, ?label
Size: 83,812,640 x 3 [~ 18,707,105]
Time: 2,862ms [~ 770,513,829]

Figure 8: Execution Tree for the Join example query
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INDEX SCAN ?a ?b ?c
Cols: ?c, ?b, ?a
Size: 1,781,625 x 3 [~ 1,781,625]
Time: 6ms [~ 1,781,625]

BIND (CONCAT(?a, ?b, ?c) AS ?string)
Cols: ?c, ?b, ?a, ?string (U)
Size: 1,781,625 x 4 [~ 1,781,625]
Time: 1,941ms [~ 1,781,625]

Figure 9: Execution Tree for the Bind example query

INDEX SCAN ?a ?b ?c
Cols: ?c, ?b, ?a
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 27,028ms [~ 20,032,991,387]

VALUES with variables ?a ?b ?c
Cols: ?a, ?b, ?c
Size: 1 x 3 [~ 1]
Time: 1ms [~ 1]

UNION
Cols: ?a, ?b, ?c
Size: 20,032,991,388 x 3 [~ 20,032,991,388]
Time: 1,904ms [~ 20,032,991,388]

Figure 10: Execution Tree for the Union example query

INDEX SCAN ?a ?b ?c
Cols: ?a, ?b, ?c
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 1,155ms [~ 20,032,991,387]

DISTINCT
Cols: ?a, ?b, ?c
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 66,076ms [~ 20,032,991,387]

Figure 11: Execution Tree for the Distinct example query

INDEX SCAN ?_qlever_internal_variable_qp_0 <P279> ?_qlever_internal_variable_qp_1
Cols: ?_qlever_internal_variable_qp_0, ?_qlever_internal_variable_qp_1
Size: 4,921,545 x 2 [~ 4,921,545]
Time: 47ms [~ 4,921,545]

TRANSITIVE PATH ?class <P279> ?subclass
Cols: ?class, ?subclass
Size: 128,818,336 x 2 [~ 49,215,450,000]
Time: 22,343ms [~ 49,215,450,000]

Figure 12: Execution Tree for the TransitivePath example query

39



Appendix

INDEX SCAN ?c ?d ?e
Cols: ?e, ?d, ?c
Size: 20,032,991,387 x 3 [~ 20,032,991,387]
Time: 1,405ms [~ 20,032,991,387]

VALUES with variables ?a
Cols: ?a
Size: 1 x 1 [~ 1]
Time: 1ms [~ 1]

VALUES with variables ?b
Cols: ?b
Size: 1 x 1 [~ 1]
Time: 1ms [~ 1]

CARTESIAN Product Join
Cols: ?b, ?a, ?e, ?d, ?c
Size: 20,032,991,387 x 5 [~ 20,032,991,387]
Time: 114,544ms [~ 20,032,991,387]

Figure 13: Execution Tree for the CartesianProductJoin example query

Section 6: Experiments
Processing Time Memory Delta

Query
1 2 3 1 2 3

0 23597ms 18637ms 18898ms 702436KB 702448KB 702928KB
1 126627ms 129626ms 124991ms 702812KB 702676KB 702968KB
2 608942ms 608612ms 606451ms 702812KB 702804KB 702896KB
3 3749ms 3667ms 3729ms 702576KB 702840KB 702768KB
4 135250ms 135075ms 134275ms 1129792KB 1131180KB 1131640KB
5 38543ms 39217ms 39414ms 702708KB 702732KB 703060KB
6 82289ms 82222ms 82581ms 702476KB 702800KB 703120KB
7 13028ms 13534ms 13478ms 702644KB 703064KB 702920KB
8 109903ms 111920ms 111551ms 702536KB 702988KB 702920KB
9 387ms 384ms 386ms 702912KB 710600KB 702920KB

10 141ms 145ms 146ms 702804KB 702536KB 702668KB
11 2381ms 2329ms 2317ms 881880KB 805020KB 867932KB
12

Table 4: Raw data for experiments Section 6.2 and Section 6.3

diff --git a/src/engine/Operation.cpp b/src/engine/Operation.cpp
index 3a25e752..c872064f 100644
--- a/src/engine/Operation.cpp
+++ b/src/engine/Operation.cpp
@@ -139,8 +139,7 @@ ProtoResult Operation::runComputation(const
ad_utility::Timer& timer,
   checkCancellation();
   runtimeInfo().status_ = RuntimeInformation::Status::inProgress;
   signalQueryUpdate();
-  ProtoResult result =
-      computeResult(computationMode == ComputationMode::LAZY_IF_SUPPORTED);
+  ProtoResult result = computeResult(false);
   AD_CONTRACT_CHECK(computationMode == ComputationMode::LAZY_IF_SUPPORTED
||
                     result.isFullyMaterialized());

Listing 3: Git patch to disable lazy results for direct comparison
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Processing Time Memory Delta
Query

1 2 3 1 2 3
0 OOM OOM OOM OOM OOM OOM
1 OOM OOM OOM OOM OOM OOM
2 OOM OOM OOM OOM OOM OOM
3 4803ms 4774ms 4924ms 2150120KB 2153188KB 2151608KB
4 OOM OOM OOM OOM OOM OOM
5 OOM OOM OOM OOM OOM OOM
6 OOM OOM OOM OOM OOM OOM
7 15471ms 15480ms 15391ms 2244908KB 2244224KB 2244472KB
8 OOM OOM OOM OOM OOM OOM
9 OOM OOM OOM OOM OOM OOM

10 133ms 116ms 117ms 702388KB 702832KB 702812KB
11 2245ms 2243ms 2179ms 982380KB 1014724KB 991012KB
12

Table 5: Raw data for the second experiment of Section 6.2

5MB 500MB 5000MBQuery
1 2 3 1 2 3 1 2 3

0 135ms 138ms 142ms 138ms 133ms 140ms 135ms 139ms 144ms
1 125.97s124.30s120.02s129.86s129.77s125.40s132.17s129.45s126.75s
2 381ms 373ms 377ms 380ms 376ms 381ms 389ms 387ms 376ms
3 51ms 52ms 50ms 52ms 48ms 53ms 52ms 53ms 50ms
4 1430ms1424ms1457ms1437ms1435ms1438ms1420ms1451ms1450ms
5 140ms 134ms 140ms 138ms 138ms 136ms 138ms 139ms 141ms
6 103ms 111ms 107ms 107ms 111ms 108ms 110ms 109ms 110ms
7 516ms 506ms 535ms 521ms 520ms 524ms 539ms 549ms 533ms
8 139ms 149ms 141ms 138ms 145ms 141ms 143ms 141ms 145ms
9 2484ms2410ms2450ms2522ms2531ms2485ms2490ms2483ms2443ms

10

Table 6: Raw data for the experiment of Section 6.3
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1 #include <vector> C++
2 #include <random>
3 #include <ranges>
4 #include <benchmark/benchmark.h>
5 #include "Generator.h"
6
7 constexpr size_t TOTAL_AMOUNT = 100'000'000;
8

9
cppcoro::generator<std::vector<uint32_t>> generateValues(size_t
chunkSize) {

10   if (TOTAL_AMOUNT % chunkSize != 0) {
11     throw std::runtime_error{"Must be exactly divisible"};
12   }
13   size_t seed = std::random_device{}();
14   for (size_t i = 0; i < TOTAL_AMOUNT / chunkSize; i++) {
15     std::vector<uint32_t> elements;
16     elements.resize(chunkSize);
17     for (uint32_t& element : elements) {
18         element = static_cast<uint32_t>(seed++);
19     }
20     co_yield elements;
21   }
22 }
23
24 uint64_t sum(cppcoro::generator<std::vector<uint32_t>> generator) {
25   uint64_t result = 0;

26
  for (uint32_t element : std::ranges::ref_view{generator} |

std::views::join) {
27     result += element;
28   }
29   return result;
30 }
31
32 static void SUM_VALUES(benchmark::State& state) {
33   for (auto _ : state) {
34     benchmark::DoNotOptimize(sum(generateValues(state.range(0))));
35     benchmark::ClobberMemory();
36   }
37 }
38

39
BENCHMARK(SUM_VALUES)->RangeMultiplier(10)->Range(1, TOTAL_AMOUNT /
10);

Listing 4: Code used to create a synthetic benchmark for chunk sizes.
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1 #include <random> C++
2 #include <ranges>
3 #include <benchmark/benchmark.h>
4 #include "Generator.h"
5
6 constexpr size_t TOTAL_AMOUNT = 100'000'000;
7
8 cppcoro::generator<uint32_t> generateValues() {
9   size_t seed = std::random_device{}();
10   for (size_t i = 0; i < TOTAL_AMOUNT; i++) {
11     co_yield static_cast<uint32_t>(seed++);
12   }
13 }
14
15 uint64_t sum(cppcoro::generator<uint32_t> generator) {
16   uint64_t result = 0;
17   for (uint32_t element : generator) {
18     result += element;
19   }
20   return result;
21 }
22
23 static void SUM_VALUES_INLINE(benchmark::State& state) {
24   for (auto _ : state) {
25     benchmark::DoNotOptimize(sum(generateValues()));
26     benchmark::ClobberMemory();
27   }
28 }
29
30 BENCHMARK(SUM_VALUES_INLINE);

Listing 5: Code used to create a synthetic benchmark with inline values

Generator.h is a replacement for the generator header in versions before C++23. The
version used by QLever and this benchmark can be found here: https://github.com/
ad-freiburg/qlever/blob/4237e0d4af70e6e400f4357f61756eb5873fe98a/src/util/
Generator.h
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diff --git a/src/engine/CartesianProductJoin.h b/src/engine/
CartesianProductJoin.h
index 8c0a071c..3b572669 100644
--- a/src/engine/CartesianProductJoin.h
+++ b/src/engine/CartesianProductJoin.h
@@ -37,7 +37,7 @@ class CartesianProductJoin : public Operation {
   // custom `chunkSize` for chunking lazy results.
   explicit CartesianProductJoin(QueryExecutionContext* executionContext,
                                 Children children,
-                                size_t chunkSize = 1'000'000);
+                                size_t chunkSize = 100'000);

   /// get non-owning pointers to all the held subtrees to actually use the
   /// Execution Trees as trees

Listing 6: Git patch to change the chunk size of CartesianProductJoin from the
default 1 million to 100 thousand

diff --git a/src/engine/Join.h b/src/engine/Join.h
index 8c8978c8..22e04afb 100644
--- a/src/engine/Join.h
+++ b/src/engine/Join.h
@@ -36,7 +36,7 @@ class Join : public Operation {

   using OptionalPermutation = std::optional<std::vector<ColumnIndex>>;

-  static constexpr size_t CHUNK_SIZE = 100'000;
+  static constexpr size_t CHUNK_SIZE = 1'000'000;

   virtual string getDescriptor() const override;
Listing 7: Git patch to change the chunk size of Join from the default 100 thousand

to 1 million

Query 1000000 100000 10000 1000
1 118804ms 117425ms 114862ms 121655ms
2 115451ms 117054ms 121113ms 122917msCartesianProductJoin

3 117645ms 119197ms 124109ms 124674ms
1 4300ms 3637ms 5733ms 23565ms
2 4393ms 3682ms 5651ms 22858msJoin

3 4390ms 3704ms 5769ms 23167ms

Table 7: Raw data for the experiment of Section 6.4
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