Energy Price Forecasting
with Uncertainty Estimation

Master Thesis Presentation by
Sneha Senthil

Chair of Algorithms and Data Structures
University of Freiburg

Albert-Ludwigs-University of Freiburg

22/09/2022

UNI

FREIBURG



CONTENTS

1. Introduction
2. Solution

3. Evaluation



INTRODUCTION

. Electricity is bought in the day-ahead market.

. Balancing supply versus demand leads to highly

volatile market prices.

. Predicting the day-ahead price would help

maximize profit.



MOTIVATION

Prices during the week 15/01/22-21/01/22
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MOTIVATION
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PROBLEM

features;

features, 4

Pricessq

features;

1 Maodel

PriCesss

A

Priceyspy

A

features are load, prices, wind energy, solar energy
and weather features

Image retrieved from http.//www.stat.yale.edu/Courses/1997-98/101/normal.htm



INTRODUCTION

Questions?
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Approach

- Split data into
N ) Create training, )
Download the Combine Data_pre— validation and corresponding Train models Evaluate and
data datasets processing features and compare
fest zets labels




METHODS

. Data

. Models
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DATA

Data for 2 countries is considered: Spain and Switzerland.
Models are trained separately on each dataset.

Features from Entsoe: Features from Copernicus:
« Load e Shortwave Radiation

o Generation (Solarand Wind) e« Wind Speed

e Prices o Air Temperature

o Total Precipitation
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DATA- FEATURES AND LABELS

Features: Hourly
historical
features, going
back n-hours
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DATA AUGMENTATION

Prices

- & B ¥ & E

Electricity Prices in Spain Electricity Prices in Switzerland

Data augmentation is done by multiplying the training
data with 3.5. This is used as additional training data.
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MODELS

. Deterministic Models

. Probabilistic Models
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DETERMINISTIC MODELS

. Linear model (Baseline)
. Residual MLP
. LSTM

. Transformer

-The first 3 models were used during the master project.
They are now being used to compare against the
Transformer model.
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DETERMINISTIC MODELS- LINEAR

. Used as a baseline inputs
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DETERMINISTIC MODELS- RESIDUAL MLP
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DETERMINISTIC MODELS- LSTM
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DETERMINISTIC MODELS- Transformer

State of the art model for many
NLP tasks

We use a transformer encoder-only
model for forecasting energy prices

Image retrieved from Vaswani et al. (2017)
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DETERMINISTIC MO - Transformer
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DETERMINISTIC MODELS- Transformer

Based on the input features to the model, there are 3
types of Transformer models that were trained.

INPUT DATA
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Hyperparameters

HYPERPARAMETER VALUE
number of hours back 72
number of hours back 168
(Transformer)

Initial learning rate 104
Optimizer Adam

Regularisation: Early Stopping, Reduce Learnlng Rate on

Plateau, Learning Rate Scheduler
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DETERMINISTIC MODELS- RECAP

There are 4 deterministic models used for energy
price prediction:

1. Linear Model
2. Residual MLP
3. LSTM

+. Transformer (3 different models based on the
Input data)
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MODELS

. Deterministic Models

. Probabilistic Models
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PROBABILISTIC MODEL
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Image retrieved from http.//www.stat.yale.edu/Courses/1997-98/101/normal.htm
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PROBABILISTIC MODEL

Inputs
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PROBABILISTIC MODEL

3 distributions were considered while training the
probabilistic models:

Leamant : Learnable Learnable
parameters: parameters: _
e Mean e Mean parameters:
e Standard e Concentration
o e Standard
Deviation Deviation e Rate
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METHODS

Questions?
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EVALUATION

. Deterministic Models

. Probabilistic Models
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EVALUATION- DETERMINISTIC
MODELS

Evaluation Metrics:
. Mean Absolute Error

1

MAE = =53 ly; -

. Root Mean Squared Error

1 A
RMSE = \[ 1524y~ )
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EVALUATION- DETERMINISTIC
Mglgg-lsélin Dataset

MODEL MAE (€/MWh) RMSE (€/MWh)
Linear (Baseline) 47.98 59.63
Residual MLP 13.42 19.17 Mean price in test
' ' data: 135.3 €/ MWh
LSTM 13.18 19.22
Transformer 9.75 15.09

RESULTS - Switzerland Dataset

MODEL MAE (€/MWh) RMSE (€/MWh)
Linear (Baseline) 85.9 106.92
Residual MLP 22.64 32.18 Mean price in test
' ' data: 164.5 €/ MWh
LSTM 21.71 314
Transformer 17.29 26.05 i
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EVALUATION- TRANSFORMER

RESULTS - Input Features Dependency (Spain Dataset)

Forecast

INPUT DATA MAE (€/MWh) RMSE (€/MWh)
Only Features 9.75 15.09
Features+Position Encoding 11.6 16.75
Features+Paosition Encoding+Weather 11.64 17.02

RESULTS - Input Features Dependency (Switzerland Dataset)

Forecast

INPUT DATA MAE (€/MWh) RMSE (€/MWh)
Only Features 17.29 26.05
Features+Position Encoding 17.91 27.07‘:
Features+Position Encoding+Weather 19.1

28,45 _
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EVALUATION- TRAINING TIMES

MODEL TRAINING TIME

Linear 4 minutes and 20 seconds
Residual MLP 27 minutes and 5 seconds
LSTM 150 minutes and 25 seconds
Transformer 12 minutes and 30 seconds
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TRANSFORMER- PREDICTION GRAPHS

Test Data , Mean Predicted Price= 210.56
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EVALUATION

. Deterministic Models

. Probabilistic Models
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EVALUATION- PROBABILISTIC MODELS

Evaluation Metrics:
1) Quantile Difference

-
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EVALUATION- PROBABILISTIC MODELS

Evaluation Metrics:
2) CRPS Score
Continuous Ranked Probability Score

It measures the squared distance between the predicted
distribution and the target.

1 T T |
nsf ——— Faracast probabilty |
——— Observed probability
nsf CRPS |
ork |
o6l |
505t 7 |
CRPS(Fw) = [ (R(y) - Hly - w))’dy
04 o

Image retrieved from https.//www.mathworks.com/matlabcentral/fileexchange/47807-continuous-
rank-probability-score 38



EVALUATION- PROBABILISTIC MODELS

Evaluation Metrics:

3) Log Likelihood
. Logarithm of the probability density function of the
observed data

. The higher log likelihood value, the better the
model is at fitting the data
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EVALUATION- PROBABILISTIC MODELS

Results- Residual MLP (Spain)

DISTRIBUTION Quantile CRPS Log Likelihood MAE
Difference
(80%)
Normal 50.49 8.44 0.67 8.76
Log-normal 48.81 10.92 -0.67 10.17
Gamma 63.96 12.46 0.68 9.55

Deterministic Residual MLP: MAE = 13.42
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EVALUATION- PROBABILISTIC MODELS

Results- Residual MLP (Spain)

DISTRIBUTION Quantile CRPS Log Likelihood MAE
Difference
(80%)
Normal 50.49 8.44 0.67 10.85
Log-normal 48.81 10.92 -0.67 12.44
Gamma 63.96 12.46 0.68 12.47
Normal 48.81 12.39 0.27 15.96
(Transformer)

Deterministic Transformer: MAE = 9.75
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RESIDUAL MLP (NORMAL DISTRIBUTION)- PREDICTION
GRAPHS

Test Data , Mean Predicted Price = 228.86
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CONCLUSION

= [Transformer is successful in time series forecasting.

= Converting a Residual MLP to a probabilistic model
helped improve prediction accuracy, but this was
not the case for the Transformer.

= Probabilistic predictions help in understanding
uncertainty of the model.
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Thank You!
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