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Abstract

Knowledge graphs provide a structured way to represent the growing volume of web data
by organizing information into entities and the relationships between them. They are
typically expressed in the Resource Description Framework (RDF), where knowledge is
stored as subject-predicate-object triples that capture facts about the world. SPARQL
engines enable efficient management and querying of these graphs, but they vary widely
in their architecture, storage models, indexing strategies, and query optimization. This
variation makes it essential to identify engines that deliver both strong current performance

and effective scalability as data and query demands grow.

In this thesis, we present a unified and extensible framework for benchmarking and
evaluating seven SPARQL engines: QLever, Virtuoso, Blazegraph, Apache Jena, Oxigraph,
GraphDB, and MillenniumDB. The framework allows setup of SPARQL endpoints for all
supported engines using uniform, simple commands that work with both containerized
environments and pre-installed native binaries, without having to worry about internal
engine-specific details. A single configuration file, the Qleverfile, ensures consistent and
reproducible setup across engines and datasets. The framework supports execution
of benchmark queries with structured output that records runtimes, result sizes, and
benchmark metadata. We also develop an interactive web application that automatically
consumes the benchmark results, enabling comparisons across engines at both aggregate

and per-query levels.

We use the framework to evaluate the seven engines on various synthetic and real-world
benchmarks at three scales: small (~50M triples), medium (~500M triples), and large
(~8B triples). The experiments show how the framework simplifies setup, ensures repro-
ducibility, and provides actionable insights into performance, scalability, and correctness
of SPARQL engines. All software and materials to reproduce the evaluation are publicly

available at https://github.com/ad-freiburg/sparql-engine-evaluation-tanmay.
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1 Introduction

The rapid growth of data on the web has created a strong need for structured ways
to represent and query information. Knowledge graphs address this need through a
graph-based data model designed to capture and convey real-world knowledge [1]. They
organize data into entities, such as people, places, or concepts, and the relationships that
link them. The standard for modeling knowledge graphs is the Resource Description
Framework (RDF) [2]. RDF represents information as subject-predicate-object triples,
where consistent identifiers are used for the same entities. The subject and object refer
to entities (or resources), while the predicate specifies the relationship between them.
For example, to represent that Lionel Messi is a footballer that plays for Argentina as

<subject> - <predicate> - <object> triples:

<Lionel_Messi> - <has_profession> - <Footballer>

<Lionel_Messi> - <player_of> - <Argentina_National Team>
Now, we can add more triples:

<Lionel_Messi> - <player_of> - <FC_Barcelona>

<FC_Barcelona> - <plays_in_league> - <La_Liga>

When combined, these triples create a small knowledge graph shown in Figure 1.

(" A
<player_of>
—
[ <Lionel_Messi> } [ <FC_Barcelona> 1\\\\\\\
<plays_in_league>
<has_profession> <player_of>
~
<Footballer> [ <Argentina_National_Team> ]
- J

Figure 1: A toy knowledge graph illustrating RDF triples about Lionel Messi, his profession,
national team, club, and related league.
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To query and extract information from such graphs, the World Wide Web Consortium
(W3C) standardized the SPARQL query language [3]. SPARQL allows users to specify
patterns of triples with variables and retrieve the matching results (Listing 1). In practice,

SPARQL supports everything from simple lookups to complex graph traversals.

Listing 1 SPARQL query to get all football players that have played for both Argentina
National Team and FC Barcelona, with Messi being one of the results.

SELECT 7player

WHERE {
?player <has_profession> <Footballer> .
?player <player_of> <Argentina_National_Team> .
?player <player_of> <FC_Barcelona> .

}

Knowledge graphs have grown into one of the most important methods for storing
structured data at web scale. The largest publicly available knowledge graphs with a
coherent schema such as Yago-4 [4], Wikidata [5] and UniProt 6] can easily have billions
of these triples. The need to process complex SPARQL queries over such massive datasets
has led to the proliferation of a wide variety of SPARQL engines [7]. A SPARQL engine
(also called RDF Triplestore) is simply a system that supports the storing and indexing
of RDF data and processing of SPARQL queries on it. Indexing here refers to building
efficient data structures that allow the engine to quickly find relevant triples without

scanning the entire dataset.

However, not all engines are built in the same way. They differ in their internal archi-
tecture, how they store data, create indexes, and optimize query execution®. These design
choices have a major impact on performance and scalability. For instance, Oxigraph |§|
stands out for its simplicity and very fast data loading, but it produces large indexes and
offers little query optimization, which can slow down complex queries. Blazegraph [9],
by contrast, can handle large datasets and heavy workloads, but it is less user-friendly
and often requires careful configuration to perform well. Virtuoso [10] takes yet another
approach, offering powerful query optimization, but scaling it to massive knowledge graphs
often demands substantial hardware resources. These differences show that no single
engine performs best in every situation. The optimal choice depends on the dataset size,

query workload, and scalability needs.

LQuery optimization refers to selecting the most efficient way to execute a query, for example by
reordering query steps or making use of indexes to reduce unnecessary work.



Because of these performance and scalability differences, it is important to evaluate

multiple SPARQL engines for each use case.

1.1 Motivation

Consider the case of a research group or an engineering team at a company that needs to
select a SPARQL engine for querying a large knowledge graph. Their goal is to identify
an engine that offers good query performance today and can continue to meet future
demands as the knowledge graph and query workload grows. Or, consider the case of
researchers/developers who work on SPARQL engines and must test their systems against
existing ones and against earlier versions of their own work. For them, the goal is to
provide competitive evaluation, and a way to test whether modifications improve or harm
performance and scalability. In both scenarios, the evaluation process and the challenges
faced are broadly the same. It involves several steps that together determine how well

SPARQL engines perform and scale in practice.

A natural first step would be to consult the academic literature, where several benchmark
studies have already compared the key SPARQL engines and published the results.
Benchmarks in this context are programs designed to assess the speed and efficiency of
engines when executing a range of SPARQL queries. A recent survey lists several such
benchmarks [11], and these will be discussed in more detail in Chapter 2. Although
these benchmarks provide valuable insights, relying solely on them is problematic. The
results of these benchmarks often differ due to heterogeneity of datasets, differences in
benchmark design and query workloads, and variations in the underlying hardware and
software environments. Moreover, published benchmarks quickly become outdated as

newer versions of engines are released with feature changes and optimizations.

For this reason, users must attempt to reproduce the benchmark results themselves.
This typically involves downloading, installing, and configuring multiple SPARQL engines.
However, this process is rarely straightforward. Some engines provide binary distributions,
while others must be compiled from source. Each engine comes with its own configuration
parameters and quirks, many of which significantly affect indexing and query performance.
For example, Blazegraph and Virtuoso rely on custom configuration files that, in their
default form, yield very poor indexing and querying performance once datasets exceed a
few hundred million triples. Achieving competitive performance on medium and large-scale
knowledge graphs requires extensive manual tuning of these configuration files. Since

such details are often poorly documented, users are forced to rely on trial-and-error, prior



expertise, or community knowledge. Ensuring a fair and comparable setup across engines

therefore requires considerable expertise and effort.

Once the engines have been set up and configured, the next challenge is running the
benchmarks in a standardized and reproducible manner. Existing benchmarks differ in
many ways when it comes to ease of use. Some benchmarks provide full frameworks
with a way to query and measure performance, while others consist only of raw query
files, leaving the burden of implementation to the user. To obtain a reliable picture
of performance and scalability, several benchmarks at various scales need to be run
across multiple engines. But coordinating these different benchmarks across multiple
engines is not straightforward. It requires careful setup of datasets, query execution, and

measurement for each case.

Even when benchmarks are successfully executed, analyzing the results presents addi-
tional difficulties. Existing benchmark tools output aggregate performance metrics and
per-query results as static tables. These formats require further manual processing to
extract insights. There is limited support for side-by-side comparison of engines across
different benchmarks and queries. Moreover, testing correctness is just as important as
speed. An engine might be significantly faster than other engines, but the result size
might be different for the same query. Identifying such discrepancies and determining
whether an engine produces correct results requires additional effort, which is rarely

supported by existing benchmarking frameworks.

In summary, whether the goal is to select the best engine for a use case or to test
an engine under development, the evaluation process faces the same challenges. These
challenges show the need for better tools and methods that make SPARQL benchmarking

more reproducible, reliable, and easier to manage.

1.2 Contributions

The challenges of evaluating SPARQL engines highlight the need for tools that simplify
setup, ensure reproducibility, and support meaningful comparison across systems. This
thesis addresses these gaps by presenting a unified and extensible framework for the setup

and evaluation of SPARQL engines with minimal manual intervention.
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The work builds on QLever-control [12], a Python package that provides a straightfor-
ward command-line interface for automated setup and endpoint management of QLever.
QLever [13] is a high-performance SPARQL engine developed at the University of Freiburg
for efficient querying of massive knowledge graphs. Both QLever and Qlever-control are

free, and open-source software.

This thesis extends QLever-control into a unified and extensible benchmarking framework

for multiple SPARQL engines. The main contributions are as follows:

Automatic SPARQL Endpoint Creation Across Engines

The framework generalizes the workflow of QLever-control to support seven SPARQL
engines: QLever [13], Virtuoso [10], MillenniumDB [14], GraphDB [15]|, Blazegraph [9],
Apache Jena [16], and Oxigraph [8]. Uniform and automated setup for each SPARQL
engine is provided through a set of engine-specific wrapper scripts included in the QLever-
control package, denoted as <qengine> 2. Each engine-specific wrapper script automates
dataset retrieval, indexing, and endpoint startup, allowing users to set up SPARQL
engines without needing to know the internal commands or configuration details of each
engine (Listing 2). The configuration for each engine follows the same unified format
defined by the Qleverfile, ensuring consistency and reproducibility across engines and
datasets. The framework supports container-based setup using Docker or Podman, as well
as using pre-installed native binaries for each engine. The design is extensible, allowing
new SPARQL engines to be added with minimal effort.

Listing 2 Setting up and managing a SPARQL endpoint for all supported engines

# Generate engine-specific {leverfile for the benchmark
<gengine> setup-config <benchmark>

# SPARQL endpoint setup
<gengine> get-data
<gengine> index
<gengine> start
<gengine> log

<gengine> query
<gengine> status
<gengine> stop

download the dataset

Build index data-structures for this dataset
Start the engine server using the index

tail server logs

run a SPARQL query against the endpoint

show all running endpoint instances

stop a running endpoint

FHOH O R R ™ R

2<qengine> denotes the engine-specific wrapper scripts: qlever, qvirtuoso, gmdb, qgraphdb,
gblazegraph, qjena, and qoxigraph.



Running Benchmark Queries

A new benchmark-queries command, integrated with the engine-specific wrapper scripts,
is introduced to execute SPARQL queries from standardized YAML files. The YAML
query format allows us to specify the benchmark name, description and scale, in addition
to the queries. This information is used by the web application (see next contribu-
tion) to display benchmark-specific context and organize the results more effectively.
The benchmark-queries command runs the input queries against the selected engine’s
SPARQL endpoint and produces a structured YAML results file containing runtimes,
result sizes, timeouts, and other execution details. By default, it works seamlessly with all
supported engines, but it can also target arbitrary SPARQL endpoints, enabling evaluation
of engines not included in the framework. This combination of standardized input and
structured output ensures consistent, reproducible, and easily analyzable benchmarking

data across engines and datasets.

Interactive Evaluation Web Application

A single, non-engine-specific serve-evaluation-app command is introduced that auto-
matically consumes the YAML benchmark results generated by benchmark-queries and
serves the web application (web-app). The web-app provides an interactive interface for
exploring benchmarking results instead of static tables. Users can quickly view aggregate
performance metrics to compare overall performance across engines and benchmarks. In
addition, the web-app supports side-by-side, per-query evaluation, showing runtimes and
result sizes for detailed inspection of individual queries. This design allows both high-level

and fine-grained analysis without manual processing of results.

Finally, we use the unified benchmarking framework to evaluate the seven supported
SPARQL engines: QLever, Virtuoso, MillenniumDB, GraphDB, Blazegraph, Jena, and
Oxigraph. The evaluation runs multiple synthetic and real-world benchmarks, comparing
engine performance, scalability, as well as index build time and index size across three
dataset scales: small (~50 million triples), medium (~500 million triples), and large (~8
billion triples). This evaluation is not intended as a comprehensive performance study
of the engines. Instead, it illustrates how the framework can execute a wide range of
benchmarks at multiple scales, providing actionable insights into engine behavior; see
the discussion in Section 5.2. The experiments also highlight the ease of setting up
endpoints, running benchmarks, and analyzing results through the interactive evaluation
web application. All materials needed to reproduce these evaluations are available at

https://github.com/ad-freiburg/sparql-engine-evaluation-tanmay.
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1.3 Limitations

Although this work presents a unified framework for evaluating SPARQL engines, it is

important to recognize its limitations.

The framework currently supports the setup of only seven engines: QLever, Virtuoso,
Blazegraph, Apache Jena Fuseki, Oxigraph, GraphDB, and MillenniumDB. Many other
systems, including commercial and distributed SPARQL engines, are not yet supported.
The task of adding support for new engines is simplified by the easy-to-extend nature
of the framework, but still requires knowledge of the target engine’s configuration and

commands.

Another limitation lies in the engine setup process. The framework fully automates
container-based setups for all supported engines, so that users do not have to manually
download binaries or source code. However, the installation of native binaries is not
automated and must be handled by the user. Once native binaries are available, indexing
and startup can still be managed through the framework, but the installation itself is

outside its scope.

The framework supports running any benchmark, provided that the queries work with
the dataset. However, queries must first be converted into the standardized TSV or
YAML format required by the framework. This preprocessing step is trivial, since the
only information needed is a short description and the full SPARQL query text for each
query. Still, it introduces a small amount of extra work for users who want to integrate

new benchmarks.

This work focuses on sequential query performance, since it is the most fundamental
and comparable aspect of SPARQL benchmarking. Other important factors such as
reasoning, update handling, federation, concurrent query evaluation, and full SPARQL

1.1 compliance are not systematically evaluated. We consider this out of scope for now.

Finally, the framework provides structured outputs and visualization tools, but correct-
ness checks are limited to comparing result sizes. Subtle semantic differences in query
answers are not detected automatically. Such differences would require manual inspection

to confirm full consistency across all engines.



1.4 Outline

The remainder of this thesis is organized as follows:

Chapter 2: Related Work - This chapter reviews existing literature on benchmarking
approaches, and RDF query evaluation frameworks. It highlights key studies and identifies

gaps that motivate the development of the proposed framework.

Chapter 3: Building on a strong foundation: QLever-control - This chapter
explains why QLever-control serves as a good foundation for creating the unified, extensible

benchmarking framework proposed in this thesis.

Chapter 4: Approach and Implementation - This chapter describes the architecture
of the proposed framework, and the design choices that makes the framework easy-to-
extend. It details how QLever-control was extended to support multiple SPARQL engines.

It also explains the benchmark execution and evaluation web application in detail.

Chapter 5: Evaluation - This chapter presents experiments using several existing
benchmarks at three different scales. It demonstrates how the framework allows perfor-
mance and scalability comparison across all supported SPARQL engines and benchmarks,

and provides analysis of the results.

Chapter 6: Conclusion - This chapter concludes the thesis, highlighting the contri-
butions and significance of the work. It also discusses potential directions for future

improvements and extensions to the benchmarking framework.



2 Related Work

In this chapter, we review existing SPARQL benchmarks and benchmarking frameworks
for evaluating SPARQL engines. A benchmark typically combines three elements: an
RDF dataset, a set of SPARQL queries, and performance metrics for evaluation. A
variety of approaches exist, ranging from synthetic benchmarks that generate controlled
datasets and queries, to real-world benchmarks that reflect authentic usage patterns.
Then, there are frameworks and engines that provide the infrastructure for executing and
managing these benchmarks. This chapter reviews the main work in each of these areas

and discusses their strengths and limitations in the context of SPARQL engine evaluation.

2.1 Synthetic benchmarks

Synthetic benchmarks generate datasets and queries in a controlled way, often based on
data generators and predefined query templates. They are widely used to test scalability
because dataset size can be increased systematically, and experiments can be reproduced

consistently across engines. Some well-known synthetic benchmarks are:

Berlin SPARQL Benchmark (BSBM) [17] models an e-commerce use case with
products, offers, vendors, and consumers. BSBM generates synthetic product data along
with queries for search, navigation, and comparison. Three query mixes of varying

complexity are provided to measure engine performance against different use cases.

Lehigh University Benchmark (LUBM) [18] is based on a university domain
ontology, and focuses on evaluating reasoning, query performance and scalability. It
generates synthetic university datasets of arbitrary size, together with queries that test

reasoning and data retrieval at scale.

Waterloo SPARQL Diversity Test Suite (Watdiv) [19] emphasizes query diversity.
It generates scalable datasets and query workloads that vary in shape and selectivity,
stressing different aspects of query evaluation. WatDiv is often used to study how engines

behave under a wide range of query patterns.



SPARQL Performance Benchmark (SP2Bench) [20] is based on the DBLP
bibliographic dataset. It produces realistic bibliographic data and a diverse query workload
that covers a variety of SPARQL operators and RDF access patterns. SP?Bench aims
at a comprehensive performance evaluation of engines by assessing the generality of

optimization approaches implemented.

Together, these benchmarks have been widely adopted to evaluate SPARQL engines
under controlled conditions. They highlight scalability and performance differences, but
they may not fully reflect the complexity of real-world data and query workloads.

2.2 Real-world benchmarks

Real-world benchmarks don’t need data-generators as they are based on a real-world
dataset. The schemas of real-world datasets are often much more complex compared
to synthetic datasets owing to their collaborative nature. Some well-known real-world

benchmarks are:

Wikidata Graph Pattern Benchmark (WGPB) [21] is a benchmark that aims
to stress complex basic graph patterns and worst-case-optimal join strategies on real-
world Wikidata Knowledge graph. WGPB defines 17 abstract basic graph patterns and
instantiates 50 queries per pattern using random walks in a filtered Wikidata-truthy

graph.

WDBench [22] is also a Wikidata-based benchmark constructed from real query logs,
with an emphasis on harder cases such as queries that time out on the public endpoint.
WDBench focuses on query features that are common to SPARQL and graph databases:
basic graph patterns, optional graph patterns, path patterns, navigational graph patterns.

FEASIBLE 23] is a feature-based benchmark generation framework designed to create
customized SPARQL benchmarks from real query logs or synthetic query sets. It can
generate benchmarks for any dataset that has available query logs. FEASIBLE also
includes a query selection component that considers structural query features such as join

vertices, triple pattern selectivity, and expected result size.

Mu-bench [24] is a microbenchmarking framework designed to generate customized
SPARQL benchmarks from real-world query logs. It uses clustering algorithms to select

diverse query subsets based on user-defined criteria for specific SPARQL features.

Sparqloscope [25] is a generic benchmark that automatically generates comprehensive

benchmarks for any given RDF dataset. It produces around 100 carefully crafted queries

10



covering most SPARQL 1.1 features and various SPARQL functions for numerical values,
strings, dates, language filters, etc. It aims to evaluate relevant features in isolation and

as concisely as possible.

Real-world benchmarks complement the scalability benefits of synthetic ones by focusing

on authenticity and reveal how engines behave under practical conditions.

2.3 Benchmarking frameworks and Query engines

There exists several benchmarking frameworks and query engines that provide an in-
dependent infrastructure for executing the benchmarks discussed above and collecting
performance data. They are therefore complementary to benchmarks and help enable

systematic evaluation. These include:

IGUANA [26] is a SPARQL benchmark execution framework which can measure the
performance of engines during data loading, data updates as well as under different loads
and parallel requests. It takes as input a benchmark, a dataset, and optionally update
operations, and then evaluates the behavior of an engine on any given benchmark in a

holistic way.

Comunica [27] is a modular SPARQL query engine designed for federated query
evaluation. It can query across heterogeneous sources, including SPARQL endpoints,
data dumps, and Triple Pattern Fragment (TPF) interfaces. Its modular design allows
researchers to experiment with different query strategies while relying on a common

framework.

These systems extend the scope of benchmarks by offering practical ways to execute

them and to study query performance across diverse environments.

2.4 Discussion

Most benchmarks discussed in Section 2.1 and Section 2.2 provide only a set of predefined
queries, leaving the execution and analysis of results to the user. This limitation can
be partially addressed by benchmarking frameworks such as IGUANA or Comunica,
which support the execution of queries for arbitrary benchmarks. However, even when
using these frameworks or when benchmarks themselves support query execution, as in
BSBM, LUBM, WGPB, and WDBench, the results are typically stored in static formats

such as XML or CSV. These formats require significant additional processing to extract
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meaningful insights or to perform side-by-side comparisons across engines. Furthermore,
there is no unified mechanism to automatically compare performance across multiple
benchmarks, making it difficult to identify patterns, trends, or relative strengths and

weaknesses of different SPARQL engines across query types and workloads.

The unified framework developed in this thesis directly addresses these issues. It
automates SPARQL engine setup using Docker or Podman, removing the need for users to
download or compile engine-specific code. The benchmark-queries command then plays
the role of a query engine by executing any benchmark workload, whether synthetic or real-
world, against arbitrary SPARQL endpoints. The benchmark results are automatically
consumed by the evaluation web application, which provides aggregate performance

metrics and detailed per-query comparisons across benchmarks and engines.

This combination makes benchmarking reproducible, extensible, and much more ac-
cessible. In fact, Sparqloscope, one of the recent real-world benchmarks, relies on the
benchmark-queries command and web application developed in this thesis to present its

results, demonstrating the practical value and applicability of this work.
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3 Building on a strong foundation:

QLever-control

Building a unified framework for benchmarking multiple SPARQL engines is a significant
challenge. The engines are fundamentally heterogeneous, each with distinct requirements
for installation, configuration, and execution. Creating a framework to automate these
diverse processes from scratch would be an immense and error-prone undertaking. More-
over, providing support for both native binaries and containerized environments, and
implementing a benchmarking utility adds further layers of complexity and substantial

development effort.

A more practical and effective solution is to build on a solid existing foundation. QLever
and its companion tool, QLever-control, provide such a foundation. QLever-control is
a Python package that automates endpoint-creation for QLever. With simple and easy-
to-remember commands such as setup-config, get-data, index, and start, users
can set up a complete SPARQL endpoint for a dataset with minimal effort, without
worrying about low-level engine details. FEach command in QLever-control is implemented
as a separate Python class, which makes the system highly modular. This design allows
commands to be extended through inheritance, enabling support for other engines with
minimal code duplication. The framework supports both native binaries and containerized
execution for QLever. It also provides the example-queries command that executes
some predefined queries and prints query runtime statistics, which forms a natural starting

point for a full-featured benchmarking utility.

By leveraging the existing modularity and automation of QLever-control, we can extend
its functionality to multiple engines. This chapter presents a detailed overview of QLever-
control and the example-queries command. This will show how this robust foundation
acts as a blueprint to make a unified, extensible, and reproducible benchmarking framework

possible.
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3.1 QLever-control

QLever [13] is a SPARQL engine developed at the chair of Algorithms and Data Structures
at the University of Freiburg. QLever can efficiently index and query very large knowledge

graphs with over 100 billion triples on a single standard PC or server.

QLever-control [12] is a companion tool for QLever. It provides a Python script
to create QLever SPARQL endpoints for any RDF dataset. The script is simple and
intuitive to use. It provides detailed help text for all the commands and arguments on
the command line. It also supports context-sensitive autocompletion for all commands
and options. When using container systems such as Docker or Podman, the user doesn’t
even have to download the QLever code and the script downloads the image for the user.
However, if QLever is built from source on the machine, the script also supports the use

of native IndexBuilderMain and ServerMain binaries that QLever uses.

The script allows users to control all things QLever does, with all the configuration in
one place, the so-called Qleverfile. The script comes with a number of example Qleverfiles
for a wide-range of datasets, which makes it very easy to get started and also helps
users to write their own Qleverfile for their own data. If the user doesn’t want to use or
override some parameters of the Qleverfile, they can specify the arguments directly on

the command line as well.

Let us consider the example of creating a SPARQL endpoint for the 120 years of
Olympics dataset. This dataset is one of the nineteen that QLever supports out-of-the-box

at the time of writing.

QLever-control is distributed via PyPI' and can be installed with the standard command:

pip install qlever

After installation, the next step is to create a directory in which the index data will be
stored. All dataset-specific commands for the Olympics dataset will then be executed

from within this directory.

mkdir olympics && cd olympics # Create and enter directory
qlever setup-config olympics # Generate (leverfile for Olympics

The command above generates a Qleverfile in the olympics directory. This file contains

all the necessary configuration for working with the Olympics dataset. We will take

!The Python Package Index (PyPI) is a repository of software for the Python programming language.
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a closer look at the Qleverfile for olympics dataset in Section 3.2. But working with
out-of-box Qleverfiles is made extremely easy, and we don’t have to touch the Qleverfile
in this case to set up the SPARQL endpoint.

Setting up a SPARQL endpoint after generating the Qleverfile takes just a few com-

mands:

qlever get-data # Download the dataset
qlever index # Build index data structures
qlever start # Start the ({Lever server
qlever query # Launch an example query
gqlever stop # Stop the (Lever server

Each command above can also be appended with a --show argument. This shows the
full command line that is being used to execute the given command. That way, users can

also learn, on the side, how QLever works. For example:

qlever start --show

The output of this command when working with native binaries will look like:

nohup ServerMain -i olympics -j 8 -p 7019 -m 5G -c 2G -e 1G -k 200 -s 30s >
— olympics.server-log.txt 2>&1 &

Based on these observations, it becomes clear that QLever-control makes the process
of setting up a SPARQL endpoint remarkably simple. For knowledge graphs with an
existing Qleverfile, the entire setup can be completed in just a handful of commands.
This not only reduces manual effort but also makes endpoint deployment accessible to a
much broader audience. Setting up an endpoint for a custom knowledge graph is just as
easy. At the heart of this simplicity lies the Qleverfile, which encapsulates all necessary

configuration details in a single, shareable format.

3.2 Qleverfile

A central element of the QLever-control framework is the Qleverfile. Qleverfile is a

lightweight, human-readable configuration file that specifies all parameters required to set
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up and serve a SPARQL endpoint for QLever. At its core, it is a plain-text configuration
file that consists of key-value pairs organized in logical sections. This design replaces
the need for lengthy setup instructions, custom shell scripts, or error-prone manual
procedures. Instead, it provides a single, standardized, and transparent way of describing
how a SPARQL endpoint should be deployed. With this in place, setting up an endpoint

requires only a few generic commands as we saw in Section 3.1

What makes Qleverfile especially powerful is not only its simplicity, but also its
contribution to reproducibility. Sharing a knowledge graph setup becomes as easy as
sharing its Qleverfile. Anyone with QLever-control installed can use the file to recreate
the exact same endpoint, ensuring consistent experimental conditions across machines

and research groups.

To further reduce barriers, QLever-control provides nineteen ready-to-use Qleverfiles.
These span datasets of vastly different sizes: from just a few million triples to a hun-
dred billion triples. This gives the users immediate, real-world examples of how to
configure SPARQL engines for diverse scales. Such references not only accelerate initial
experimentation but also serve as starting points for adapting setups to new knowledge

graphs.

We will now examine the structure of a Qleverfile in detail. Using the Olympics

Qleverfile as an example, we illustrate the most important sections and options of the

configuration.

[datal

NAME = olympics

BASE_URL = https://github.com/wallscope/olympics-rdf
GET_DATA_CMD = curl -sLo olympics.zip -C -

— ${BASE_URL}/raw/master/data/olympics-nt-nodup.zip && unzip -q -o
— olympics.zip && rm olympics.zip
DESCRIPTION = 120 Years of Olympics, data from ${BASE_URL}

The [data] section defines the dataset that we wish to serve. At a minimum, every
dataset should be assigned a clear and descriptive NAME . If we want the command
qlever get-data to automatically retrieve or prepare the dataset, we must specify a
GET_DATA_CMD . Otherwise, the input files need to be generated, downloaded, or provided
manually. Each dataset should also include a concise DESCRIPTION , ideally noting its

origin and date of retrieval.

16



[index]
INPUT_FILES
CAT_INPUT_FILES

olympics.nt
cat ${INPUT_FILES}

The [index] section specifies input files and indexing settings. The format for
INPUT_FILES should be such that 1s ${INPUT_FILES} lists all input files. The parameter
CAT_INPUT_FILES defines how these files are concatenated into a single input stream (for

example, using cat for plain text files or zcat for compressed ones).

[server]

PORT = 7019
TIMEOUT = 30s
MEMORY_FOR_QUERIES = 5G
CACHE_MAX_SIZE = 2G

The [server] section configures the SPARQL server itself. The parameter PORT deter-
mines on which port the server accepts queries. The TIMEOUT parameter configures the
maximum time a query is allowed to run before it is terminated. All the other parameters

are specific to the ServerMain binary of QLever.

[runtime]
SYSTEM = docker
IMAGE = docker.io/adfreiburg/qlever:latest

The [runtime] section determines the execution environment for QLever. By setting
SYSTEM = docker (or podman), the engine runs inside a container environment, which
ensures consistency across machines, as the required image is pulled automatically.
Alternatively, SYSTEM = native directs QLever to use locally compiled binaries such
as IndexBuilderMain and ServerMain , which must be accessible in our environment’s

PATH.
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3.3 The example-queries command

One of the key features of QLever-control is the example-queries command, which
allows users to run predefined queries against a SPARQL endpoint and inspect their
performance. While it was originally designed to run the example queries shown in the
QLever demonstration interface, it also doubles as a lightweight benchmarking tool by

measuring both execution time and result size.

The example-queries command can be invoked directly from the command line and

supports detailed help and context-sensitive autocompletion.

qlever example-queries

By default, it reads the host and port from the Qleverfile to form the default QLever
SPARQL endpoint. Queries for the specified [data] NAME option in Qleverfile (i.e.
an out-of-box dataset) are automatically fetched from a remote API maintained for
the QLever UI client. Both the SPARQL endpoint and the queries can be overridden
using command-line arguments. For example, a custom endpoint can be specified using
--sparqgl-endpoint , or queries can be provided in TSV format using --get-queries-cmd .
This allows example-queries to run any set of queries against an arbitrary SPARQL

endpoint, not just QLever.

The command offers a rich set of options for flexibility. Users can run a subset of
queries (by ID or regular expression), select the output format (JSON, TSV, CSV, or
Turtle), fetch only result sizes instead of full results, or limit the number of returned

results.

From a benchmarking perspective, example-queries is particularly valuable because
it provides a reproducible mechanism for evaluating query performance. Before the work
in this thesis, the command only printed runtime statistics to the console. By extending
it to save structured output, it becomes possible to systematically record execution times
and result sizes across different endpoints or engine versions. This capability forms the
foundation for automated benchmarking workflows, which can then be generalized to

other engines using the same Qleverfile configuration model.
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4 Approach and Implementation

In this thesis, we are trying to answer a simple but challenging research question: which
SPARQL engine should a user choose that not only performs well on the current dataset
and workload, but also scales effectively as data and query demands grow? Answering it
is far from trivial, as discussed in Section 1.1. Each engine comes with its own installation
steps, configuration quirks, and command-line interface, making setup slow and error-
prone. Running queries often requires manual scripts, and achieving a consistent and
comprehensive comparison across engines is difficult without an automated framework

and clear visualization tools.

What if evaluating multiple SPARQL engines over large knowledge graphs was as easy
as running just a few simple commands without ever having to worry about the internal
details? In the previous Chapter 3, we saw how QLever-control already achieves this for
QLever. A single qlever setup-config command generates a Qleverfile that captures all
the necessary configuration. Users only edit the most relevant options, and all the internal
complexity is handled automatically. A few simple commands such as glever get-data,

qlever index , and qlever start are all what’s needed to set up the SPARQL endpoint.

What if, we can extend this same functionality to other SPARQL engines and set up
a SPARQL endpoint for all the engines using uniform commands? The setup-config
command can give us a Qleverfile tailored to the needs of the engine in question. We
would need to change only the relevant sections, just like before. And then a familiar
workflow of get-data, index, and start can set up the SPARQL engine for the given
dataset. The work detailed in this chapter will achieve this functionality for all the six

additional open-source engines in question.

To go one step further, what if we could also evaluate all the SPARQL engines in a fully
systematic way? The example-queries command from Section 3.3 could be extended
into a true benchmarking utility that works uniformly across engines. With just a single
command per engine, we could run the same set of benchmark queries and store the
results in a shared directory. These results could then be automatically consumed and

presented in a clean, interactive web application. This application would visualize query
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runtimes, result sizes, and aggregate metrics in well-organized tables, enabling side-by-side
comparisons across datasets and engines. What was once a tedious and error-prone

process would become reproducible, shareable, and easy to extend.

The following sections detail the implementation of this unified benchmarking framework.
We begin by detailing how the QLever-control Python package was extended to support
SPARQL endpoint setup for other engines. We provide a broad overview of how engine-
specific commands were implemented and how engine-specific quirks were handled. Then,
we take a closer look at how the benchmark-queries command replaces the existing

example-queries command to allow uniform benchmarking of all the engines. Finally,

we will discuss the serve-evaluation-app command that automatically launches the
evaluation web application and how the web application consumes the results and presents
them interactively, making it simple to analyze performance and scalability across different
SPARQL engines.

4.1 Extending QLever-control for Multi-Engine Support

This section describes how QLever-control was extended from supporting a single engine
(QLever) to supporting multiple engines. The guiding principles for this redesign were
rooted in core object-oriented software engineering ideas, particularly Separation of
Concerns (SoC) and Don’t Repeat Yourself (DRY). SoC guaranteed that all engine-specific
logic remained isolated. DRY ensured that common functionality was implemented once
and reused across all engines. Together, these principles helped create a clean structure
that both preserved the original simplicity of QLever-control and made it future-proof for

additional engines.

Directory Structure

The source code of QLever-Control is organized in a modular way. Figure 2 shows the
original single-engine directory tree, while Figure 3 illustrates the extended structure for

multiple engines.

The original layout (see Figure 2) consisted of a single src/qlever directory containing
the core logic of the application. The qleverfile.py file defined all supported command-
line arguments. The Qleverfiles directory stored template Qleverfiles specifying datasets
and configuration parameters. The commands subdirectory contained the implementations

of all user-facing commands such as get-data, index, and start . All these commands
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src/
— qlever/

— qlever_main.py
— command.py

src/qlever/ — qleverfile.py

— qlever_main.py -

— command.py — commands/
— config.py index.py
start.py

— containerize.py

— qleverfile.py

L— Qleverfiles/
— log.py L
— util.py — qjena/
qleverfile.py
— commands/
index.py commands/
start.py index.py
start.py
L~ Qleverfiles/
Qleverfile.dblp — qvirtuoso/
Qleverfile.olympics t qleverfile.py
commands/
Figure 2: Original QLever-only directory index.py
structure.
start.py

L— ...other_engines

Figure 3: Extended multi-engine directory struc-
ture.
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implemented the abstract interface defined in src/qlever/command.py . The commands

also specify which Qleverfile arguments are relevant for their execution.

The extended multi-engine layout (see Figure 3) introduces one directory per engine:
src/<qgengine>/ . <qengine> here refers to the engine-specific wrapper script used to
invoke the engine commands. All the core application logic still resides in the src/qlever
directory. Each new engine directory contains its own qleverfile.py , which defines
the new engine-specific command-line arguments. These arguments either supplement
or override the command-line arguments specified in src/qlever/qleverfile.py . Each
engine directory also has its own commands/ subdirectory for the corresponding command
implementations. The template Qleverfiles remain in their original directory and are
simply adapted by each engine during setup. This design keeps all engine-specific code

localized, ensuring clear separation of concerns.

All command classes for the new engines follow the same abstract interface defined
in src/qlever/command.py . Whenever a new engine’s command shares substantial func-
tionality with an existing QLever command, the concrete QLever implementation serves
as a base class. Only the differing functionality is overridden, which significantly reduces
code duplication and adheres to the DRY principle. This is discussed in more detail in
Section 4.2.

Execution Flow

Despite the structural changes, the execution flow remains uniform across all engines. Each
engine is invoked via a dedicated wrapper script (e.g., gqlever , qjena, or gvirtuoso ),
all of which call the common entry point src/qlever/qlever_main.py . Script names
are constructed by prefixing the engine name with q, avoiding conflicts with binaries of
the underlying engines that may already be installed. At runtime, the script name is

extracted and mapped to the corresponding directory in src/ .

Using the script name as an identifier, QLever-control dynamically discovers the
relevant commands in the src/<qengine>/commands/ directory and instantiates them.
The command-line options from src/qlever/qleverfile.py are then merged with the
engine-specific arguments from src/<qgengine>/qleverfile.py . From this combined set,
only the options relevant to the chosen command are parsed, after which the command is

executed.

This modular flow ensures that adding a new engine requires no changes to the central

logic. A new engine only needs to provide its own arguments and command implementa-
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tions within its directory. As a result, QLever-control was extended from supporting a
single engine to handling multiple SPARQL engines with minimal modification to the

original codebase.

4.2 Implementation of Engine-Specific Commands

In the previous section, we described how QLever-control was extended to support multiple
SPARQL engines by modifying the directory structure and execution flow. While this
establishes the framework for multi-engine support, it is equally important to understand

how the individual commands for each engine are implemented.

This section provides an overview of the common approaches used to implement

engine-specific commands. We categorize the commands into three groups:

¢ Engine-agnostic commands, which can be reused across all engines without

modification.

e Derived commands, which inherit from existing QLever (or other engine) imple-

mentations and override only the parts that differ.

e Non-reusable commands, which must be developed from scratch because they

address functionality unique to a given engine.

This provides a clear mental model for adding support for additional engines and commands

in the future.

4.2.1 Engine-agnostic commands

Some commands in the multi-engine framework are designed to be completely engine-
agnostic. These commands can be reused across all supported engines without modification,
as their functionality does not depend on engine-specific behavior. These commands

include:
e get-data: Command to download/retrieve the dataset.
e log: Command to show the last lines of the server log file and follow it.
The get-data command simply executes the bash command ( GET_DATA_CMD ) defined in

the [data] section of the Qleverfile using Python’s subprocess module. This allows the

framework to retrieve or prepare datasets independent of the underlying SPARQL engine.
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The log command uses Python’s subprocess module along with the Unix tail
utility to display and follow the last lines of the server log file. As long as the engines can be
configured to generate the server log with the same filename i.e. <NAME>.server-log.txt ,
the log command operates without engine-specific customization. <NAME> here refers

to the NAME option specified in [data] section of the Qleverfile.

Whenever the engine-agnostic behavior is sufficient for a command, we simply create a
symbolic link to the command defined in src/qlever/commands/ rather than duplicating

code.

4.2.2 Derived commands

Some commands behave almost identically across all engines, differing only in small
details such as default engine-specific parameters. For these cases, it is sufficient to reuse
an existing implementation (from QLever or another engine) as a base class and extend it
only where necessary. This avoids code duplication and reduces maintenance overhead.

The following commands fall into this category:

e benchmark-queries : Run the given benchmark queries and show their processing

times and result sizes (optionally save the results in a file).
e query : executes a single SPARQL query against the endpoint.
e status : Show index/server processes running on the machine.
e stop: terminates the server process if running.

e setup-config: generates a Qleverfile in the current working directory.

The query and benchmark-queries commands share the same core functionality of
sending queries to the SPARQL endpoint. The only difference across engines lies in the
default endpoint URL. For example, QLever exposes its endpoint at <host>:<port> , while
Oxigraph uses <host>:<port>/query . By using inheritance, the QLever implementation
can be reused directly, with only the sparql_endpoint argument replaced in each engine-
specific subclass before calling the QLever superclass implementation. Listing 3 shows

Oxigraph’s QueryCommand class implementation.

A similar pattern applies to the status and stop commands, both of which rely on a
command-line regular expression ( cmdline_regex ) to identify the running server process.
Again, the QLever implementation can serve as the base, with engine-specific subclasses

overriding only the cmdline_regex used to match the process name.
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Listing 3 Python implementation of query command for Oxigraph

from glever.commands.query import QueryCommand as QleverQueryCommand

# Query Command implementation for Ozigraph
class QueryCommand(QleverQueryCommand) :

def execute(self, args) -> bool:
# Override {Lever's default endpoint format of host_name:port
args.sparql_endpoint = f"{args.host_name}:{args.port}/query"
return super() .execute(args)

The setup-config command

The setup-config command requires slightly more adaptation. For QLever, the command
simply copies the appropriate Qleverfile from src/qlever/Qleverfiles into the user’s
working directory. For the new engines, however, the Qleverfiles must be adapted to
account for engine-specific parameters. To avoid duplicating logic across engines, a shared
implementation was created. All engines reuse the same code for reading the template
Qleverfile, preserving the common parameters, and writing the adapted configuration
into the user’s working directory. The only method that needs to be overridden is the one
responsible for adding engine-specific parameters. A full implementation of this design is
provided in Oxigraph’s setup-config command, while the other engines simply inherit

from it and override the adaptation method.

To make working with these engines as seamless as possible, several new command-line
arguments were introduced. In particular, the parameters --total-index-memory and
--total-server-memory allow the overridable adaptation method to directly compute
suitable default memory settings for the index and server processes of the respective
engine. This ensures that the generated Qleverfile contains sensible defaults without
requiring users to understand the complex engine-specific memory configurations. In
addition, the arguments --port, --timeout, and --system provide users a convenient
way to overwrite the default values of the most common parameters. Together, these
extensions mean that in most cases users do not need to modify the generated Qleverfile

manually, reducing setup complexity and improving the overall usability of the framework.

As an example, running the following command

qjena setup-config olympics --total-index-memory 32G --total-server-memory

— 16G --port 1234 --timeout 180s --system native
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will generate a Qleverfile with the following sections:

[index]
INPUT_FILES = olympics.nt
JVM_ARGS = -Xms32G -Xmx32G

THREADS = 11
[server]
PORT = 1234

JVM_ARGS = -Xms16G -Xmx16G
TIMEOUT = 180s

[runtime]
SYSTEM = native

Here, the memory parameters are automatically configured using the user-provided
values. The number of threads is derived automatically from the number of CPU cores on
the user’s machine. In this example, the system has 12 cores, so the configuration assigns
11 threads. This follows the recommendation of Jena’s index binary tdb2.xloader ! that
advises using one fewer thread than the total number of cores as an initial setting. This
automatic tuning of the Qleverfile ensures near-optimal performance without requiring
the user to tune the configuration manually. The memory-related arguments for all new

engines are explained in detail in Section 4.3.

4.2.3 Non-reusable commands

Unlike the derived commands, some commands cannot be reused or lightly adapted across
engines. Instead, they require dedicated implementations tailored to each engine’s specific

binaries and runtime behavior. The most important commands in this category are:
e index : Build the index for a given RDF dataset.
e start : Launch the server for the engine.

Both index and start commands are tightly coupled to the internal mechanics of
each engine. Therefore, they naturally vary from one engine to another and cannot be

generalized through simple inheritance or argument adjustments.

It is not feasible to detail the full workings of these commands for each engine here.

'https://jena.apache.org/documentation/tdb /tdb-xloader.html
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However, both commands still follow a broadly similar blueprint as shown in Listing 4.
The engine-specific parameters and quirks that these commands must handle will be

covered in Section 4.3.

Listing 4 Execution flow for index and start commands

Construct engine-specific command line using the input arguments:
- Use the appropriate index/server binary for the selected engine
- If system != native:
- Wrap the command in container execution (docker/podman)

Handle show-only mode:
- If --show flag is set:
- Display the constructed command line to the user
- Exit without execution

Perform validation checks:

- If system == native:
- Verify that the index/system binary is installed and accessible

- For the index command:
- Check that the required input files exist in the current directory
- Check if a previous index does not exist already

- For the start command:
- Check that an index is present in the current directory
- Verify that no server is already running at the specified port

Execute the command:
- If all checks succeed, launch the command line process
- Log success or error messages appropriately

4.3 Engine-specific parameters and quirks

In the previous section, we described how common design patterns and abstractions
allowed most commands to be reused or extended across engines. This section introduces
the six new engines that were added to QLever-control and details the concrete adaptations
required to ensure that the commands function correctly for each of them. This provides
a comprehensive picture of the practical adjustments needed to support multiple SPARQL

engines within the unified framework.

To integrate the six additional engines into the extended framework, we followed a uni-

form pattern as outlined in Section 4.1. It was sufficient to create a new src/<qengine>
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directory, provide engine-specific arguments in qleverfile.py , and implement the re-
quired commands inside the commands subdirectory. The <gengine> here refers to the
wrapper script that was used to execute the engine commands (e.g. qoxigraph for

Oxigraph).

Since many qleverfile.py arguments are self-explanatory and similar across engines,
we highlight only the most interesting ones in this section. Each engine’s index and
start commands support the --extra-args option, which accepts a free-form string of
additional arguments passed directly to the underlying indexing and server binaries. This
feature allows advanced users to specify configuration options that are not exposed in the
Qleverfile. The complete and up-to-date list of arguments can be inspected directly in

the code repository?.

4.3.1 Oxigraph (qoxigraph)

Oxigraph is a lightweight SPARQL engine based on the RocksDB key-value store that
fully implements the SPARQL 1.1 standard. Oxigraph is written in Rust and is in heavy
development at the time of writing. It relies on a single binary, oxigraph , to perform

both indexing and serving tasks. This design greatly simplifies command construction.

As discussed in Section 4.2, the setup-config command is fully implemented for
Oxigraph, with other engines inheriting from this implementation. One peculiarity of
Oxigraph is that its binary does not support any form of memory-based configuration.
As a result, the options --total-index-memory and --total-server-memory are not

available for Oxigraph. This keeps its configuration simpler but also more limited.

The arguments defined in qleverfile.py cover both indexing and serving tasks. The

most interesting ones of these are:

e —-ulimit : raises the maximum number of files that can be opened simultaneously.
This is particularly important when indexing many large input files, where the
command automatically sets the limit to 500,000 if the dataset exceeds 10 GB.

Oxigraph index process can sometimes fail if this limit is not set high enough.
e --lenient : attempt to keep loading even if the data file is invalid (default: False ).

The index command stores each engine’s index files in a dedicated subdirectory named
<NAME>_index , where <NAME> corresponds to the value of the NAME option in the [datal

section of the Qleverfile. This index directory name is then used by the start command

Zhttps://github.com/ad-freiburg/sparql-engine-evaluation-tanmay
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to start the server. This gives us the ability to link each server process directly to its
configuration name, which greatly benefits the status and stop commands. For instance,
if qoxigraph instances for both olympics and dblp datasets are running, the status
command will list two processes, identifiable by olympics_index and dblp_index . The
stop command is also then able to terminate the correct process by matching the index

directory name, leaving the other unaffected.

Native timeout support was only introduced to Oxigraph in version 0.5. To save the user
from worrying about version-specific timeout details, the start command automatically
inspects the output of oxigraph serve --help at runtime and adds the timeout option,

if supported.

4.3.2 Apache Jena (gjena)

Apache Jena (a project of the Apache Software Foundation since 2012) is a widely
used SPARQL engine implemented in Java for building Semantic Web and Linked Data
applications. It integrates with TDB2, which can be used as a high-performance RDF store
on a single machine. While TDB2 supports multiple loaders, we adopt tdb2.xloader
as the standard indexing binary in our framework. The reason is that tdb2.xloader
is designed as a robust bulk loader optimized for large datasets, prioritizing stability
and reliability. Unlike other TDB2 loaders that trade off stability for performance on
smaller datasets, tdb2.xloader provides a consistent and predictable loading process
across dataset sizes. This makes it an ideal choice as the single supported indexer within
our unified interface. Apache Jena Fuseki, which uses the fuseki-server binary, is a

SPARQL server and can run as a standalone server.

A custom Dockerfile is defined for Jena. The image tagged adfreiburg/qjena uses
openjdk:21-jdk-slim as the base image, downloads the latest Apache Jena and Fuseki
packages, installs the binaries and adds them to the PATH , and sets bash as the entrypoint.
When using containerized execution, if the adfreiburg/qjena image is not found locally,

it will be built automatically the first time the index command is invoked.
The most interesting qleverfile.py arguments for Jena are:

e —_threads : sets the number of threads for indexing, with the recommended setting

being the number of CPU cores minus one, as advised by Jena’s own documentation.

e ——jvm-args: specifies Java Virtual Machine options for both index and server

processes (e.g., heap size).
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e —-_extra-env-args: allows additional java-related environment variables to be

passed to the underlying Jena index and server binaries.

The JVM_ARGS option is automatically set by the setup-config command for the
Qleverfile to reflect the total index and server memory limits chosen by the user, ensuring

consistent resource allocation across runs.

Just like in Oxigraph, the index command creates a dedicated subdirectory named
<NAME>_index , which is then used to start the server. This allows the status and stop

commands to reliably identify and manage Jena processes by configuration name.

4.3.3 Blazegraph (gblazegraph)

Blazegraph is a Java-based SPARQL engine best known for powering the official Wikidata
query service. Despite its widespread adoption in the past, it is now considered “abandon-
ware”, with its last public release being version 2 1 6 RC (released in Feb 2020). Unlike
other engines that ship with separate indexing and server binaries, Blazegraph relies on a

single blazegraph.jar file, which can be used both for bulk loading and serving queries.

We also define a custom Dockerfile for Blazegraph. It uses openjdk:21-jdk-slim as
the base image, downloads blazegraph.jar , and ends with bash as the entrypoint. When
the index command is run for the first time in a containerized setup, the framework
automatically checks for the adfreiburg/qblazegraph image, builds it if missing, and

then proceeds with the indexing.
Just like in Jena, the most relevant qleverfile.py argument for Blazegraph is:

e ——jvm-args : specifies JVM options such as heap size for both indexing and serving
processes. This is critical for performance on large datasets, where sufficient heap
allocation prevents memory-related failures. As with Jena, the setup-config
command automatically maps the user’s total index and server memory inputs to

the correct --jvm-args settings in the Qleverfile.

Blazegraph relies on two configuration files: RWStore.properties and web.xml for
configuring bulk loader and server settings respectively. In our implementation, the
setup-config command behaves as usual, but additionally places both configuration
files in the current working directory. The provided RWStore.properties file is already
tuned for fast bulk loading with sensible defaults, though users can adjust it manually
before running index . The web.xml file defines runtime options for the server, such as

query timeout and read-only mode. However, these options in the web.xml don’t need to
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be modified. When the start command is called, the framework automatically updates
these options to match those specified in the Qleverfile. This makes sure that users don’t
have to manually edit these Blazegraph-specific configuration files and can simply start a

SPARQL endpoint by running gblazegraph index followed by qgblazegraph start .

Unlike Oxigraph and Jena, Blazegraph does not produce a dedicated index subdirectory
but instead stores all data in a single blazegraph.jnl file. To work around this limitation,
the framework relies on the web.xml configuration file, which is renamed during the

start command to include the configuration name. For example, if the user runs
gblazegraph start for the olympics dataset, the framework will prepare a file named
olympics.web.xml with the correct parameters and use it to launch the Blazegraph
server. This ensures that multiple Blazegraph instances are tied to their configuration
name. Consequently, the status and stop commands can reliably identify and manage

these processes just as they do for Oxigraph and Jena.

4.3.4 MillenniumDB (gqmdb)

MillenniumDB is a graph oriented database management system developed by the Millen-
nium Institute for Foundational Research on Data (IMFD). It is implemented in C++ and
designed for high-performance query execution over RDF and property graph data. Like
Oxigraph, it also relies on a single binary, mdb , to perform both indexing and serving
tasks.

The official MillenniumDB image available on Docker Hub is outdated, whereas the
Dockerfile maintained in their GitHub repository is actively updated. To prevent users
from having to manually clone the repository when working in container environments,

the framework directly builds the Dockerfile from the GitHub URL and tags the resulting

image as adfreiburg/qmdb .
The most interesting qleverfile.py arguments for MillenniumDB are:

e __buffer-strings, --buffer-tensors: control the buffer sizes used during data
import. The setup-config command automatically divides the total indexing

memory equally between the two.

e —_threads : sets the number of worker threads for query evaluation (fixed to 2 by

default in our framework).
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e --strings-static, --strings-dynamic,
--versioned-buffer , --unversioned-buffer :
These determine the buffer sizes used for the server process. Their values are
automatically derived from the total memory specified during setup-config , with

the majority of the memory allocated to versioned buffer.

Just like in Oxigraph and Jena, the index command stores the MillenniumDB index in a
dedicated subdirectory named <NAME>_index , which is then used to start the server. This
allows the status and stop commands to reliably identify and manage MillenniumDB

processes by configuration name.

4.3.5 Virtuoso (qvirtuoso)

Virtuoso, developed by Open-Link Software, is a mature and feature-rich SPARQL engine
that is written in C and comes in both open-source and commercial editions. In this
work, we focus exclusively on the open-source version. Virtuoso makes use of two primary

binaries: isql for data loading and virtuoso-t for starting and running the server.

A notable quirk of Virtuoso is that the server must already be running in order for the
data to be loaded. We try to account for this behavior in our index implementation by
doing the following. The command first starts the server and polls it until it is ready. It
then proceeds with data loading through isql , and finally shuts the server down. After
indexing, the start command can be used to relaunch the server with the built index,

ensuring a consistent and reproducible workflow.

Another distinctive feature of Virtuoso is its reliance on an INI-style configuration file,
virtuoso.ini , which exposes a wide range of tunable settings. To simplify usage, we im-
plement support for the most important configuration options directly in qleverfile.py .
When the user runs the index or start command, the parameters are taken from the

Qleverfile and automatically inserted into virtuoso.ini .
The most relevant arguments exposed through qleverfile.py are:
e --isql-port : the port used by Virtuoso’s ISQL client (default: 1111 ).

e -—-num-parallel-loaders : controls parallelization during data loading, with the
recommended maximum being approximately the number of CPU cores divided by
2.5.

e __free-memory-gb : specifies the free system memory allocated for Virtuoso buffers,

which is used to derive NumberOfBuffers and MaxDirtyBuffers options.
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e --max-query-memory : sets the memory available to the query processor.

Both FREE_MEMORY_GB and MAX_QUERY_MEMORY options are automatically calculated for
the Qleverfile during the setup-config step, based on the memory limits specified by

the user.

Like Blazegraph, Virtuoso does not produce a dedicated index subdirectory but instead
stores all data in a single virtuoso.db file. Similar to the approach taken for Blazegraph,
the framework renames the virtuoso.ini to include the configuration name before
starting the server i.e. <NAME>.virtuoso.ini . This ensures that multiple Virtuoso
instances are tied to their configuration names. Consequently, the status and stop
commands can reliably identify and manage these processes just as they do for other

engines.

Virtuoso also provides the ability to sequentially load data into an existing virtuoso.db
index. To support this, we introduce the --extend-existing-index option for the index
command. With this flag, the user can repeatedly update the [index] INPUT_FILES
entry in the Qleverfile and load new data into the same index. This feature is especially
useful when working with massive datasets such as Wikidata, where a single bulk load
may fail without committing progress. The incremental loading of the dataset makes it

possible to complete very large data imports reliably without restarting from scratch.

4.3.6 GraphDB (qgraphdb)

GraphDB, developed by Ontotext, is a highly efficient, scalable and robust graph database
with RDF and SPARQL support. Written in Java, it comes with both free and enterprise
editions. In this work, we focus on the free edition. GraphDB provides two key binaries:

importrdf for bulk data loading and graphdb for running the SPARQL server.

Typically, GraphDB exposes an interactive console through which index and server
settings can be configured prior to data loading. To maintain consistency with the
unified workflow of other engines, the framework bypasses the console and instead
downloads GraphDB’s internal config.ttl configuration file automatically. This file is
then overwritten with parameters taken from the Qleverfile when the index command is

executed.

By default, GraphDB stores all datasets in a common location and exposes all of them
on port 7200. Our framework overrides this behavior by generating each index in the

current working directory and binding the server to the port specified in the Qleverfile,
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ensuring complete separation of multiple datasets. The index subdirectory is again named
<NAME>_index , which is then used by start . This ensures that the status and stop

commands can reliably identify and manage GraphDB processes by configuration name.

One notable quirk of GraphDB is that even its free edition requires a license file. Users
must generate this license on the GraphDB website, after which it can be supplied to the
framework. To accommodate this, the start command provides an additional argument,

--license-file-path , which specifies the location of the required license file.
The most relevant qleverfile.py arguments for GraphDB are:
e —-threads : sets the number of RDF parsers to use during indexing.

® —_entity-index-size : controls the initial size of the entity hash table, where larger

sizes reduce collisions and improve retrieval performance.

e —-jvm-args : specifies JVM arguments for both index and server processes (e.g.,

heap size).

e --ruleset : selects the entailment ruleset to apply (e.g., rdfs, owl-horst, owl2-rl),

which determines the applied semantics (default = "empty").

e --heap-size-gb: sets the Java minimum and maximum heap size ( -Xms and
-Xmx ) for the GraphDB server.

The ENTITY_INDEX_SIZE, JVM_ARGS and HEAP_SIZE_GB arguments are automatically
calculated for the Qleverfile during the setup-config step, based on the memory limits

specified by the user.

4.4 The benchmark-queries command

The benchmark-queries command extends and generalizes the functionality of the earlier
example-queries command described in Section 3.3. The example-queries command
was tied to QLever’s demo interface and focused on running predefined example queries
or reading simple TSV files that contained a description and a query. The new command
was designed explicitly with benchmarking in mind. It retains all the core features of
executing SPARQL queries against a given endpoint, measuring runtime, and recording

result sizes, but introduces several important enhancements.

The most important change is support for benchmark queries in YAML format, in
addition to the existing TSV format. YAML files allow attaching rich metadata such as

benchmark name, description, scale and per-query descriptions. These can later be used in
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the evaluation web application to provide more information about the benchmark. Let’s
say we have the benchmark queries for the DBLP [28] dataset. A snippet of benchmark
queries YAML file for it is shown in Listing 5.

Listing 5 Example YAML benchmark queries file snippet for the DBLP dataset

name: DBLP

description: Sparqloscope benchmark queries generated for DBLP dataset
scale: 525000000 # Approx number of triples

queries:

- name: join-2-small-large
description: JOIN of a small and a large predicate
query: |
PREFIX dblp: <https://dblp.org/rdf/schema#>
SELECT (COUNT(x) AS 7count)
WHERE {
?s dblp:formerStreamTitle 7ol .
?s rdf:type 702
X
- name: join-2-large-small
description: JOIN of a large and a small predicate
query: |
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dblp: <https://dblp.org/rdf/schema#>
SELECT (COUNT(x) AS 7count)
WHERE {
?s rdf:type 7ol .
?s dblp:formerStreamTitle 702
b

A second extension is giving the user the option to store the benchmark results in a struc-
tured YAML file. To achieve this, two arguments were added to the benchmark-queries

command:

e —-result-file: Base name used for the result YAML file, which should be of the

form <dataset>.<engine> , e.g., dblp.qlever .
e —-results-dir : The directory where the YAML result file would be saved.

Recall from Section 4.2.2 that, when calling benchmark-queries through an engine’s wrap-
per script (e.g., qoxigraph benchmark-queries ), the SPARQL endpoint is already precon-
figured for that engine. This means users do not need to manually pass --sparql-endpoint ,
simplifying benchmark execution. By combining this with the --result-file and
--results-dir options, the same queries for a benchmark can be executed against mul-

tiple engines, and their results collected in a common results directory. To keep result
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files compact but still informative, only the first few responses per query are stored,
configurable via --max-results-output-file argument. For example, the result file
dblp.oxigraph.results.yaml would hold Oxigraph’s results for the DBLP benchmark,
while dblp.jena.results.yaml holds Jena’s. These files can then later be consumed by

the evaluation web application, which is covered in Section 4.5.

The result YAML file for a given benchmark and engine looks similar to the queries
YAML file in Listing 5. In addition to the benchmark name, description, and scale, it
also stores the timeout value in seconds specified for the benchmark. For each query, we
also store the runtime in seconds, the result size, and the first few results (limited by

--max-results-output-file )

To bolster the robustness of the benchmarking framework, we implemented the
--restart-on-hang argument. This flag, when supplied to the benchmark-queries
command, addresses issues where an engine either crashes or hangs indefinitely after the
timeout period. In such events, the system automatically restarts the engine’s server,
notes the restart in the results YAML file, and continues execution with the next query.
This prevents a single problematic query from blocking an entire benchmarking run. It
is especially useful for engines such as Oxigraph and Blazegraph. Oxigraph does not
support query timeouts for versions before v0.5 and may run indefinitely on difficult
queries. Similarly, while Blazegraph has a global timeout, certain queries have been
observed to run beyond the configured limit. With --restart-on-hang , benchmarking

sessions complete reliably without manual intervention.

4.5 The Evaluation Web Application

When the same --results-dir argument is used across engines when executing the
benchmark-queries command, the resulting YAML files accumulate in a shared directory.
The purpose of the evaluation app is to consume these files, transform them into a single
structured JSON representation, and serve them to a lightweight web application for

interactive analysis.

This section has two parts. First, we describe the new serve-evaluation-app com-
mand, which automates the transformation of YAML files and serving of the web applica-
tion. Then, we present the web application itself, which enables comparisons of engine

performance across benchmarks.
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4.5.1 The serve-evaluation-app command

The serve-evaluation-app command automates three tasks:

1. Reading all benchmark result files in the specified directory.
2. Converting the structured YAML files into one JSON representation.

3. Starting a web server that provides the data to the evaluation frontend.

Listing 6 Launching the serve-evaluation-app command

glever serve-evaluation-app --results-dir /path/to/eval/results

By default, the web server is served on localhost at port 8000. These defaults can be
overridden with the --host and --port arguments. An additional optional argument,
--title-overview-page , sets the title of the overview page of the web app (default:
SPARQL Engine Performance Evaluation).

Each benchmark result YAML file contributes query-level statistics (runtime, result
size, partial results, success or failure). From these values, a set of aggregate performance

metrics for each engine and benchmark are computed:

e Arithmetic mean runtime: the average runtime across all successful queries.

Failed queries are penalized with a runtime of timeout x 2.

e Geometric mean runtime (P=2): the geometric mean of runtimes, which
reduces the effect of extreme outliers. Failed queries are penalized with a runtime

of timeout x 2.

e Geometric mean runtime (P=10): the geometric mean of runtimes, with failed

queries penalized with a runtime of timeout x 10.

e Median runtime: the median of all runtimes, representing the typical performance.

Failed queries are penalized with a runtime of timeout x 2.

e Failure rate: the percentage of queries that did not produce a valid result within

the timeout.

e Runtime distribution: the percentage of queries falling into predefined categories

such as under 1 second, between 1-5 seconds, and over 5 seconds.

These metrics provide a compact yet comprehensive summary of an engine’s performance

on a benchmark. The raw per-query runtimes and result sizes are preserved as well.
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The processed data is then merged into a single JSON object with two top-level keys:

e performance data: a mapping from benchmark to engine. Each engine contains
the aggregate metrics data listed above as well as detailed query-level entries for

the given benchmark.

¢ additional data: benchmark metadata, such as benchmark name, description,

and scale.

The Python http.server is used to start the web server and the JSON data is provided
to the evaluation frontend at /yaml_data . After launching the command, the URL where

the web app is served is displayed to the user.

4.5.2 The web application

The evaluation web application makes benchmarking results easy to explore, compare, and
share. The web-app is implemented using HTML, CSS, plain JavaScript and Bootstrap
v5.3 for additional styling. This technology stack was chosen for its simplicity, robustness,
and longevity. Plain JavaScript ensures that the app is lightweight and fast, and runs
anywhere a browser does. Bootstrap provides a modern, responsive design that adapts
to different screen sizes, ensuring usability on desktops, laptops, or tablets. Further, Ag
Grid (Community Edition) powers the interactive tables and adds advanced functionality
such as sorting, filtering, and exporting. Together, these technologies create a lightweight,

future-proof application that researchers can rely on for reproducible evaluations.

The main entry point of the web application is the Overview Page (Figure 4). On
this page, the aggregate performance metrics of the SPARQL engines are displayed for
each benchmark. The table header shows the benchmark name and a small info button,
which can be tapped to reveal details about the benchmark. The benchmark name and
description correspond to the top-level NAME and DESCRIPTION keys in the benchmark-
queries YAML file (Listing 5). The tables are sorted by benchmark scale in ascending
order, where the scale corresponds to the SCALE key in the same YAML listing. In
each table, the first column lists the engines, and the remaining columns show aggregate

metrics for that benchmark. The aggregate metrics used are described in Section 4.5.1.

Thanks to Ag Grid, users can sort and filter metrics by clicking on the column headers,
quickly spotting engines that perform better or worse under different benchmarks. Each
table can also be exported as a TSV file, which makes it easy to carry results into external

analysis workflows.
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( )

DBLP @ ’&TSV‘ ’Compare Results
Engine G.Mean G.Mean Median A. Mean Failed
(P=2) (P=10) (P=2) (P=2)
QLever 0.29 s 0.29 s 0.24 s 1.76 s 0.00 %
Blazegraph 11.79 s 14.84 s 29.64 s 80.64 s 14.29 %
Graphdb 9.49 s 10.40 s 23.09 s 55.68 s 5.71 %
Virtuoso 0.82 s 0.86 s 1.39 s 14.68 s 2.86 %
Mdb 2.06 s 2.10 s 3.63 s 15.14 s 0.95 %
Jena 23.00 s 35.87 s 55.01 s 127.35 s 27.62 %
Oxigraph 19.18 s 31.32 s 31.29 s 130.22 s 30.48 %
\ J

Figure 4: Example aggregate metrics benchmark table for DBLP from the overview page of the
web application. Aggregate metrics: <=1s, (1s, 5s|, >5s are not shown here.

Clicking on an engine row in any benchmark table takes the user to a Details Page
(Figure 5) for that specific engine and benchmark. The default Query runtimes tab
lists individual query runtimes and result sizes, giving a clear picture of how the engine

performs on each query.

s 2
Details - QLever (DBLP)
Query runtimes Full query  Execution tree = Query result
SPARQL Query Runtime (s) Result Size
join-2-small-large 0.02 s 1 [2,000]
join-2-large-small 0.01s 1 [2,000]
join-2-large-large 0.31s 1 154,513,886]
filter-many-results 0.92 s 1 123,919,950]
optional-join-large-small 0.57 s 1 [118,749,867]
transitive-path-plus 0.07 s 1 [300,322]
number of objects 0.01s 1 [119,949,931]
\ J

Figure 5: Details page (query runtimes tab) for QLever on the DBLP benchmark. Only a subset
of queries is shown here.

Clicking on a query row fills the other tabs with information about that query. The
Full query tab shows the query description and complete SPARQL query text. The
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Query result tab shows the query response or the failure message, limited to the
--max-results-output-file number of results set in benchmark-queries . The Execu-
tion tree tab is available only for QLever when queries are executed using the special
application/qlever-results+json format, which provides extra metadata along with
the result. A query execution tree is a structured view of how the engine evaluates a
query internally, showing the operators and their order. This offers valuable insights into

query planning and execution strategy of QLever.

From the overview page, users can also click the Compare Results button to open the
Evaluation page (Figure 6) for a benchmark. The Evaluation page provides the most
comprehensive per-query comparison of SPARQL engines. It shows a table where queries
form the rows and engines form the columns. Each cell reports the runtime of a query on
a specific engine. Failures are highlighted in red, and the fastest runtime for a given query
is shown in green. This makes it immediately clear which engines perform the best for
which queries. Clicking on a query cell reveals a tooltip that shows the query description
and full SPARQL query, with an option to copy the query text. Similarly, clicking on a

failed query cell displays the failure reason.

The evaluation page includes several customization features (as seen in Figure 6) that

enhance the comparison process:

e Users can toggle which engines are displayed, making it easy to focus only on the

engines of interest.

e Aggregate metrics, such as arithmetic mean, geometric mean, percent of failed
queries and median, can be pinned to the top of the table. This provides a constant

high-level reference while scrolling through detailed query results.

e Engines can be reordered left to right based on aggregate metrics, either ascending
or descending. This helps spot overall performance leaders more quickly. Thanks to
Ag Grid, the engines can also be manually dragged and reordered to fit the user’s

needs.

e Users can choose whether to display result sizes as small, muted text below each
runtime. This adds context to performance results without cluttering the main

view.

Warnings provide additional insight during evaluation. When an engine’s result size for
a query differs from the majority, a warning symbol (&) appears in that engine’s cell. If
no consensus exists among engines, the warning symbol is displayed in the query row.

The tooltip specifies how the result size deviates from the majority. This consensus-based
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( )

DBLP Evaluation results @
Show Engines: QLever Oxigraph Virtuoso Mdb [] Jena
Order Engines: Geometric Mean (P=2) 1 =

4, TSV| @ Show Aggregate Metrics Q@ Show Result Size

Query QLever Virtuoso Mdb  Oxigraph
Geom. Mean (P=2) 0.29s 0.82s 2.06s 19.18s
Failed Queries 0.00 % 2.86 % 0.95 % 30.48 %
join-2-small-large 0.02s 0.07s 0.08s 0.28s
join-2-large-small 0.01s 0.01s 0.01s  ®timeout
join-2-large-large 0.31s 1.37s 6.09s  ®timeout
filter-many-results A 0.92s 1.4s 3.63s  ®timeout
optional-join-large-small 0.57s A 26s 41.75s  ®timeout
transitive-path-plus 0.06s failed 0.01s 0.01s
number of objects 0.01s timeout timeout  (Rtimeout
\ J

Figure 6: Evaluation page of the DBLP benchmark comparing QLever, Virtuoso, MillenniumDB,
Oxigraph, and Jena (Jena column hidden for demonstration). Aggregate metrics are shown as
bold pinned rows on top. Engines are ordered left to right by increasing geometric mean runtime
(P = 2). Best per-query runtimes are shown in green, and failures or timeouts in red. £ marks
result size deviations: next to an engine if its result size differs from the majority, and next to a
query if no result size consensus among the engines. (R)indicates that the server was restarted.
Only a subset of queries and aggregate metrics is shown.

feedback supports not only performance assessment but also correctness checking, which

is often neglected in benchmarks.

If the benchmark-queries command was run with the --restart-on-hang option, a
restart symbol ((R)) is shown for the query that triggered a server restart. The tooltip
explains the reason, which can be either a server crash caused by the query or a lack of

response beyond the timeout plus 30s.

A QLever-specific bonus

For a benchmark, when at least two QLever runs include execution tree information, a
Compare Execution Trees button appears on both the details page and the evaluation
page. Clicking on this button takes the user to the Compare Execution Trees page.
This page allows users to select two different QLever versions from dropdown menus and

view their execution trees side by side for the same benchmark query. Hovering over
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the query name at the top reveals the full SPARQL query as a tooltip. The trees are
automatically scaled to fit on the screen as much as possible, but users can freely adjust
the zoom level with + and - buttons. Dragging the cursor to move within an execution
tree is also supported. To make comparison easier, a synchronized scroll and zoom
feature ensures that moving or zooming one tree also applies the same adjustment to the
other. The execution trees comparison functionality is particularly valuable for QLever
developers, as it provides a visual way to detect regressions or confirm optimizations

between different QLever versions.
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5 Evaluation

In this chapter, we use our unified benchmarking framework to evaluate the seven SPARQL
engines discussed in Section 4.3. For the evaluation, we run multiple synthetic and real-
world benchmarks (from Chapter 2) and compare the performance and scalability of
engines at three dataset scales: small (ca. 50 million triples), medium (ca. 500 million

triples), and large (ca. 8 billion triples).

It is important to note that the purpose of this evaluation is not to provide a complete
performance study of all engines. Instead, it is designed to show how our framework
can be used to quickly set up multiple engines, run a wide variety of benchmarks at
multiple scales, and compare performance in the evaluation web application. This makes
it possible to gather actionable insights into performance and scalability of various
SPARQL engines. The full materials needed to reproduce our evaluation can be found at

https://github.com/ad-freiburg/sparql-engine-evaluation-tanmay.

The next section describes the experimental setup, including engine versions, datasets,

benchmarks, and configuration settings.

5.1 Experimental setup

All evaluations were run on a machine running Ubuntu 24.04 LTS, equipped with an
AMD Ryzen 9 5900X CPU (12 cores, 24 threads, 3.7 GHz), 128 GiB of DDR4 memory
and with 3.6 TB NVMe SSD storage.

5.1.1 Datasets, Benchmarks, and settings (regarding memory and timeout)

To provide a comprehensive evaluation, we use a combination of well-established synthetic
and real-world datasets across three distinct scales. For the small and medium-scale
experiments, we use synthetic datasets generated with the official data generators for

SP2Bench and Watdiv benchmarks. This approach allows for controlled and reproducible
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experiments at approximately 50 million and 500 million triples, respectively. We reuse
the SP?Bench 50-million-triple index to generate benchmark queries with the Sparqgloscope

benchmark.

For the medium-scale evaluation using Sparqloscope, we use the DBLP dataset. The
DBLP dataset contains quality-checked and manually curated bibliographic information
on major computer science journals and proceedings. The specific dump used for our

experiments is from September 1st, 2025 [29].

For large-scale evaluation using Sparqloscope and WDBench benchmarks, we employ
the Wikidata-truthy dataset. The Wikidata Truthy dataset is a subset of Wikidata,
a collaboratively edited knowledge graph hosted by the Wikimedia Foundation. The
so-called “truthy” dump only contains direct values of best-rank statements. This dataset
represents a massive, heterogeneous, and complex real-world knowledge graph. For this
evaluation, we use the version dated June 13th, 2025. Before indexing, we preprocess
the dataset by removing all geo:wktLiteral instances. This step avoids subtle result
size and rounding errors caused by the eight-byte internal representation of geographic
literals. The dataset is then split into multiple parts, each containing approximately 100
million triples, to improve indexing performance and prevent out-of-memory errors for

Java-based engines.

Table 1 provides an overview of the datasets, benchmarks, and total triples at the three

distinct scales.

Triples Dataset Benchmark

50,000,869 SP2?Bench data-generator synthetic dataset SP?Bench v1.1
54,493,332 Watdiv data-generator synthetic dataset Watdiv v0.6
50,000,869 SP?Bench data-generator synthetic dataset Sparqloscope

500,000,869 SP?Bench data-generator synthetic dataset SP2?Bench v1.1
546,041,900 Watdiv data-generator synthetic dataset Watdiv v0.6

524,632,117 DBLP (01.09.2025) Sparqloscope
7,969,161,598 Wikidata-truthy (13.06.2025) Sparqloscope
7,969,161,598 Wikidata-truthy (13.06.2025) WDBench

Table 1: Datasets and benchmarks used in the evaluation. Horizontal separators visually indicate
the three dataset scales: small (~50M triples), medium (~500M triples), and large (~8B triples).
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The chosen benchmarks are designed to evaluate distinct aspects of SPARQL engine
performance, providing a comprehensive view of their capabilities. SP?Bench, Watdiv,

Sparqloscope and WDBench are explained in more detail in Chapter 2.

To ensure consistent evaluation across scales, the following memory and timeout settings

were applied:
e Small scale (50M triples): 16 GiB RAM, 60 seconds timeout.
e Medium scale (500M triples): 32 GiB RAM, 180 seconds timeout.
e Large scale (8B triples): 64 GiB RAM, 300 seconds timeout.

These configurations provide sufficient resources for engines to complete queries while

controlling the maximum runtime for failing queries.

5.1.2 SPARQL Engine Setup and Benchmarking Workflow

All the seven SPARQL engines were set up using their native binaries for the best possible
performance. Our evaluation uses QLever at commit baa8421, Virtuoso at version 7.2.15,
MillenniumDB at commit 0a41c3b, GraphDB at version 11.0.0, Blazegraph at version
2.1.6 RC, Apache Jena at version 5.5.0 and Oxigraph at version 0.4.11.

The extended benchmarking framework made the setup process uniform and straight-
forward across all engines. The SPARQL endpoint for each engine was set up using the
corresponding wrapper script!, denoted below as <qengine>. At any given time, only
one engine’s SPARQL endpoint was active to ensure clean and isolated measurements.

Before starting experiments for another engine, the currently running server was stopped

The setup-config command generates a Qleverfile for the given engine and benchmark.
The setup-config command used the total index and server memory values, as well as

the timeout, specified for each benchmark and scale in Section 5.1.1:

<gengine> setup-config <benchmark_name>
--total-index-memory <index_mem> \
--total-server-memory <server_mem> \
--port <PORT> --timeout <timeout> \

--system native

1<qengine> denotes the engine-specific wrapper scripts: qlever, qvirtuoso, gmdb, qgraphdb,
gblazegraph, qjena, and qoxigraph.
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Once the configuration file is generated, the benchmark dataset is fetched, indexed,
and the SPARQL endpoint is started with:

<gengine> get-data
<gengine> index

<gengine> start

There are a few exceptions to this pattern. For e.g. qoxigraph takes no memory
based arguments for the setup-config command. And qgraphdb start requires a
--license-file-path argument. However, these exceptions are minimal and do not

affect the general workflow of setting up a SPARQL endpoint for the engines.

To run the benchmark, each engine was first warmed up with a single query:

<gengine> query # SELECT * WHERE {?s 2?p 2o} LIMIT 10

Then, the full benchmark suite for each engine was executed with:

<gengine> benchmark-queries --queries-yml <yml_file> \
--result-file <benchmark.engine> \

--results-dir <result_dir>

For all benchmarks except Sparqloscope, the option --download-or-count count was also
used. This wraps each query to return only its result size rather than downloading the full
result set, reducing network and serialization overhead and making the measurements more
representative of query execution performance. Sparqloscope was run without this option,
since most of its queries already return counts by default and are specifically designed to
test fine-grained query behavior in isolation. The benchmark-queries command runs all
benchmark queries sequentially and stores the resulting YAML file in the specified results

directory.

Finally, the results can be visualized interactively via the evaluation web-app. The

following command launches the web app at localhost:8000/www :

<gengine> serve-evaluation-app --results-dir <result_dir>

!<gengine> denotes the engine-specific wrapper scripts: qlever, qvirtuoso, qmdb, qgraphdb,
gblazegraph, qjena, and qoxigraph.
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5.2 Results

In this section, we present the indexing performance and query performance evaluation
of the SPARQL engines across the three dataset scales. The purpose here is not to
establish a definitive ranking of engines, but to identify performance and scalability
trends across benchmarks and dataset scales. Therefore, in the query performance result
tables in this section, we focus on two key aggregate metrics: geometric mean runtime
(s), and the percentage of failed queries. For failed queries, a penalty of twice the
timeout value was applied when computing the geometric mean, ensuring that instability
directly impacts the aggregate results. Full results with all aggregate metrics, as well as
detailed per-query engine comparisons, are available in the evaluation web application

(see https://github.com/ad-freiburg/sparql-engine-evaluation-tanmay).

We present the evaluation results separately for the three dataset scales: small (ca.
50M triples), medium (ca. 500M triples), and large (ca. 8B triples). For each scale, we
discuss the indexing performance and query performance of individual engines based
on aggregate metrics, highlighting how their performance changes as the dataset size

increases and how this affects scalability.

5.2.1 Small scale (ca. 50 million triples)

On the small-scale datasets (Table 2), QLever is the clear winner in both indexing time and
size, achieving the fastest indexing and the smallest indexes. MillenniumDB and Virtuoso
alternate for second place depending on the dataset, showing competitive performance.
Oxigraph loads data quickly, but its index size is extremely large and can exceed QLever’s
by more than a factor of five. The three Java-based engines (GraphDB, Blazegraph, and
Jena) are slower and produce larger indexes, with GraphDB consistently outperforming
the other two.

Based on the geometric mean and failed query rates in Table 3, Virtuoso emerges as
the clear winner on SP?Bench, with MillenniumDB and QLever following. However, this
picture is misleading for MillenniumDB. While its aggregate metrics appear competitive,
a closer inspection of the per-query results (see evaluation web application) reveals
that it produced incorrect result sizes for four queries, giving empty results quickly
which makes its aggregate metrics look strong. These errors undermine MillenniumDB’s
apparent strong aggregate results, bringing its failure rate to 43 %. This makes its effective

performance about the same as Jena’s and much worse than GraphDB and Blazegraph.
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Dataset = Metric QLV VRT MDB GDB BLZ JNA OXI

Index time 72s 164s 96s 221s  286s  398s 103s
Index size 1.6G 4.2G 28G 83G 62G 69G 11.0G

Index time 89s 138s 100s 173s  202s 411s 100s
Index size 1.5G 15G 24G 2.8G 32G 45G 99G

SP2Bench

Watdiv

Table 2: Indexing performance for the seven engines (QLV: QLever, VRT: Virtuoso, MDB:
MillenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena, OXI: Oxigraph) on the
SP2Bench (ca.50M triples), and Watdiv (ca.55M triples) datasets. Indexing time is shown in
seconds and index size in GiB. Best values (lowest time and smallest size) are highlighted in blue.

Benchmark Metric QLV VRT MDB GDB BLZ JNA OXI
G. Mean 1.17s 0.69s 1.80s* 2.57s 2.96s 3.78s 29.46s

2
SP*Bench Failed  214% 71% 14.3%* 28.6% 21.4% 357% 57.1%
Watdiv G. Mean 0.04s 0.04s 0.04s 0.08s 0.13s 0.14s 0.45s
(100 queries) Failed 1.0% 1.0% 6.0% 60% 60% 80% 10.0%
Spargloscope G. Mean  0.08s 0.15s 0.39s 1.87s 2.50s 5.55s  6.64s
SP?Bench Failed 00% 00% 00% 00% 33% 20.0% 31.1%

Table 3: Query performance evaluation for the seven engines (QLV: QLever, VRT: Virtuoso,
MDB: MillenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena, OXI: Oxigraph) on
the SP2Bench (ca.50M triples), Watdiv (ca.55M triples), and Sparqloscope SP?Bench (ca.50M
triples) benchmarks. The best geometric mean and failure rate are highlighted in blue. Failed
queries are assigned a value of (timeout =60) x 2 = 120s for computing geometric mean and
median. * indicates that the reported performance is worse than shown; see the section text for
details.

Oxigraph performs the worst on the benchmark, with over half of the queries failing (57 %).
Overall for SP?Bench, Virtuoso is clearly the most reliable, while QLever, Blazegraph,
and GraphDB also demonstrate reasonable robustness despite higher failure rates. These
results reflect the nature of SP?Bench benchmark itself. Its benchmark queries with
high result cardinalities and complex structures expose weaknesses in query optimization
strategies even at the small scale, clearly separating engines with more robust optimizers

from those that struggle.

Watdiv presents a contrasting picture. Its queries are lighter but span a wide range
of structural patterns and join selectivities, allowing it to expose how engines adapt to
structural diversity. MillenniumDB, Virtuoso, and QLever lead in terms of geometric
mean runtime, indicating efficient query execution across a variety of query structures.
However, MillenniumDB’s excellent runtime comes with slightly higher failure rates,

which is similar to GraphDB and Blazegraph. Virtuoso and QLever combine speed with
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reliability, reinforcing their consistent top-tier performance. Apache Jena and Oxigraph
lag behind again, exhibiting both slower runtimes and higher failure rates. Overall at the

small scale, all engines perform reliably well on the Watdiv Benchmark.

Sparqloscope is designed for fine-grained analysis where individual query results are
most meaningful, yet aggregate metrics still reveal important trends. On the Sparqloscope
benchmark at the small scale, QLever, Virtuoso, and MillenniumDB clearly lead, achieving
geometric means below 0.4 s with no failures, demonstrating highly efficient query
execution across a broad range of SPARQL features. GraphDB and Blazegraph also
perform reliably, with almost no failed queries, but their geometric means are noticeably
higher at 1.87 s and 2.50 s, respectively. In contrast, Apache Jena and Oxigraph struggle,
showing very high failure rates even at this modest scale. Jena fails mainly on OPTIONAL
and MINUS queries, while Oxigraph additionally fails on EXISTS and UNION constraint
queries. At this small scale, Sparqloscope clearly singles out Jena and Oxigraph as the
worst performers, exposing specific weaknesses in their handling of complex SPARQL

constructs and highlighting the areas where their query processing could be improved.

Across the small-scale benchmarks, Virtuoso and QLever consistently achieve top-tier
performance, combining low runtimes with minimal failures. MillenniumDB performs
well in terms of speed but exhibits higher failure rates on SP?Bench, showing some query
optimization gaps. GraphDB and Blazegraph are always middle of the pack and deliver
reliable but slower performance. Apache Jena and Oxigraph consistently struggle, with
highest failure rates and slowest performance on all three benchmarks. Sparqloscope also

shows that they are clearly lacking when it comes to complex SPARQL constructs.

NOTE: For Oxigraph, the version used in these experiments (v0.4.11) lacked native
timeout handling. Queries exceeding the timeout limit were only terminated after an
additional 30 seconds when the server was restarted, negatively affecting benchmark

performance. The current release v0.5 has since added proper timeout support.

5.2.2 Medium scale (ca. 500 million triples)

On the medium-scale datasets (Table 4), the indexing time and size trends from the small
scale largely persist. QLever again leads with the fastest indexing times and compact
indexes, with Virtuoso and MillenniumDB closely following. For Blazegraph (marked
with * in Table 4), index time and index size results were obtained using a special, bulk-
loading-optimized RWStore.properties configuration that is included in our framework.

This configuration allows the system to load data in a highly efficient manner, leading to
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substantially smaller index sizes and faster indexing times compared to the default setup.
In contrast, loading via SPARQL UPDATE operations or using a non-optimized default
properties file results in significantly larger indexes and much longer loading times, often

up to double the values reported here.

Dataset Metric QLV VRT MDB GDB BLZ JNA OXI

Index time 12.1m 31.4m 176m 32.8m 73.9m* 93.1m 22.4m

SP2Bench .
Index size  15.3G  42.0G 28.0G 51.0G 56.0G* 70.0G 100.0G

Index time 16.5m 24.7m 17.9m 28.7m 92.9m* 96.7m 22.2m

Watdi
P Indexsize 172G 170G 240G 280G  31.0G* 460G 102.0G

Index time 10.3m 124m 14.7m 254m 40.3m* 70.6m 13.3m

DBLP
Index size 94G 140G 200G 350G 34.0G* 540G 80.0G

Table 4: Indexing performance for the seven engines (QLV: QLever, VRT: Virtuoso, MDB:
MillenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena, OXI: Oxigraph) on the
SP?Bench (ca.500M triples), Watdiv (ca.550M triples), and DBLP (ca.525M triples) datasets.
Indexing time is shown in minutes and index size in GiB. Best values (lowest time and smallest
size) are highlighted in blue. * indicates that additional special steps or problem workarounds
were required to obtain the reported indexing measurements; see the section text for details.

Benchmark Metric QLV VRT MDB GDB BLZ JNA OXI

G. Mean 7.89s 2.93s 9.96s* 14.61s 15.55s 21.64s 86.31s

SP2Bench

ene Failed  35.7% 14.3% 14.3%* 42.9% 42.9% 50.0% 64.3%
Watdiv G. Mean 0.13s 0.10s 0.15s 0.35s 0.73s 0.58s 2.17s
(100 queries)  Failed 30%  50% 9.0% 9.0% 9.0% 100% 10.0%

Sparqloscope  G. Mean  0.29s  0.82s  2.06s 9.49s 11.79s 23.00s 18.14s
DBLP Failed 0.0% 29% 1.0% 57% 143% 276% 30.5%

Table 5: Query performance evaluation for the seven engines (QLV: QLever, VRT: Virtuoso,
MDB: MillenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena, OXI: Oxigraph) on
the SP2Bench (ca. 500 million triples), Watdiv (ca. 550 million triples), and DBLP Sparqloscope
(ca. 525 million triples) benchmarks. The best geometric mean and failed queries % are highlighted
in blue. All the failed queries are assigned a value of (timeout: 180s) * 2 = 360 s for the computation
of geometric mean and median. * indicates that the reported metric is worse than shown; see the
section text for details.

At the medium scale (Table 5), SP?Bench further stresses the engines, highlighting
scalability challenges. Virtuoso remains the clear winner, maintaining the lowest failure

rates and geometric mean. This demonstrates that its mature query optimizing techniques
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effectively handles high-cardinality queries with increasing scale. QLever experiences a
notable performance degradation. Its geometric mean increases several times compared to
the small scale, largely due to the failure rate going up from 21 % to 36 %. One particularly
demanding query even causes the QLever server to crash. This highlights, how QLever’s
query planner hasn’t covered all the optimization cases yet and lags behind Virtuoso.
MillenniumDB again shows strong, but misleading aggregate metrics. It produces wrong
result size for the same four queries as the small scale, which raises its effective failure
rate to 43 %. This brings its performance on par with GraphDB and Blazegraph, whose
runtimes and failure rates also worsen with scale. Oxigraph and Jena exhibit severe

scalability limitations, with more than half the queries failing.

For Watdiv on the medium scale, failure rates and geometric means increase slightly
compared to the small scale, but the changes are moderate. QLever maintains the lowest
failure rate at 5%, but its geometric mean rises to 0.13s, slightly above Virtuoso’s 0.10s.
This can be attributed to QLever incurring a fixed overhead for each query (most due to
the query planner) which shows for the small and medium scale, but is negligible at large
scale. MillenniumDB has similar failure rates when compared to the three java-based
engines, but much better geometric mean. The three Java-based engines perform reliably
well with increasing scale here, but remain clearly behind the leaders in both speed and
reliability. Oxigraph remains the worst performer with the worst geometric mean of
2.17s. Only a hundred randomly selected Watdiv queries from the official workload were
evaluated here. A greater number of stress query templates would likely increase the

challenge and further differentiate engine performance.

On the medium-scale Sparqloscope benchmark, performance differences between the
engines become more pronounced. QLever is the clear scalability winner here with no
failures and a geometric mean of only 0.29s. Virtuoso, and MillenniumDB are close
behind, maintaining low failure rates and geometric means as well. In contrast, the
Java-based engines and Oxigraph show a clear performance gap. Blazegraph experiences
the most severe degradation. Its failure rate rises sharply from 3.3 % at the small scale to
14.3%. With increasing scale, Blazegraph shows poor performance across the board, with
high failure rates on MINUS and EXISTS queries. For some of these queries, the server
failed to terminate within the timeout and had to be restarted. GraphDB’s performance
also deteriorates, with worse performance on most SPARQL constructs and failures on
EXISTS queries. Jena and Oxigraph remain the weakest overall, with failure rates around
30 %, though Oxigraph performs somewhat better than Jena, highlighting Jena’s worse
scalability.
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With increasing scale, Virtuoso and QLever continue to be the top performers across
all the 3 benchmarks. But, SP?Bench manages to expose some query optimization gaps
for QLever at the medium scale, with one query even managing to crash the QLever
server. MillenniumDB maintains fast runtimes and consistently places third across all
three benchmarks. GraphDB and Blazegraph move further into the middle tier, showing
clear signs of strain as runtimes rise and failures increase with scale. Blazegraph especially
struggles at the medium scale, showing worse scalability when compared to GraphDB.
Apache Jena and Oxigraph continue to be last, with failure rates climbing sharply and
scalability issues becoming more apparent. Overall, even at the modest medium scale
of 500 million triples, a clear gulf emerges between the top engines (Virtuoso, QLever,

MillenniumDB) and the weaker group of Java-based engines plus Oxigraph.

5.2.3 Large scale (ca. 8 billion triples)

The large-scale evaluation (Table 7) uses the Wikidata-truthy dataset and two real-world
benchmarks: Sparqloscope and WDBench. Oxigraph is excluded from this evaluation
due to excessive index size, missing query optimizations, and lack of timeout support in

version 0.4.11.

Dataset Metric QLV VRT MDB GDB BLZ JNA OXI

Index time  3.5h 13.8h* 42h >20h' 22.6h* 21.0h X

Wiki-truth,
HEY Index size 149G 373G 317G 453G 500G* 684G

Table 6: Indexing performance for the seven engines (QLV: QLever, VRT: Virtuoso, MDB:
MillenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena, OXI: Oxigraph) on the
Wikidata Truthy dataset (ca. 8B triples). Indexing time is shown in hours and index size in GiB.
Best values (lowest time and smallest size) are highlighted in blue. TGraphDB was restarted
from a checkpoint after a crash and the reported time is approximate. * indicates that additional
special steps or problem workarounds were required to obtain the reported indexing measurements;
see the section text for details. Oxigraph was excluded from this scale and is shown as x.

On the large-scale Wikidata-truthy dataset (Table 6), QLever remains the undisputed
winner, achieving the fastest indexing time and a compact index of 149.4 GiB. Unlike
the small and medium-scale datasets, MillenniumDB now clearly secures second place,
with much faster indexing and a smaller index than Virtuoso. Virtuoso lags behind with
longer loading times and a larger index of 373 GiB. As shown in Table 6, the indexing
process for Virtuoso (marked with *) required special handling. In particular, the data was

loaded in incremental chunks and committed progressively to avoid extreme slowdowns
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Benchmark Metric QLV VRT MDB GDB BLZ JNA OXI

Sparqloscope  G. Mean 3.94s 14.99s 35.34s 115.62s 103.05s 165.33s X
Wiki-truthy  Failed 29% 152% 400% 61.9% 57.1% 67.6% X

WDBench G. Mean 1.39s 8.33s* 3.54s 12.81s  47.25s 93.18s X
(100 queries) Failed 7.0% 24.0%* 120% 23.0% 33.0% 47.0% X

Table 7: Query performance evaluation for the seven engines (QLV: QLever, VRT: Virtuoso,
MDB: MillenniumDB, GDB: GraphDB, BLZ: Blazegraph, JNA: Apache Jena, OXI: Oxigraph) on
the Wikidata Truthy (ca. 8 billion triples) benchmarks created using Sparqloscope and WDBench.
The best geometric mean and failed queries % are highlighted in blue. All the failed queries
are assigned a value of (timeout: 300s) * 2 = 600s for the computation of geometric mean and
median. At the large scale, only the Wikidata-truthy index was built for each engine, so the
synthetic benchmarks SP?Bench and Watdiv are not applicable. * Indicates that the reported
performance is worse than shown; see the section text for details. Oxigraph was excluded from
this scale and is shown as x.

or crashes and to ensure the process completed successfully. The Java-based engines
(GraphDB, Blazegraph, and Jena) are far slower, produce massive indexes, and take
over 20 hours to complete. As discussed earlier in Section 5.2.2, the index time and
size values for Blazegraph (marked with *) reflect the use of the bulk-loading-optimized
RWStore.properties configuration. Without this optimization, both the indexing time
and index size would be considerably higher. Oxigraph is excluded due to potential
excessive index size at this large scale. Overall, the large-scale results starkly highlight
QLever’s superior scalability and efficiency, while the gulf to the other engines, particularly

Virtuoso and the Java-based engines, becomes much clearer.

On Sparqloscope, the gulf between engines widens dramatically compared to the medium
scale. QLever cements itself as the scalability champion, with a geometric mean rising only
modestly (from 0.29 s to 3.94 s) and the lowest failure rate of just 2.9 %. This stability
highlights the efficiency of its join algorithms, compressed index blocks, and targeted
optimizations. Virtuoso follows, with stronger results than most competitors, especially
on OPTIONAL , MINUS, and EXISTS queries where its relational database foundation pays
off. However, it scales less gracefully, as its geometric mean grows by nearly a factor of 20
(0.8s to 155s), and its failures rise to 15 %. Virtuoso especially struggles on property path
queries, where it consistently fails. MillenniumDB’s performance degrades considerably
at the large scale, with its failure rate jumping from 1% to 40 %. The Java-based engines
all collapse under the large-scale workload. GraphDB, Blazegraph, and Jena, which had
already struggled at medium scale, now fail on more than 60 % of queries and slow down
by an order of magnitude, becoming effectively unusable. Compared to Sparqloscope

at medium scale, the results at large scale reveal how scalability magnifies differences.
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Engines that seemed only “weaker” at medium scale become practically infeasible at large

scale.

WDBench also paints a similar picture, but introduces an unexpected outcome. While
QLever again leads the pack, MillenniumDB surpasses Virtuoso on this benchmark,
marking one of the few cases where Virtuoso does not occupy a top position. Virtuoso’s
weakness is explained by its poor handling of property path and navigational graph
pattern queries, where it frequently fails, times out, or returns incorrect result sizes. For
at least ten queries from these two categories, it returns result sizes that differ significantly
from all other engines that complete the queries successfully. One query also manages
to crash the Virtuoso server, requiring a restart to continue the evaluation. If these ten
queries are counted as failed, Virtuoso’s failure rate increases to 34 %, placing it at the
same level as Blazegraph. Since Virtuoso is generally faster than Blazegraph on the
queries it completes, its overall performance would then be worse than GraphDB but
still better than Blazegraph. In contrast, MillenniumDB proves surprisingly strong on
WDBench, suggesting that its query engine is more resilient for complex, heterogeneous
graph workloads. GraphDB performs reasonably well and is much more reliable and faster
compared to the other two java engines. Blazegraph and Jena perform quite poorly and

are slower by an order of magnitude and face substantially higher failure rates.

Taken together, the large-scale results show that only a few engines remain viable at
billion-triple scale. QLever is the most scalable and reliable engine, providing consistent
speed, low failure rates, and robustness across query types. Virtuoso performs well on
many SPARQL constructs and benefits from its relational design. However, it repeatedly
fails on property path and navigational graph pattern queries and is therefore unsuitable
for workloads that depend on these features. MillenniumDB handles property path and
navigational queries more robustly, which explains its stronger results on WDBench.
But, Sparqloscope shows that MillenniumDB performs worse compared to QLever and
Virtuoso across most other SPARQL constructs. The three Java-based engines, GraphDB,
Blazegraph, and Apache Jena, exhibit high failure rates and slow runtimes at this scale
and are effectively impractical for billion-scale deployments. Overall, Virtuoso and
MillenniumDB have specific strengths but remain a considerable step below QLever in

overall performance and reliability at this large 8-billion-triple scale.
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6 Conclusion

In this thesis, we have presented a unified framework for benchmarking SPARQL engines
that simplifies and standardizes the evaluation process. By extending QLever-control to
support seven SPARQL engines (QLever, Virtuoso, MillenniumDB, GraphDB, Blazegraph,
Apache Jena, and Oxigraph), we have enabled users to set up endpoints, and run
benchmarks without having to learn the internal commands or configuration details of
each engine. Datasets can be retrieved and indexed automatically, benchmarks can be
executed in a uniform way, and results can be explored through an interactive evaluation

application instead of static tables.

Through an evaluation across multiple synthetic and real-world benchmarks, we have
showed how the framework supports comparisons of query runtimes, result size correctness,
index build times, and index sizes at different dataset scales. The evaluation revealed
many interesting strengths and weaknesses of the engines. Users can use these insights
to identify engines that not only meet their current needs but can also scale to larger
workloads. Researchers and developers who work with SPARQL engines benefit from
a reproducible environment in which they can easily test their systems against estab-
lished baselines, validate improvements, and demonstrate competitive performance across

multiple benchmarks.

With this work, we have taken a step toward making SPARQL benchmarking more
reproducible, reliable, and accessible. All software, benchmarks and results are publicly

available on https://github.com/ad-freiburg/sparql-engine-evaluation-tanmay.

The next section discusses directions for future work that can further extend the scope

and applicability of the framework.
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6.1 Future Work

The framework presented in this thesis is designed to be extensible, and several directions

can further increase its utility and usability.

Support for More Engines: The framework is designed to be very easy-to-extend
and Section 4.1, and Section 4.2 can be used as guidance to add support for new engines.
Future work will expand coverage by integrating additional engines, ensuring broader

applicability for both users and researchers.

Automated Collection of Index Statistics: Currently, QLever-control provides
an index-stats command that reports index size and index time for QLever. For the
other engines, these values were retrieved manually during our evaluation in Section 5.2.
A useful extension would be to implement an index-stats command for each supported

engine so that index size and index time can be collected automatically.

Integration of Index Statistics into the Web Application: Once index statistics
are gathered automatically, they can be consumed directly by the evaluation web applica-
tion. This would enable users to explore and compare not only query runtimes and result

sizes, but also index times and storage requirements in a unified interface.

Guidance for Native Installation: The framework currently supports automated
container-based setups, while native binary installation is left to the user. To make this
easier, a new command could be added for each engine. This command would print clear,
engine-specific instructions for downloading, installing, and placing the required binaries

on the system path.

Continuous Integration and Regression Testing: A valuable extension would be
to integrate the framework with continuous integration (CI) pipelines such as GitHub
Actions. This would allow automatic benchmarking to be triggered whenever a new
version of an engine is pushed to its repository. Such integration would enable regression
testing, ensuring that new releases do not degrade query performance, scalability, or
correctness. Over time, this could also build a historical record of performance trends

across engine versions, providing useful insights for developers.
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