Enabling Automated Setup

and Evaluation of SPARQL Engines
through Unified Benchmarking
Infrastructure

Master's Thesis by Tanmay Garg

Resource Description Framework (RDF)

Growing
data on the
web

[Structured representation of information }

<subject> —— <predicate> —— <object>
[<Lionel_Messi> | [<has_profession> | [<Footballer> |
[<Lionel_Messi> | [<played_for> | [<Argentina> |
[<Lionel_Messi> | [<played_for> | [<FC_Barcelona> |
[<FC_Barcelona> | [<country> | [<Spain> |

Graph Representation of Triples - Knowledge Graphs

[<played_for>]

[<Lionel_Messi> H <FC_Barcelona>

[<played_for>] [<country>]

[<has_profession>]

[<Footballer> } [<Argentina> } [<Spain>

Querying Knowledge Graphs with SPARQL

Standard query language to extract information from Knowledge Graphs

E.g.: All footballers who have played for both Argentina and FC Barcelona

SELECT ?player
WHERE {

?player <has_profession> <Footballer> . , ,
<Lionel_Messi>

?player <played_for> <Argentina> .
?player <played_for> <FC_Barcelona> .

}

SPARQL Engines

Responsibilities: Examples on the market:

e Store and index RDF data
e Process SPARQL queries

{]
e Optimize execution of queries at

scale

QLever
Virtuoso
MillenniumDB
Blazegraph
Apache Jena
GraphDB
Oxigraph

Not all SPARQL Engines are the same!

Engines differ in:

4 N
[Internal Architecture } [Storage Model }

Indexing Strategies } [Query Optimization Techniques }

k[/

Major impact on performance and
scalability!

[Need for Benchmarking! }

What is a Benchmark?

e Structured and reproducible evaluation of SPARQL engines

e Focus on evaluation of sequential query performance

[But, benchmarking is challenging! }

Challenge 1: Working with multiple engines

e Different installation, and dataset indexing methods
e Complex, and often poorly documented commands

e Configuration quirks, which significantly affect performance

e Difficulty grows when benchmarking multiple engines

Challenge 2: Working with multiple benchmarks

e Some benchmarks provide predefined queries

e Some benchmarks provide software to generate queries from query
templates

e Burden of query execution and result collection left to the user

[Multiple benchmarks x Multiple Engines }

1
(I

[High coordination complexity! }

Challenge 3: Interpreting Performance Metrics

e Benchmarks often output raw tables of numbers
e Manual processing needed for meaningful insights

e Limited support for side-by-side engine comparison

e Correctness matters, not just speed

Questions?

What if we could index and serve RDF datasets for multiple
engines using simple, uniform commands without worrying
about low-level internal details?

Building on a Strong Foundation:
QLever-control

<gengine> setup-config

/ Engines REEIEEERs

<gengine> index

<gengine> start

1 Workﬂ OW <gengine> query

<gengine> stop

No engine-specific friction!

Modular, easy-to-extend with
engine-specific logic isolation

What if we could have a single, uniform way to execute a set of
benchmark queries for all the engines?

Uniform query execution across

multiple engines with:
<gengine> benchmark-queries

The benchmark-queries command

e Sequentially query the engines and store the runtimes and results

e Single implementation for QLever
o Other engines inherit from QLever’s implementation and simply
override the default SPARQL endpoint URL

() () (

olympics.queries.yaml| +/ glever benchmark-queries

(& J (& J A\

y

olympics.qglever.results.yaml

() () (

olympics.queries.yaml| | qvirtuoso benchmark-queries - olympics.virtuoso.results.yaml

(& J (& J A\

() () 4

olympics.queries.yaml| gjena benchmark-queries olympics.jena.results.yaml

- J - J &

Questions?

What if benchmark results were easier to interpret,
with side-by-side comparisons and correctness checks?

The Evaluation Web Application

SPARQL Engine Evaluation Setup

7 Engines, 8 benchmarks:

e 3 benchmarks at small scale (~ 50 million triples)
e 3 benchmarks at medium scale (~ 500 million triples)
e 2 benchmarks at large scale (~ 8 billion triples)

Single machine

e AMD Ryzen 9 5900X CPU (12 cores, 24 threads, 3.7 GHz)
e 128 GiB of DDR4 memory
e 3.6 TB NVMe SSD storage

Thank You

4
N

Additional backup slides

Evaluation Use Cases

: : Researchers developing
Users choosing an engine

engines
Engine that performs good Comparison with other
today. engines.
Engine that meets growing Comparison against earlier
demands. version of own engine.

\//

[Benchmarking }

What if benchmarking could be easier?

What if we could index and serve RDF datasets for multiple engines using
simple, uniform commands without worrying about internal details?

What if we could have a single, uniform way to execute a set of queries for all
the engines?

What if benchmark results were easier to interpret,
with side-by-side comparisons and correctness checks?

Building on a strong foundation: QLever-control

e Simple, uniform commands to set up QLever
e No need to know internal engine commands!
e Underlying execution steps can be optionally shown

e Modular design which is easy to extend

e Supports both native binaries and containers

How QLever-control was modified
to support multiple engines

QLever-control directory structure

src/

|

[glever/

|

-

A&

glever_main.py

Vs

gleverfile.py

commands/

[<gengine>/ } /

Defines new engine-specific

command-line arguments

-

A&

gleverfile.py

~

J

Vs

comman

.

ds/

~N

J

index.py

start.py

Qleverfiles/

‘ setup_conﬁg.py] ‘

index.py

J |

start.py

‘ Qleverﬂle.olympics] ‘ Qleverfile.dblp] ‘ Qleverfile.wikidata]

Program Execution Flow

[<gengine> <command> <arguments>
Instantiate an object for command classes from
src/<gengine>/commands

[Merge Qleverfile arguments (core + engine-specific)

Parse relevant arguments for the chosen command

Execute command

Command Implementation Strategy

GOAL: Minimize code duplication across engines

Vs

(&

Engine-agnostic

~

J

Vs

Identical across
engines

~

J

get-data
log

Ve

~

Derived
- A
Mostly shared
logic
N\ J

setup-config

stop
query

Vs

(&

Non-reusable

Vs

-

Highly
engine-specific

J

index

start

Benefits of the Modular Design

e Minimal changes to core QLever-control
e Clear separation of engine-specific code
e Reduced code duplication

e Easy to extend to new engines

e Better code discovery & maintainability

From Static Results to Interactive Evaluation

[Static YAML result files 1

[glever serve-evaluation-app }

[Aggregate and per-query results as JSON }

[Interactive Web application }

Benchmarks at 3 different scales for 7 engines

Benchmark

Dataset

Triples

SP2Bench v1.1

@ Spargloscope SP?Bench

Watdiv v0.6

SP2?Bench data-generator
SP2?Bench data-generator

Watdiv data-generator

~ 50 million triples
~ 50 million triples

~ 55 million triples

SP2Bench v1.1

@ Sparqgloscope DBLP

Watdiv v0.6

SP2Bench data-generator
DBLP (01.09.2025)

Watdiv data-generator

~ 500 million triples
~ 525 million triples

~ 550 million triples

Spargloscope Wiki-truthy
L
WDBench

Wikidata-truthy (13.06.2025)

Wikidata-truthy (13.06.2025)

~ 8 billion triples

~ 8 billion triples

