
Enabling Automated Setup
and Evaluation of SPARQL Engines
through Unified Benchmarking
Infrastructure

Master’s Thesis by Tanmay Garg

Resource Description Framework (RDF)

Structured representation of information

Growing
data on the

web

<subject> <predicate> <object>

<Lionel_Messi> <has_profession> <Footballer>

<Lionel_Messi> <played_for> <Argentina>

<Lionel_Messi> <played_for> <FC_Barcelona>

<FC_Barcelona> <country> <Spain>

Graph Representation of Triples - Knowledge Graphs

<Lionel_Messi>

<has_profession>

<played_for>

<country>

<Spain><Footballer> <Argentina>

<FC_Barcelona>

<played_for>

SELECT ?player
WHERE {
 ?player <has_profession> <Footballer> .
 ?player <played_for> <Argentina> .
 ?player <played_for> <FC_Barcelona> .
}

Querying Knowledge Graphs with SPARQL

Standard query language to extract information from Knowledge Graphs

E.g.: All footballers who have played for both Argentina and FC Barcelona

<Lionel_Messi>

SPARQL Engines

Responsibilities:

● Store and index RDF data

● Process SPARQL queries

● Optimize execution of queries at
scale

Examples on the market:

● QLever

● Virtuoso

● MillenniumDB

● Blazegraph

● Apache Jena

● GraphDB

● Oxigraph

Not all SPARQL Engines are the same!

Major impact on performance and
scalability!

Need for Benchmarking!

Internal Architecture

Indexing Strategies

Storage Model

Query Optimization Techniques

Engines differ in:

What is a Benchmark?

But, benchmarking is challenging!

● Structured and reproducible evaluation of SPARQL engines

● Focus on evaluation of sequential query performance

Challenge 1: Working with multiple engines

● Different installation, and dataset indexing methods

● Complex, and often poorly documented commands

● Configuration quirks, which significantly affect performance

● Difficulty grows when benchmarking multiple engines

Challenge 2: Working with multiple benchmarks

● Some benchmarks provide predefined queries

● Some benchmarks provide software to generate queries from query
templates

● Burden of query execution and result collection left to the user

Multiple benchmarks x Multiple Engines

High coordination complexity!

Challenge 3: Interpreting Performance Metrics

● Benchmarks often output raw tables of numbers

● Manual processing needed for meaningful insights

● Limited support for side-by-side engine comparison

● Correctness matters, not just speed

Questions?

What if we could index and serve RDF datasets for multiple
engines using simple, uniform commands without worrying

about low-level internal details?

Building on a Strong Foundation:
QLever-control

7 Engines
<qengine> setup-config

<qengine> get-data

<qengine> index

<qengine> start

<qengine> query

<qengine> stop
1 Workflow

No engine-specific friction!

Modular, easy-to-extend with
engine-specific logic isolation

Uniform query execution across
multiple engines with:

<qengine> benchmark-queries

What if we could have a single, uniform way to execute a set of
benchmark queries for all the engines?

The benchmark-queries command

olympics.queries.yaml qlever benchmark-queries olympics.qlever.results.yaml

olympics.queries.yaml qvirtuoso benchmark-queries olympics.virtuoso.results.yaml

olympics.queries.yaml qjena benchmark-queries olympics.jena.results.yaml

● Sequentially query the engines and store the runtimes and results

● Single implementation for QLever
○ Other engines inherit from QLever’s implementation and simply

override the default SPARQL endpoint URL

Questions?

The Evaluation Web Application

What if benchmark results were easier to interpret,
with side-by-side comparisons and correctness checks?

SPARQL Engine Evaluation Setup

7 Engines, 8 benchmarks:

● 3 benchmarks at small scale (~ 50 million triples)
● 3 benchmarks at medium scale (~ 500 million triples)
● 2 benchmarks at large scale (~ 8 billion triples)

Single machine

● AMD Ryzen 9 5900X CPU (12 cores, 24 threads, 3.7 GHz)
● 128 GiB of DDR4 memory
● 3.6 TB NVMe SSD storage

Thank You

Additional backup slides

Evaluation Use Cases

Users choosing an engine Researchers developing
engines

Engine that performs good
today.
Engine that meets growing
demands.

Comparison with other
engines.
Comparison against earlier
version of own engine.

Benchmarking

What if benchmarking could be easier?

What if we could index and serve RDF datasets for multiple engines using
simple, uniform commands without worrying about internal details?

What if we could have a single, uniform way to execute a set of queries for all
the engines?

What if benchmark results were easier to interpret,
with side-by-side comparisons and correctness checks?

Building on a strong foundation: QLever-control

● Simple, uniform commands to set up QLever

● No need to know internal engine commands!

● Underlying execution steps can be optionally shown

● Modular design which is easy to extend

● Supports both native binaries and containers

How QLever-control was modified
to support multiple engines

QLever-control directory structure

qlever/

qlever_main.py

qleverfile.py

commands/

Qleverfiles/

…

src/

<qengine>/

qleverfile.py

commands/

setup_config.py index.py start.py

…

Qleverfile.olympics Qleverfile.dblp Qleverfile.wikidata

…

index.py start.py

…

Defines new engine-specific
command-line arguments

Program Execution Flow

<qengine> <command> <arguments>

Instantiate an object for command classes from
src/<qengine>/commands

Merge Qleverfile arguments (core + engine-specific)

Parse relevant arguments for the chosen command

Execute command

Command Implementation Strategy

Engine-agnostic Derived Non-reusable

Identical across
engines

Mostly shared
logic

Highly
engine-specific

GOAL: Minimize code duplication across engines

get-data

log

index

start

setup-config

stop

query

Benefits of the Modular Design

● Minimal changes to core QLever-control

● Clear separation of engine-specific code

● Reduced code duplication

● Easy to extend to new engines

● Better code discovery & maintainability

From Static Results to Interactive Evaluation

qlever serve-evaluation-app

Static YAML result files

Interactive Web application

Aggregate and per-query results as JSON

Benchmarks at 3 different scales for 7 engines

Benchmark Dataset Triples

SP2Bench v1.1 SP2Bench data-generator ~ 50 million triples

Sparqloscope SP2Bench SP2Bench data-generator ~ 50 million triples

Watdiv v0.6 Watdiv data-generator ~ 55 million triples

SP2Bench v1.1 SP2Bench data-generator ~ 500 million triples

Sparqloscope DBLP DBLP (01.09.2025) ~ 525 million triples

Watdiv v0.6 Watdiv data-generator ~ 550 million triples

Sparqloscope Wiki-truthy Wikidata-truthy (13.06.2025) ~ 8 billion triples

WDBench Wikidata-truthy (13.06.2025) ~ 8 billion triples

S

M

L

