Two-step OCR Post-correction with BERT and Neural Machine Translation models Master thesis

> Author: Tanyu Tanev Supervisor: Matthias Hertel 1st Examiner: Prof. Dr. Hannah Bast 2nd Examiner: Prof. Dr. Frank Hutter

Chair for Algorithms and Data Structures Department of Computer Science University of Freiburg

June 30, 2022

Table of Contents

- Metrics
- Setup
- Results

Table of Contents

- Metrics
- Setup
- Results

Tesseract OCR on Historical Document 1/2

ABSTRACT. It is shown that the assumption that language is non-finite involves the use of a constructive logic which leads to some restrictions on language theory and to the fact that the only possible definition of language is that proposed by generative grammars. Generative grammars can be formulated as normal /Markov/ algorithms and thus their study can be reduced to the study of such algorithms of a special type. A new type of generative grammar is defined, called matrix grammar. It is shown that a language generated bv a context-restricted grammar can be also generated by a matrix grammar. Some properties matrix grammars are shown to be decidable. of The problem of the explicative power of generative grammars is discussed.

Figure: Excerpt from article [1] with its Abstract section

Tesseract OCR on Historical Document 2/2

ABSTRACT. It is shown that the assumption thrat language is non-finite involves the use of a constructive logic which leads to some restrictions on language theory and to the fact that the only rossitle definition of language is that proposec by generative grammars. fGenerative grammars can be formulated asn normal /M¥arkov/ algorithms and thus their study can be reduced to the stufy of suck algorithms of a special +tyre. 4 new tyrpe of rsenerative grammar is defineé, called matrix grammar. It is shown that 2 languapge generated by a context-restricted grammar can be also generated by a matrix grammar. Some properties of matrix grammars are shown to be deecicable. The problem of the explicative power of generative granrmars is ciscussed.

Box: The resulting text reconstruction; red symbolizes mistakes

OCR Post-correction

• How can we fix erroneous OCR output...

OCR Post-correction

How can we fix erroneous OCR output... with OCR Post-correction: "fGenerative grammars can be formulated asn normal /M¥arkov/ algorithms and thus their study can be reduced to the stufy of suck algorithms of a special +tyre."

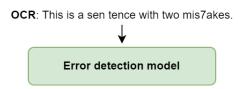
has to be repaired to

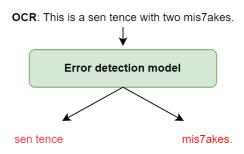
"Generative grammars can be formulated as normal /Markov/ algorithms and thus their study can be reduced to the study of such algorithms of a special type."

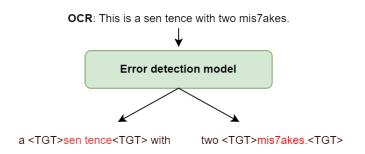
Table of Contents

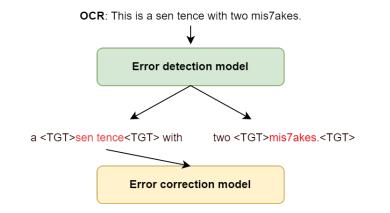
- Metrics
- Setup
- Results

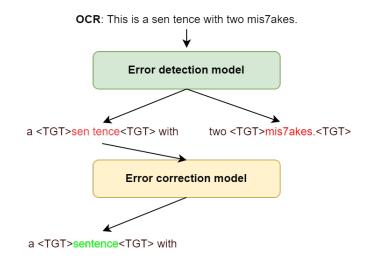
OCR: This is a sen tence with two mis7akes.











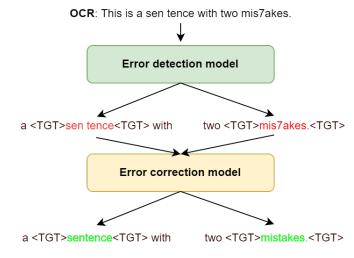


Figure: Visualization of two-step OCR Post-correction approach

Tany		

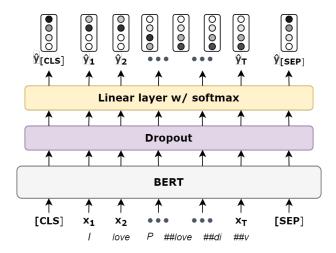
Error Detection 1/2

- Bidirectional Encoder Representations from Transformers (or BERT):
 - Pre-trained on a large English dataset to "understand" language
 - Fine-tuned for downstream task (i.e., OCR error detection)
 - Uses a **subword** tokenizer:

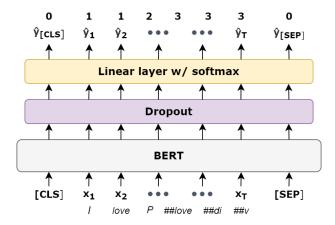
$$\begin{array}{l} \textit{Plovdiv} \rightarrow [\textit{'P'}, \textit{'\#\#lov'}, \textit{'\#\#di'}, \textit{'\#\#v'}] \\ \textit{Plovediv} \rightarrow [\textit{'P'}, \textit{'\#\#love'}, \textit{'\#\#di'}, \textit{'\#\#v'}] \end{array}$$

- Middle ground between character and word tokenization
- Flexibility of character tokenization (no OOV errors) \checkmark
- Power of word tokenization (more context than just chars) \checkmark

Error Detection 2/2



Error Detection 2/2



Error Detection 2/2

1 1 2 3 3 3 I love P ##love ##di ##v

Error Detection 2/2

1 1 2 3 3 3 | love <TGT>P ##love ##di ##v<TGT>

Error Detection 2/2

I love <TGT>Plovediv<TGT>

Figure: Visualization of using a BERT model for OCR error detection

Error Correction 1/2

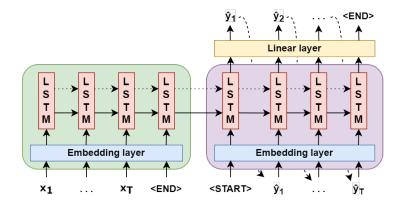


Figure: Workflow for LSTM sequence-to-sequence error correction model

Error Correction 2/2

- Will be evaluating two models:
 - LSTM sequence-to-sequence w/ and w/o attention
 - Transformer: does character-level attention work well?

Error Correction 2/2

- Will be evaluating two models:
 - $\bullet~LSTM$ sequence-to-sequence w/ and w/o attention
 - Transformer: does character-level attention work well?
- NB 1: Preceding and succeeding contexts can *also* contain errors
 → *multiple* correction samples with **one** target token each
- NB 2: No error-free samples are used for training

Table of Contents

- Metrics
- Setup
- Results

Detection Metrics

• How to classify the token predictions of the detection model?

Detection Metrics

- How to classify the token predictions of the detection model?
 - $\bullet\,$ Token was erroneous, and model found it \Rightarrow true positive
 - Token was *not* erroneous, but model found it as such \Rightarrow **false positive**
 - $\bullet\,$ Token was erroneous, but model did not find it $\Rightarrow\,$ false negative

Metrics

Detection Metrics

• How to classify the token predictions of the detection model?

- Token was erroneous, and model found it \Rightarrow true positive
- Token was *not* erroneous, but model found it as such \Rightarrow **false positive**
- Token was erroneous, but model *did not* find it \Rightarrow false negative
- Standard information retrieval metrics:

 \rightarrow how many error predictions were **actually** errors

- Recall: $\frac{TP}{TP+FN}$
 - \rightarrow how many of the **expected** errors were predicted
- F1 score: 2 * precision*recall precision+recall
 → harmonic mean of the recall and precision

Correction Metrics 1/2

• **IDEA:** BERT will take care of *marking* the erroneous tokens; the correction models need to be able to **correct** them properly

love <TGT>Plovediv<TGT>

Target token

• Metric: % change of Levenshtein distance between target tokens

Input: love <TGT>Plovediv<TGT> Prediction: lovd <TGT>Plovdiv<TGT> Target: love <TGT>Plovdiv<TGT>

Metrics

Correction Metrics 2/2

- How to measure correction performance of full pipeline?
- IDEA: Measure impact of using two-step model on all texts \rightarrow did it *help* or make things *worse*?
- How?
 - Calculate *sum* of Levenshtein distances in all **original texts**
 - Calculate sum of Levenshtein distance in all predicted texts
 - Determine the % change between the two sums

Datasets

- ICDAR2017* pre 19th century literature and publications
 - Monograph (e.g., books)
 - Periodical (e.g., newspapers, magazines)
- ICDAR2019* highly erroneous old literature
- "Pure OCR Errors"* collection of *automatically* extracted OCR errors from the ACL Anthology Reference Corpus
- "ACL Benchmark" randomly sampled and **manually corrected** OCR errors from the ACL Anthology Reference Corpus
- Artificial data* error statistics + clean dataset

* - used for training

Setup

Comparison bases

- Baseline dictionary approach:
 - If word not in dictionary \rightarrow it's erroneous
 - Corrections w/ **Q**-gram index: lowest ED and highest freq.
- External models:
 - NATAS [2] character-level NMT model with vanilla RNN cells and general Luong attention [3]
 - Google Autocorrect random subset of 100 samples; accept corrections until none are left
- Competition models:
 - Char-SMT/NMT [4] hybrid model w/ NMT for detection and SMT for correction
 - WFST-PostOCR vocabulary + weighted finite-state transducers
 - CCC multilingual BERT for detection + LSTM encoder-decoder for correction
 - Nguyen et al. BERT for detection + LSTM encoder-decoder for correction (simplified when compared to CCC)

Final Detection Results

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Plain				
Training Q-Index	28.53%	49.2%	35.04%	44.71%
w/ max. dist. 3				
Char-SMT/NMT	х	67%	64%	х
WFST-PostOCR	×	73%	68%	Х
CCC	x	х	х	67%
Nguyen et al.	x	72%	74%	68%
Google	36.93%			
Autocorrect				
NATAS	10.05%	27.53%	23.54%	28.42%
Big Unfrozen BERT	51.61%	57.13%	52.37%	42%

Table: Subset of final results for OCR error detection on the testing datasets w/ F1 score

Final Correction Results

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Plain Training Q-Index w/ max. dist. 3	-76.52%	-52.1%	-52.33%	-46.28%
Char-SMT/NMT	х	+43%	+37%	х
WFST-PostOCR	x	+28%	х	Х
CCC	x	х	х	+11%
Nguyen et al.	x	+36%	+27%	+4%
Google Autocorrect	-21%			
NATAS	-92.5%	-81.84%	-81.16%	-75%
2-step w/ (3,3) LSTM	-8.1%	+2.38%	-7.3%	-9.72%
2-step w/ isolated Transf.	-8.2%	+2.2%	-9.99%	-10.67%

Table: Final results on the testing datasets w/ best-performing models, given in% improvement of the sum of Levenshtein distances

Results

Distribution of Detector-Generated Samples

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Plain Training Q-Index	17%/77%	38%/67%	26%/43%	36%/50%
Google Autocorrect	49%/29%			
NATAS	5%/52%	17%/64%	14%/49%	17%/52%
BERT + (3,3) BERT + Isolated	56%/37% 57%/37%	65%/47% 67%/47%	57%/39% 58%/39%	48%/22% 50%/22%

Table: Metrics measuring how many of the detector-generated samples are missed/superfluous; first percent is **precision**, the second is **recall**

Final Correction Results on Matches

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Plain Training Q-Index w/ max. dist. 3	+9.33%	+19.78%	-1.7%	-8.45%
Google Autocorrect	+23.88%			
NATAS	-46.67%	-26.73%	-44.76%	-43.43%
(3,3) LSTM	+35.57%	+52.72%	+41.97%	+34.17%
Isolated Transf.	+43.92%	+53.29%	+37.17%	+30%

 Table: Performance of a subset of the different models from the paper exclusively on the group of correctly matched correction samples

Results

Conclusion

- Transformer models are competitive with LSTM w/ attention ... but require a lot more data to train with *context*
- Error **detection** is the *bottleneck* of a two-step approach \rightarrow Remedy idea: expose correction model to **error-free** data, and focus on high detection recall
- It is very difficult to create a generic OCR correction model, which works well across all domains
 - \rightarrow Promising research direction: artificial generation of **domain-specific** data

Thank you for your time and attention!

References I

- S. Abraham, "Some questions of language theory," in COLING 1965, 1965.
- M. Hämäläinen and S. Hengchen, "From the paft to the fiiture: a fully automatic NMT and word embeddings method for OCR post-correction," CoRR, vol. abs/1910.05535, 2019.
- M. Luong, H. Pham, and C. D. Manning, "Effective approaches to attention-based neural machine translation." CoRR. vol. abs/1508.04025, 2015.
- C. Amrhein and S. Clematide, "Supervised ocr error detection and correction using statistical and neural machine translation methods," Journal for Language Technology and Computational Linguistics (JLCL), vol. 33, no. 1, pp. 49-76, 2018.

Results

References II

- P. Estrella and P. Paliza, "Ocr correction of documents generated during argentina's national reorganization process," in Proceedings of the First International Conference on Digital Access to Textual Cultural Heritage, DATeCH '14, (New York, NY, USA), p. 119–123, Association for Computing Machinery, 2014.
- R. Schaefer and C. Neudecker, "A two-step approach for automatic ocr post-correction," in LATECHCLFL, 2020.
- T. T. H. Nguyen, A. Jatowt, N.-V. Nguyen, M. Coustatv. and A. Doucet, Neural Machine Translation with BERT for Post-OCR Error Detection and Correction, p. 333–336. New York, NY, USA: Association for Computing Machinery, 2020.

Results

References III

J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: pre-training of deep bidirectional transformers for language understanding," CoRR, vol. abs/1810.04805, 2018.

Appendix TOC

- Baseline
 - Two-Step Approach
 - Correction Statistics
- Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- 😰 Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
 - Sentence tokenization

Table of Contents

Baseline

- Two-Step Approach
- Correction Statistics
- Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
- Sentence tokenization

- One classical OCR Post-correction approach is using a dictionary [5]:
 - Accumulate a large collection (i.e., dictionary) of valid words
 - Split OCR-ed texts by whitespace
 - Check each word against the dictionary:
 - If it is known (does not equal correct), leave it
 - If it is not known, propose a correction

• How to propose good corrections...

¹The most common set of edit operations is also called Levenshtein operations

- How to propose good corrections... by using **Edit Distance** (or **ED**):
 - Determine the **minimal** number of **single-character** operations, in order to *transform* one string into another

¹The most common set of edit operations is also called Levenshtein operations

- How to propose good corrections... by using **Edit Distance** (or **ED**):
 - Determine the **minimal** number of **single-character** operations, in order to *transform* one string into another
 - Permissible operations (in most common case ¹):
 - Insertion: *Plovdiv* → *Plovediv*

¹The most common set of edit operations is also called Levenshtein operations

- How to propose good corrections... by using **Edit Distance** (or **ED**):
 - Determine the **minimal** number of **single-character** operations, in order to *transform* one string into another
 - Permissible operations (in most common case ¹):
 - Insertion: *Plovdiv* → *Plovediv*
 - **Deletion**: *Plovdiv* → *Plodiv*

¹The most common set of edit operations is also called Levenshtein operations

- How to propose good corrections... by using **Edit Distance** (or **ED**):
 - Determine the **minimal** number of **single-character** operations, in order to *transform* one string into another
 - Permissible operations (in most common case ¹):
 - Insertion: $Plovdiv \rightarrow Plovediv$
 - **Deletion**: *Plovdiv* → *Plodiv*
 - Substitution: *Plovdiv* \rightarrow *Plofdiv*

¹The most common set of edit operations is also called Levenshtein operations

- How to propose good corrections... by using **Edit Distance** (or **ED**):
 - Determine the **minimal** number of **single-character** operations, in order to *transform* one string into another
 - Permissible operations (in most common case ¹):
 - Insertion: $Plovdiv \rightarrow Plovediv$
 - **Deletion**: $Plovdiv \rightarrow Plodiv$
 - Substitution: *Plovdiv* \rightarrow *Plofdiv*
 - Low edit distance \rightarrow similar; high edit distance \rightarrow different
 - Tie-breaker: word **frequency** (i.e., how often was word *encountered* when accumulating words for dictionary)

¹The most common set of edit operations is also called Levenshtein operations

Vocabulary: [('this', 4), ('is', 4), ('a', 2), ('cat', 2), ('rad', 1), ('bad', 1)]

OCR: "This is a rat."

Correction candidates: $rat \rightarrow this (ED 4)$ $rat \rightarrow is (ED 3)$ $rat \rightarrow a (ED 2)$ $rat \rightarrow cat (ED 1, frequency 2)$ $rat \rightarrow rad (ED 1, frequency 1)$ $rat \rightarrow bad (ED 2)$

- **Problem**: Comparing each word against a *large* word collection is expensive
- Solution:

- **Problem**: Comparing each word against a *large* word collection is expensive
- Solution: Q-grams
 - A Q-gram is a *substring* of length q
 - Similar words (i.e., with low ED) must have many common substrings
 - \rightarrow the other ones (w/ few shared substrings) can be skipped
 - Practical threshold: $comm(x, y) \ge max(|x|, |y|) 1 (\delta 1) * q$, with:
 - comm(x, y): # shared Q-grams between strings x and y
 - |x|: length of arbitrary string x
 - δ : maximum allowed edit distance
 - q: the size (i.e., length) of the Q-grams

- Shortcomings of baseline approach:
 - Real-word errors: valid words that do not fit in context (see last slide)
 - Named entities: names and acronyms are not valid words
 - Word boundary errors: addition/deletion of whitespaces

 - Incorrect split error: $Plovdiv \rightarrow Pl ovdiv$

Table of Contents

4 E

Two-Step Approach

- Correction Statistics
- Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
- Sentence tokenization

- Recent research (see [6] and [7]) has started using two **separate** deep-learning models for error *detection*, and then *correction*
- Motivation:

- Recent research (see [6] and [7]) has started using two **separate** deep-learning models for error *detection*, and then *correction*
- Motivation:
 - Allows usage of powerful detection model BERT [8]

• Recent research (see [6] and [7]) has started using two **separate** deep-learning models for error *detection*, and then *correction*

• Motivation:

- Allows usage of powerful detection model BERT [8]
- Reduces the amount of "overcorrected" samples (e.g., "This is my car" to "This is my cat")

• Recent research (see [6] and [7]) has started using two **separate** deep-learning models for error *detection*, and then *correction*

• Motivation:

- Allows usage of powerful detection model BERT [8]
- Reduces the amount of "overcorrected" samples (e.g., "This is my car" to "This is my cat")
- Allowing the error correction model to focus on that task only *should* theoretically boost its performance [6]

• Group detection-generated and expected correction samples in:

- Matched: Detection-generated \cap Expected
- **Missed**: Expected \setminus Detection-generated
- Superfluous: Detection-generated \setminus Expected

• Group detection-generated and expected correction samples in:

- Matched: Detection-generated \cap Expected
- **Missed**: Expected \setminus Detection-generated
- Superfluous: Detection-generated \setminus Expected

• Then, % change of Levenshtein distance sum on:

• Group detection-generated and expected correction samples in:

- Matched: Detection-generated \cap Expected
- **Missed**: Expected \setminus Detection-generated
- Superfluous: Detection-generated \setminus Expected
- Then, % change of Levenshtein distance sum on:
 - Original texts: sum of missed and matched samples

• Group detection-generated and expected correction samples in:

- Matched: Detection-generated \cap Expected
- **Missed**: Expected \setminus Detection-generated
- Superfluous: Detection-generated \setminus Expected
- Then, % change of Levenshtein distance sum on:
 - Original texts: sum of missed and matched samples
 - Predicted texts: sum of missed, matched and superfluous samples

Table of Contents

Baseline

Two-Step Approach

Correction Statistics

- Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
- Sentence tokenization

Error Type Statistics

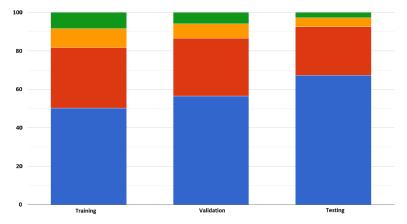


Figure: blue represents single-mistake errors; red represents double-mistake errors; yellow represents triple-mistake errors; green represents multi-mistake errors

Tanyu Tanev	Master Thesis	June 30, 2022	12 / 52

Word Boundary Error Statistics

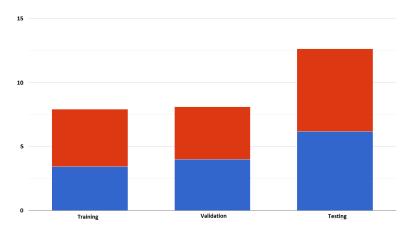


Figure: blue represents run-on errors; red represents incorrect split errors

Table of Contents

- 🕖 Baseli
 - Two-Step Approach
 - Correction Statistics

Artificial Data

- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
- Sentence tokenization

Artificial Data 1/2

- How? Record statistics:
 - How often are letters substituted with other *combinations* (1 or 2 symbols)?
 - What combinations of *edit operations* are typical?
 e.g., del→sub is most often a **double-character** substitution (/) to p)
 - At which **positions** do these edit operations happen?
 → not randomly distributed (example again: double-character substitutions)
- From where? ICDAR datasets + "Pure OCR Errors"
- Generate until a custom set *threshold* is hit (based on number of words already handled)

Artificial Data 2/2

- For training the final models: 200,000-word limit
- Edit operation statistics:
 - 3.53% insertions
 - 7% deletions
 - 17.82% substitutions
- Error type statistics:
 - 65.44% single-mistake
 - 26.42% double-mistake
 - 5.33% triple-mistake
 - 2.81% multi-mistakes (i.e., four mistakes or more)
- Word boundary error statistics:
 - 3.1% run-on
 - 4.45% incorrect split

16 / 52

Table of Contents

- 4 Base
 - Two-Step Approach
 - Correction Statistics
 - Artificial Data

Q-Index Experiment Results

- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
- Sentence tokenization

Q-Index Experiment Results 1/2

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Training	Plain	28.53%	49.2%	35.04%	44.71%
Q-index	Skip NE	27.93%	48.13%	35.36%	43.26%
ArXiv	Plain	34.49%	46.58%	32.23%	42.14%
Q-index	Skip NE	30.17%	47.71%	35.1%	43.45%

 Table: Error detection results for different experiments with baseline Q-index model, evaluated on the test datasets

Q-Index Experiment Results 2/2

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Training Q-index	Plain	+7.8%	+16.33%	+1.62%	-4.46%
	Skip NE	+7.34%	+14.42%	-1.56%	-11.92%
ArXiv Q-index	Plain	+9.48%	+14.26%	-1.88%	-11.99%
	Skip NE	+8.26%	+12.75%	-4.38%	-14.56%

 Table: Error correction results for different experiments with baseline Q-index model, evaluated on the test datasets

Table of Contents

- 4) Baseli
- Two-Step Approach
- Correction Statistics
- Artificial Data
 - Q-Index Experiment Results

Mixed Dataset Experiment Results

- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
- Sentence tokenization

Mixed Dataset Experiment Results

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019	Pure OCR Errors*
Only ICDAR2017 monograph (4:15:30)	-40.09%	+34.21%			
Both ICDAR2017 datasets (4:29:38)	-32.43%	+32.69%	+25.46%		
Both ICDAR2017 + ICDAR2019 (4:28:50)	-28.76%	+33.37%	+23.97%	+5.09%	
All ICDAR + Pure OCR Errors (4:59:52)	-14.64%	+33.64%	+25.56%	+5.64%	+32.18%
All ICDAR + Pure OCR Errors + Artificial 200k (6:09:54)	+3.79%	+31.11%	+24.02%	+4.27%	+41.99%

Table: Results for running a (3,3) context Transformer model on different "mixes" of datasets, evaluated on the **validation** datasets

Table of Contents

- 4 Baselin
- Two-Step Approach
- Correction Statistics
- 7 Artificial Data
 - Q-Index Experiment Results
 - Mixed Dataset Experiment Results

DL Experiment Results

Extended Results

Error Analysis

- Influence of detection groups
- Worse "ACL Benchmark" Performance
- Missed sample exploration
- Superfluous sample exploration
- Model comparison
- Discrepancy w/ Nguyen et al.
- Sentence tokenization

LSTM Experiments 1/2

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019	Pure OCR Errors*
Context	1, 1	-9.66%	+37.23%	+31.65%	+18%	+39.47%
	(4:01:43)	(4% missed)	(3% missed)	(2% missed)	(2% missed)	(3% missed)
size	<mark>3, 3</mark>	-7.96%	+32.87%	+30.84%	+19.65%	+36.04%
	(5:20:00)	(3% missed)	(4% missed)	(2% missed)	(3% missed)	(5% missed)
	5, 5	-8.52%	+36.43%	+29.27%	+21.62%	+37.66%
	(8:39:29)	(2% missed)	(2% missed)	(1% missed)	(0.9% missed)	(2% missed)
	<mark>5, 1</mark>	-7.17%	+35.75%	+31.48%	+20.53%	+40.96%
	(5:20:48)	(2% missed)	(3% missed)	(2% missed)	(2% missed)	(2% missed)

Table: First subset of results for different experiments with an LSTM encoder-decoder correction model, evaluated on the **validation** datasets

LSTM Experiments 2/2

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019	Pure OCR Errors*
Attention	None	-34.45%	+14.88%	+0.63%	-7.16%	+24.78%
	(5:20:02)	(1% missed)	(2% missed)	(1% missed)	(2% missed)	(2% missed)
Туре	Dot	-6.48%	+32.53%	+30.22%	+20.12%	+36.82%
	(5:42:16)	(2% missed)	(2% missed)	(1% missed)	(2% missed)	(2% missed)
	General	-8.41%	+35.92%	+31.83%	+17.51%	+39.27%
	(5:36:18)	(0.8% missed)	(2% missed)	(0.6% missed)	(1% missed)	(2% missed)
	Concat	-5.14%	+35.64%	+30.98%	+16.23%	+39%
	(8:08:41)	(0.3% missed)	(1% missed)	(0,6% missed)	(0.5% missed)	(0.75% missed)

 Table: Second subset of results for different experiments with an LSTM

 encoder-decoder correction model, evaluated on the validation datasets

Transformer Experiments

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019	Pure OCR Errors*
Context	1, 1 (5:25:38)	-14.98%	+39.29%	+27.4%	+16.44%	+41.37%
size	3, 3 (8:35:54)	-15.19%	+39.27%	+27.91%	+13.46%	+39.23%
	<mark>5, 5</mark> (13:37:10)	-18.33%	+37.31%	+25.84%	+13.68%	+34.23%
	5, 1 (8:30:33)	-16.35%	+37.19%	+27.22%	+14.18%	+38.93%

 Table:
 Subset of results for different experiments with a Transformer correction model, evaluated on the validation datasets

BERT Detection Experiments

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019	Pure OCR Errors*
	Unfr. emb. + no fr. BERT layers (8:46:42)	60.87%	68.64%	63.51%	65.34%	88.91%
Fine tuning	Unfr. emb. + fr. nine layers (7:16:08)	57.24%	67%	62.03%	60.93%	90.17%
	Fr. emb. + fr. nine layers (5:39:42)	58.25%	66.67%	62.46%	60.54%	89.13%
	Fr. emb. + fr. all layers (4:44:51)	34.1%	42.75%	41.14%	33.19%	58.37%

 Table:
 Subset of results for different experiments with a BERT detection model, evaluated on the validation datasets with classification threshold 0.98

Table of Contents

- 4 Baselir
- Two-Step Approach
- Correction Statistics
- 7 Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results

Extended Results

Error Analysis

- Influence of detection groups
- Worse "ACL Benchmark" Performance
- Missed sample exploration
- Superfluous sample exploration
- Model comparison
- Discrepancy w/ Nguyen et al.
- Sentence tokenization

27 / 52

Full Final Correction Results 1/2

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Plain Training Q-Index w/ max. dist. 3	-76.52%	-52.1%	-52.33%	-46.28%
Char-SMT/NMT	х	+43%	+37%	х
WFST-PostOCR	×	+28%	х	х
CCC	×	х	х	+11%
Nguyen et al.	x	+36%	+27%	+4%
Google Autocorrect			-21%	
NATAS	-92.5%	-81.84%	-81.16%	-75%
2-step w/ (3,3) LSTM	-8.1%	+2.38%	-7.3%	-9.72%
2-step w/ isolated LSTM	-8.45%	+1.56%	-9.31%	-10.61%
2-step w/ (3,3) Transf.	-12.99%	-4.3%	-11.95%	-14.31%
2-step w/ isolated Transf.	-8.2%	+2.2%	-9.99%	-10.67%

 Table: Final results on the testing datasets, given in % improvement of the sum of Levenshtein distances

Full Final Correction Results 2/2

	ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019
Plain				
Training Q-Index	+9.33%	+19.78%	-1.7%	-8.45%
w/ max. dist. 3				
Google		1.0	3.88%	
Autocorrect		+2	.3.00 /0	
NATAS	-46.67%	-26.73%	-44.76%	-43.43%
(3,3) LSTM	+35.57%	+52.72%	+41.97%	+34.17%
Isolated LSTM	+37.65%	+49.3%	+33.72%	+26%
(3,3) Transf.	+31.23%	+52.76%	+38.54%	+26.25%
Isolated Transf.	+43.92%	+53.29%	+37.17%	+30%

Table: Performance of the different models from the paper exclusively on thegroup of correctly matched correction samples

Detection Group Results

		ACL	ICDAR2017 monograph	ICDAR2017 periodical	ICDAR2019		
Plain	Matched	16.45%	31.62%	19.45%	26.34%		
Training Q-Index w/ max. dist. 3	Missed	4.82%	15.86%	25.64%	25.86%		
	Superfluous	78.73%	52.52%	55%	47.8%		
Google	Matched		22	2.44%			
Autocorrect	Missed		54.15%				
	Superfluous	23.41%					
	Matched	5.2%	15.33%	11.92%	14.91%		
NATAS	Missed	4.77%	8.92%	12.36%	13.82%		
	Superfluous	90%	75.92%	75.72%	71.25%		
	Matched	28.63%	37.8%	30%	17.47%		
BERT + (3,3)	Missed	48.66%	42.1%	47.47%	63.53%		
	Superfluous	22.71%	20.1%	22.58%	19%		
BERT + Isolated	Matched	29.01%	38.51%	30.42%	18.29%		
	Missed	48.66%	42.83%	47.38%	63.42%		
	Superfluous	22.33%	18.66%	22.2%	18.29%		

Table: Fractions of groups of detection-generated samples

Tany		

Table of Contents

- 4) Baselir
- Two-Step Approach
- Correction Statistics
- 7 Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- 😰 Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.
 - Sentence tokenization

• Given: 2-step isolated Transformer model on ICDAR2017

- Given: 2-step isolated Transformer model on ICDAR2017
- Sum of Levenshtein distances of:
 - Matched samples: $7,985 \rightarrow 3,730 \ (+53.29\%)$

- Given: 2-step isolated Transformer model on ICDAR2017
- Sum of Levenshtein distances of:
 - Matched samples: $7,985 \rightarrow 3,730 \ (+53.29\%)$
 - Superfluous samples: 3,884

- Given: 2-step isolated Transformer model on ICDAR2017
- Sum of Levenshtein distances of:
 - Matched samples: $7,985 \rightarrow 3,730 \ (+53.29\%)$
 - Superfluous samples: 3,884
 - Missed samples: 8,858

Worse "ACL Benchmark" Performance 1/4

- Mismatched/hard cases:
 - "of <TGT>GmeptWizatiofls<TGT> Urderlying" →
 "of <TGT>Conceptualizatio@ns<TGT> Urderlying"
 - "be <TGT>awit r~_mmchaw<TGT>" → "be <TGT>switched somehow.<TGT>"
 - "or <TGT>~ixsemglL~.<TGT>" →
 "or <TGT>polysem@ous.<TGT>"
 - "of <TGT>'IIYXEght<TGT> and" → "of <TGT>@@Thought<TGT> and"

Worse "ACL Benchmark" Performance 2/4

- Named entities:
 - *"Francism*, *<***TGT***>***Qlifomia**.*<***TGT***>"* → "Francism, *<TGT>California.<TGT>*"
 - "4-3-11 <TGT>T∼keda.<TGT> Kofu" → "4-3-11 <**TGT**>**Takeda**.<**TGT**> Kofu"

Worse "ACL Benchmark" Performance 3/4

- Formulas/Technical jargon:
 - "i: <TGT>f~(X,y)<TGT> =" →
 "i: <TGT>fi(X,Yy)<TGT> ="
 - "by: <TGT>(T~)-1,<TGT> if" →
 "by: <TGT>(Ti^m)^-1,<TGT> if"

Worse "ACL Benchmark" Performance 4/4

- Non-English sequences (specifically: German)
 - "<TGT>P~dagogischer<TGT> Verlag" → "<TGT>Pädagogischer<TGT> Verlag"
 - "einem <TGT>Gener\]erungssystem<TGT> fHr" → "einem <TGT>Gener@ierungssystem<TGT> fHr"

Missed samples 1/8

Proper misses:

- multiword entl.t~es appear
- referential miscommunicatiou, having
- elements tha.t also
- and (senti-) automatic
- Amidst the arte which
- his colleigues.

Missed samples 2/8

• Punctuation mistakes:

- ',' to '' for sentence end
- ".' to ',' for sentence continuation
- '?' to apostrophes:
 - <TGT>Teachers?<TGT> Estimates $\rightarrow <$ TGT>Teachers'<TGT> Estimates
 - <TGT>?innate ?language<TGT> $\rightarrow <$ TGT>"innate" language<TGT>
- Fixing citations:
 - $\langle TGT \rangle \setminus [Robinson, \langle TGT \rangle \langle TGT \rangle 1982 \rangle]. \langle TGT \rangle \rightarrow \langle TGT \rangle @[Robinson, \langle TGT \rangle \langle TGT \rangle 1982 @]. \langle TGT \rangle$
 - $<TGT> \[Church< TGT> et aL, <TGT>1991 \]< TGT> \rightarrow <TGT>0[Church< TGT> et aL, <TGT>19910] <TGT>$
- "Fixing" sequences: Huang. XD. Hen. HW. and Lee. KP.. → Huang., XD., Hen., HW., and Lee. KP..

Missed samples 3/8

• Jargon:

• Formulas:

• "s(iek)"
$$\rightarrow$$
 "s(i,k)"
• "c(t)" \rightarrow "c(i)"

$$c(t) \rightarrow c(t)$$

- Non-English:
 - Er gibt mir Wein Er <TGT>stelgt<TGT> mir auf <TGT>den'<TGT> <TGT>Fu/3<TGT>
 - Sofia <TGT>~niversitat<TGT> Heidelberg-Konstanz

Missed samples 4/8

Named entities:

- <TGT>North-Ilolland, <TGT> Amsterdam
- Stanford, <TGT>Callfo~n\[a<TGT>
- <TGT>(infcrcncc)<TGT> <TGT>hdy<TGT> might →
 <TGT>(inference)<TGT> <TGT>Andy<TGT> might
- WOOLLEN MANUFACTURERS, <TGT>WOLSI5GIMM.<TGT> → WOOLLEN MANUFACTURERS, <TGT>WOLSINGHAM.<TGT>
- Mr. < TGT > Fusler < TGT > with an interview $\rightarrow Mr. < TGT > Fowler < TGT >$ with an interview
- Rev. T. <TGT>Shmelev<TGT> treasurer → Rev. T. <TGT>Stomeley<TGT> treasurer

Missed samples 5/8

Incorrectly marked boundaries:

- <TGT>P.tl.<TGT> → P.<TGT>tl.<TGT> (<TGT>P.@H.<TGT>)
- <TGT>recognitmn". $<TGT> \rightarrow <TGT>$ recognitmn<TGT>". (<TGT>recognition".<TGT>)
- <TGT>svlected. $<TGT> \rightarrow <TGT>$ svlected<TGT>. (<TGT>selected,<TGT>)
- The <TGT>DIONR<TGT> <TGT>.s.<TGT> or other steamer → The <TGT>DIONR .s.<TGT> or other steamer (The <TGT>DIONE<TGT> <TGT>s.s.<TGT> or other steamer)

Missed samples 6/8

Hard cases:

- We have not yet examined in full <TGT>thoee<TGT> cases where de-elefting leaves a state-expression.
- IIL LEARNING AND RECOGNITION <TGT>PIIASES<TGT>
- of his Third 'Elements <TGT>hy<TGT> which he
- <TGT>124118<TGT> S-. (<TGT>124 |. 18<TGT> S-.)
- [A??? a?, i, j](z1, x1) : [A??a??, i, j + 1]???(y1 : A??a?)? P 0?i?
- <TGT>i tasehold<TGT> (<TGT>@Leasehold<TGT>)

Missed samples 7/8

Inexplicable addition:

- <TGT>46<TGT> ROBERT THE DEtJTLL. \rightarrow <TGT> 46<TGT> ROBERT THE DEtJTLL.
- Retrieval <TGT>3000<TGT> documents \rightarrow Retrieval <TGT>~3000<TGT> documents
- Hindoo and Muiiumedan <TGT>Period<TGT> \rightarrow Hindoo and Muiiumedan <TGT>Periods.<TGT>

Missed samples 8/8

- Incorrect "corrections" (mainly ICDAR2019):
 - <TGT>considered,<TGT> \rightarrow <TGT>conffder'd,<TGT>
 - for the most <TGT>part<TGT $> \rightarrow$ for the most <TGT>pare<TGT>
 - <TGT>first<TGT $> \rightarrow <$ TGT>@first<TGT>
 - <TGT>offering<TGT $> \rightarrow <$ TGT>o@ffering<TGT>

Superfluous samples 1/4

• Missed errors in dataset:

- "multiple cycles of prototyplng."
- The basic idea... i very simple
- depends on its?o,o head in the relation
- taken no fee strictly oonbdenl iol .lisbuiee no <TGT>obleet<TGT>
- een pleased to appoint
- their theological dif-ference ,
- *tmlsome* and adventurous these expeditions
- <TGT>Sureeon-Dentist,<TGT>
- instantly curing tooth-ache, atiu rendering
- hereby giv notice,

Superfluous samples 2/4

- Looks like it should be an error:
 - other <TGT>pe-souul<TGT> Estate
 - A <TGT>enm fortable<TGT> smoke-room,
 - from such announcement, but <TGT>r .,<TGT> assume
 - had not been p. anu kn <TGT>Deoeased<TGT>
 - desirable residences for <TGT>gei<TGT> families
 - the aged Mr. <TGT>B- conduct<TGT> his family worship,
 - comes the sad <TGT>oHmax-when<TGT> Durham,

Superfluous samples 3/4

Punctuation:

- the same is <TGT>sum<TGT> moned as much
- spice broths sre too <TGT>hot-Treason's<TGT> in a December
- demise of Lord <TGT>Bruc t -<TGT> the t son
- to warm their <TGT>sit ting<TGT> rooms.
- of her <TGT>Majesty's<TGT> Treasury,
- <TGT>-London<TGT>, 22, Pall-mall.
- <TGT>How-ever, <TGT> for the matter of vanity,
- <TGT>hav-ing<TGT> known him from youth

Superfluous samples 4/4

Named entities:

- <TGT>HowNet<TGT> is a Chinese ontology
- <TGT>Stu-1<TGT> have <TGT>road<TGT> with much satisfaction your remarks
- Count Szeehvyni were on board the <TGT>Seri<TGT> rervas
- Charles <TGT>Wye<TGT> Williams, Esq.
- Private Contract under a <TGT>Fiat<TGT> in <TGT>Bank-pose,<TGT>
- in <TGT>rus-sia<TGT> or morocco letter

Model comparison

Input	Target	(3,3) LSTM	Isol. Transf.
dictiwanf	dictionary.	dictiwanf	dictionary
li'om	from	Irom	from
ooUeotod	collected	collected	collected
Hkewise	likewise	likewise	likewise
twoscycraU	two severall	two seveall	two several
aiglit .	sights.	sights.	aights.
xcix.	XCIX.	CCX.	XCIX.
Inll"illcr	IntFilter	lulriller	InFiller
deUcato	delicate	deUcato	delicate
oonaecntivu	consecutive	conseentive	consecutive
Rela \sim d	Related	Relaed	Related

Table: Comparison of the predictions from the two best-performing error correction models

Discrepancy w/ Nguyen et al.

- [7] achieves better results with a similar approach (BERT + LSTM)
- Differences:
 - Meta input features origin of sample
 - \rightarrow not applicable for generic model
 - Flexible target entity positioning:

twenty#in#number#andjust#then in#number#andjust#then#published

 \rightarrow increases size of training data

- Trained and optimized on ICDAR datasets exclusively
 - Reduced impact of *domain Specificity*?
 - $\bullet~$ ED-based filter to suppress corrections with ED >3
- Recognition of word boundary errors is left up to correction model

Table of Contents

- 4 Basel
- Two-Step Approach
- Correction Statistics
- 7 Artificial Data
- Q-Index Experiment Results
- Mixed Dataset Experiment Results
- DL Experiment Results
- Extended Results
- Error Analysis
 - Influence of detection groups
 - Worse "ACL Benchmark" Performance
 - Missed sample exploration
 - Superfluous sample exploration
 - Model comparison
 - Discrepancy w/ Nguyen et al.

Sentence tokenization

Sentence tokenization

- How to **split** large sequences into workable chunks?
- In this paper \rightarrow sentence tokenization with SpaCy
 - ... turned out to be a bad idea
 - Good case: W. Daelemans, J. Zavrel, P. Berck, and S. Gillis.
 - Bad case: No ORDERS|| will be|| admitted.|| To-morrow||(By Particular Desire). -The Brigand. And Wif ||e! What Wife ? Monday, ... • 'RICHES. Luke,Mr, Ksan. Tuesday, Paul|| Pry.
- Common approach from related work: flat max. length
 - \rightarrow Split target token in middle? Word boundary errors?